

CHAPTER: ALCOHOLS, ETHERS AND PHENOLS

Time: 1 Hr Marks: 73

General Instructions:

Questions 1-6 are based on Comprehension, questions 7-13 have Only one correct option and questions 14-16 may have More than one correct option and question 17-18 are numerical with single digit integer type answer. And question 19 is Matrix-Match type answer.

Marking Scheme:

- (a) For questions 1-6, +4 marks will be awarded for each **right** answer and -2 marks will be deducted for each **wrong** answer.
- (b) For questions 7–13, +3 marks will be awarded for each **right** answer and -1 mark will be deducted for each **wrong** answer.
- (c) For questions 14–16, +4 marks will be awarded for each **right** answer and -2 marks will be deducted for each **wrong** answer.
- (d) For questions 17–18, +4 marks will be awarded for each **right** answer and **0** marks will be deducted for each **wrong** answer.
- (e) For questions 19, +2, marks will be awarded for each **right** answer and -1 mark will be deducted for each **wrong** answer.

COMPREHENSION - I (Only one option correct)

Vanillin A $C_8H_8O_3$ is isolated from vanilla beans. It gives intense blue colour with neutral FeCl₃ and also gives +ve Tollen's test. It reacts with conc. HBr to give a compound B. One mole of vanillin gave one mole of AgI with Zeise's active methoxy estimations.

Compound B on oxidation with Tollen's reagent gave catechol.

Compound B can be prepared from catechol by Gatterman Koch reaction.

1. Vanillin contains

(A) -COOH group

(B) -CONH₂ group

(C) -CHO group

(D) -Cl group

Vanillin contains

(A) one phenolic OH group

(B) one alcoholic OH groups

(C) two phenolic OH groups

(D) three phenolic OH groups

COMPREHENSION - II (Only one option correct)

An organic compound containing C, H and O gives following observations:

- (i) It exists in two isomeric forms (A) and (B).
- (ii) 0.108 g of one of the isomers on combustion gave 0.308 g of CO₂ and 0.072 g of H₂O.
- (iii) (A) is insoluble in NaOH and NaHCO₃ while (B) is soluble in NaOH.
- (iv) (A) reacts with HI to give compound (C) and (D). (C) can be separated from (D) by ethanolic AgNO₃ solution and (D) is soluble in NaOH.
- (v) (B) readily reacts with bromine water to give compound (E) of molecular formula C₇H₅OBr₃.

3. Compound (B) in the above passage is

(A) anisole

(B) o-cresol

(C) m-cresol

(D) p-cresol

4. Compound (A) is

(A) a phenol

(B) a symmetric ether

(C) a mixed ether

(D) a carboxylic acid

COMPREHENSION - III (Only one option correct)

Phenol undergoes reactions, which are normally not shown by alcohols. e.g., when PhOH is treated with Zn, it is converted into benzene. Formylation of phenols with chloroform in alkaline solution is known as Reimer Tiemann reaction. In this reaction, it is believed that CHCl₃ and NaOH react to form carbene which reacts with phenol in its ketonic form to give product.

5.

$$\begin{array}{c}
\text{OH} \\
\text{CHO} \\
\xrightarrow{Z_{\text{II}} - \text{Hg}} A; A \text{ is}
\end{array}$$

(B)

(C) Both (A) and (B)

In the above reaction, X is

- (C) (B) is major, (A) is minor
- (В) НО НО
- (D) None of these

MULTIPLE CHOICE QUESTIONS (Only one correct option)

- 7. Which of the following is a primary alcohol?
 - (A) Butan -2-OL

(B) Butan -1-ol

(C) Propan -2-OL

(D) 2-methylbutan-2-ol

- 8. Phenol is less acidic than
 - (A) ethanol

(B) methanol

(C) o-nitrophenol

- (D) p-cresol
- 9. Reaction of $CH_2 CH_2$ with RMgX followed with hydrolysis produces
 - (A) RCHOHR (B)

RCH₂CH₂OH

(C) RCHOHCH₃

- (D) RCH = CHOH
- 10. A mixture of benzoic acid and phenol may be separated by treatment with
 - (A) NAHCO₃

(B) NAOH

(C) NH₃ solution

- (D) KOH
- 11. Which of the following compounds is oxidised to prepare methyl-ethyl ketone?
 - (A) 2-propanol

(B) 1-butanol

(C) 2-butanol

- (D) ter-butyl alcohol
- 12. Butanonitrile may be prepared by heating
 - (A) propyl alcohol with KCN

(B) butyl alcohol with KCN

(C) butyl chloride with KCN

(D) propyl chloride with KCN

$$O \longrightarrow OH$$

$$\xrightarrow{H^{+}} (x)$$

The major product (x) is

MULTIPLE CHOICE QUESTIONS (More than one correct option)

- 14. How much bromine is needed to produce tribromophenol from one mole of phenol?
 - (A) 3.0 mole

(B) 1.5 mol

(C) 240 g

- (D) 480 g
- 15. Which of the following is/are not phenols?
 - (A) catechol

(B) 1-phenyl methanol

(C) cyclohexenol

- (D) cyclobutenol
- 16. An alcohol, on oxidation, produces a ketone with the same number of carbon atoms. When the ketone is oxidised, it yields acid(s) with a fewer number of carbon atoms. The alcohol could be
 - (A) primary alcohol

(B) secondary alcohol

(C) tertiary alcohol

(D) 2-propanol

SINGLE INTEGER ANSWER TYPE

- 17. Number of isomeric ethers with chiral carbon in molecular formula C₅H₁₂O is...........
- 18. 0.1 mol of a hydroxyl compound reacts with 62.5 g of PCl₅ (mol. wt. 208.5). Determine the number of —OH groups.

MATCH-MATRIX TYPE QUESTION

19. Match the following Column I with Column II:

Column – I (Reactants)

(A)
$$C_2H_5OH + O = C = N - CH_3$$

Column - II

Product/s (All possible)

- (B) $C_2H_5OH + O = C = CH_2$
- (q) CH₃NH₂
- (C) $C_2H_5OH + CH_2N_2$

(r) |

(D) $C_2H_5OH + COCl_2$

- (s) C₂H₅OCH₃
- (t) $H_5C_2-O-C-OC_2H_5$

ANSWERS

1. С 2. Α 3. C 4. С В 5. 6. Α 7. В C С 10. Α 11. 12. D С 14. A, D B, C, D 13. 15. B, D 17. 16. 18. $\text{(A)} \rightarrow \text{p, q, t;} \quad \text{(B)} \rightarrow \text{r,}$ 19. (C) \rightarrow s, (D) \rightarrow t

Solution

18. We know that one mol of PCl₅ reacts with one mol of —OH group.

Mole of Alcohol = 0.1, mol of
$$PCl_5 = \frac{62.5}{208.5} = 0.3$$

Hence number of OH group =
$$\frac{\text{mol of PCI}_5}{\text{mol of Alcohol}} = \frac{0.3}{0.1} = 3$$