
 TWAIN Specification

Version 2.3

This document was ratified
by the TWAIN Working Group
on November 21, 2013

Acknowledgments
The TWAIN Working Group acknowledges the following individuals and their respective
companies for their contributions to this document. Their hard work in defining, designing,
editing, proofreading, and discussing the evolution of the document have been invaluable.

We would also like to thank the TWAIN Working Group Technical Committee for their opinions
and contributions..

Adobe Systems Incorporated
Scott Foshee

Atalasoft
Glenn Chittenden Jr.
Adam Scarborough
Spike McLarty

Avision inc.
Leo Liao
Jun Huang

Dynamsoft Corporation
Catherine Sea

Kodak Alaris, Inc.
Mark McLaughlin

Epson
Tak Shiozaki

Fujitsu Computer Products of America
Pamela Doyle

Hewlett-Packard
Sarah Schwartz

JFL Peripheral Solutions Inc.
Jon Harju
Rebecca Holz
Mihail Mikov
Pete Patterson

PFU Limited, a Fujitsu Company
Daisuke Kutsuwada

The TWAIN Working Group
Hilary Minugh

Table of Contents

1. Introduction .1-1

Need for Consistency . 1-1

Elements of TWAIN . 1-1

Benefits of Using TWAIN . 1-2

Creation of TWAIN . 1-3

2. Technical Overview .2-1

TWAIN Architecture . 2-1

TWAIN User Interface . 2-4

Communication Between the Elements of TWAIN . 2-5

Using Operation Triplets . 2-10

The State-Based Protocol . 2-11

Capabilities . 2-14

Modes Available for Data Transfer . 2-19

3. Application Implementation .3-1

Levels of TWAIN Implementation . 3-1

Installation of the Source Manager Software . 3-2

Changes Needed to Prepare for a TWAIN Session . 3-2

Controlling a TWAIN Session from Your Application . 3-9

Error Handling . 3-26

Best Practices for TWAIN Compliant Applications . 3-28

Legacy Issues . 3-40
TWAIN 2.3 Specification i

Table of Contents
4. Advanced Application Implementation .4-1

Capabilities . 4-1

Options for Transferring Data . 4-17

The ImageData and Its Layout . 4-23

Transfer of Multiple Images . 4-26

Transfer of Compressed Data . 4-32

Alternative User Interfaces . 4-35

Grayscale and Color Information for an Image . 4-38

5. Source Implementation .5-1

The Structure of a Source . 5-1

Operation Triplets . 5-2

Sources and the Event Loop . 5-3

User Interface Guidelines . 5-4

Capability Negotiation . 5-6

Data Transfers . 5-8

Error Handling . 5-11

Memory Management . 5-12

Requirements for a Source to be TWAIN-Compliant . 5-13

Other Topics . 5-21

6. Entry Points and Triplet Components .6-1

Entry Points . 6-1

Data Groups . 6-4

Data Argument Types . 6-4

Messages . 6-6

Custom Components of Triplets . 6-7
ii TWAIN 2.3 Specification

Table of Contents
7. Operation Triplets .7-1

Triplet Overview . 7-1

Format of the Operation Triplet Descriptions . 7-5

Operation Triplets . 7-7

8. Data Types and Data Structures .8-1

Naming Conventions . 8-1

Platform Dependent Definitions and Typedefs . 8-3

Definitions of Common Types . 8-6

Data Structure Definitions . 8-8

Data Argument Types that Don’t Have Associated TW_Structures 8-63

Constants . 8-65

Deprecated Items . 8-98

9. Extended Image Information Definitions. .9-1

TWAIN 1.7 Extended Image Attribute Capabilities . 9-1

TWAIN 1.9 Extended Image Attribute Capabilities . 9-11

TWAIN 1.91 Extended Image Attribute Capabilities . 9-14

TWAIN 2.0 Extended Image Attribute Capabilities . 9-16

TWAIN 2.1 Extended Image Attribute Capabilities . 9-16

TWAIN 2.2 Extended Image Attribute Capabilities . 9-17

TWAIN 2.3 Extended Image Attribute Capabilities . 9-17

10. Capabilities. .10-1

Overview . 10-1

Required Capabilities . 10-3

Capabilities in Categories of Functionality . 10-3
TWAIN 2.3 Specification iii

Table of Contents
11. Return Codes and Condition Codes .11-1

An Overview of Return Codes and Condition Codes . 11-1

Currently Defined Return Codes . 11-2

Currently Defined Condition Codes . 11-3

Custom Return and Condition Codes . 11-4

12. Operating System Dependencies. .12-1

Developing for Windows . 12-1

Developing for Mac . 12-8

Developing for Linux . 12-12

13. TWAIN Self-Certification Process for Data Sources .13-1

Overview . 13-1

Non-Goals of Basic TWAIN Self-Certification . 13-2

Affirmation of Successful Completion of TWAIN Self-Certification . 13-3

TWAIN “Congratulations” Webpage . 13-10

TWAIN Self-Certification Tests . 13-10

TWAIN Standard Capability Tests . 13-11

Vendor Custom Capability Tests . 13-19

Status Return Tests . 13-25

Stress Tests . 13-27

Non-UI Image Transfer Tests . 13-28

 UI Image Transfer Tests . 13-33

CAP_XFERCOUNT Tests . 13-34

Version Tests . 13-39

Verify Values For MSG_RESETALL and MSG_RESET . 13-41

A. TWAIN Articles. A 1

Device Events . A-1
iv TWAIN 2.3 Specification

Table of Contents
Supported Sizes . A-5

Automatic Capture . A-7

Camera Preview . A-8

File System . A-11

Internationalization . A-19

Audio Snippets . A-26

How to use the Preview Device . A-28

Imprinter / Endorser . A-30

Capability Ordering . A-31

Defaults . A-42

B. TWAIN Technical Support. B 1

E-Mail Support . B-1

Worldwide Web . B-2
TWAIN 2.3 Specification v

Table of Contents
vi TWAIN 2.3 Specification

1
Introduction

Chapter Contents

Need for Consistency . 1-1

Elements of TWAIN . 1-1

Benefits of Using TWAIN. 1-2

Creation of TWAIN . 1-3

Need for Consistency
With the introduction of scanners, digital cameras, and other image acquisition devices, users
eagerly discovered the value of incorporating images into their documents and other work.
However, supporting the display and manipulation of this raster data placed a high cost on
application developers. They needed to create user interfaces and build in device control for the
wide assortment of available image devices. Once their application was prepared to support a
given device, they faced the discouraging reality that devices continue to be upgraded with new
capabilities and features. Application developers found themselves continually revising their
product to stay current.

Developers of both the image acquisition devices and the software applications recognized the
need for a standard communication between the image devices and the applications. A standard
would benefit both groups as well as the users of their products. It would allow the device
vendors’ products to be accessed by more applications and application vendors could access data
from those devices without concern for which type of device, or particular device, provided it.
TWAIN was developed because of this need for consistency and simplification.

Elements of TWAIN
TWAIN defines a standard software protocol and API (application programming interface) for
communication between software applications and image acquisition devices (the source of the
data).
TWAIN 2.3 Specification 1-1

Chapter 1
The three key elements in TWAIN are:

• Application software

An application must be modified to use TWAIN.

• Source Manager software

This software manages the interactions between the application and the Source. This code is
provided in the TWAIN Developer’s Toolkit and should be shipped for free with each
TWAIN application and Source.

• Source software

This software controls the image acquisition device and is written by the device developer to
comply with TWAIN specifications. Traditional device drivers are now included with the
Source software and do not need to be shipped by applications.

Figure 1-1 TWAIN Elements

Benefits of Using TWAIN

For the Application Developer

• Allows you to offer users of your application a simple way to incorporate images from any
compatible raster device without leaving your application.

• Saves time and dollars. If you currently provide low-level device drivers for scanners, etc.,
you no longer need to write, support, or ship these drivers. The TWAIN-compliant image
acquisition devices will provide Source software modules that eliminate the need for you to
create and ship device drivers.

• Permits your application to access data from any TWAIN-compliant image peripheral simply
by modifying your application code once using the high-level TWAIN application
programming interface. No customization by product is necessary. TWAIN image peripherals

Image
Application

Data Source
Manager

Fax
Application

Word Processor
Application

Digital Camera
Data Source

Scanner
Data Source

Image Database
Data Source

Producers of
Image Data

Consumers of
Image Data

HW Dependant I/O Layer
(SCSI, Parallel, Serial, etc.)

Source Manager
Software

Data Source
Software

Application
Software

TWAIN
Interfaces
1-2 TWAIN 2.3 Specification

can include desktop scanners, hand scanners, digital cameras, frame grabbers, image
databases, or any other raster image source that complies to the TWAIN protocol and API.

• Allows you to determine the features and capabilities that an image acquisition device can
provide. Your application can then restrict the Source to offer only those capabilities that are
compatible with your application’s needs and abilities.

• Eliminates the need for your application to provide a user interface to control the image
acquisition process. There is a software user interface module shipped with every TWAIN-
compliant Source device to handle that process. Of course, you may provide your own user
interface for acquisition, if desired.

For the Source Developer

• Increases the use and support of your product. More applications will become image
consumers as a result of the ease of implementation and breadth of device integration that
TWAIN provides.

• Allows you to provide a proprietary user interface for your device. This lets you present the
newest features to the user without waiting for the applications to incorporate them into their
interfaces.

• Saves money by reducing your implementation costs. Rather than create and support various
versions of your device control software to integrate with various applications, you create just
a single TWAIN-compliant Source.

For the End User

• Gives users a simple way to incorporate images into their documents. They can access the
image in fewer steps because they never need to leave your application.

Note: TWAIN is supported on all versions of Microsoft Windows and Apple Mac OS X.
TWAIN 2.x and higher includes support for Linux and 64-bit operating systems.
Information about supporting TWAIN on 16-bit operating systems and older versions of
the Apple Macintosh OS are no longer described in the current TWAIN specification.
Please refer to version 1.9 of the Specification for support of older operating systems.

Creation of TWAIN
TWAIN was created by a small group of software and hardware companies in response to the
need for a proposed specification for the imaging industry. The Working Group’s goal was to
provide an open, multi-platform solution to interconnect the needs of raster input devices with
application software. The original Working Group was comprised of representatives from five
companies: Aldus, Caere, Kodak Alaris, Hewlett-Packard, and Logitech. Three other companies,
Adobe, Howtek, and Software Architects also contributed significantly.

The design of TWAIN began in January, 1991. Review of the original TWAIN Developer’s Toolkit
occurred from April, 1991 through January, 1992. The original Toolkit was reviewed by the
TWAIN Coalition. The Coalition includes approximately 300 individuals representing 200
companies who continue to influence and guide the future direction of TWAIN.
TWAIN 2.3 Specification 1-3

Chapter 1
The current version of TWAIN was written by members of the TWAIN Working Group including
Adobe, Kodak Alaris, Inc., Fujitsu Computer Products of America, Hewlett-Packard Company,
JFL Peripheral Solutions Inc., Ricoh Corporation, Xerox Corporation, and Lizardtech Corporation.

In May, 1998, an agreement was announced between Microsoft and the TWAIN Working Group
which provided for the inclusion of the TWAIN Data Source Manager in Microsoft Windows 98
and Microsoft Windows NT 5.0.

During the creation of TWAIN, the following architecture objectives were adhered to:

• Ease of Adoption — Allow an application vendor to make their application TWAIN-
compliant with a reasonable amount of development and testing effort. The basic features of
TWAIN should be implemented just by making modest changes to the application. To take
advantage of a more complete set of functionality and control capabilities, more development
effort should be anticipated.

• Extensibility — The architecture must include the flexibility to embrace multiple windowing
environments spanning various host platforms (Mac OS X, Microsoft Windows, Linux with
KDE or Gnome, etc.) and facilitate the exchange of various data types between Source devices
and destination applications. Currently, only the raster image data type is supported but
suggestions for future extensions include text, facsimile, vector graphics, and others.

• Integration — Key elements of the TWAIN implementation “belong” in the operating system.
The agreement between Microsoft and the TWAIN Working Group indicates that this
integration into the operating system is beginning. TWAIN must be implemented to
encourage backward compatibility (extensibility) and smooth migration into the operating
system. An implementation that minimizes the use of platform-specific mechanisms will have
enhanced longevity and adoptability.

• Easy Application <-> Source Interconnect — A straight-forward Source identification and
selection mechanism will be supplied. The application will drive this mechanism through a
simple API. This mechanism will also establish the data and control links between the
application and Source. It will support capability and configuration communication and
negotiation between the application and Source.

• Encapsulated Human Interface — A device-native user interface will be required in each
Source. The application can optionally override this native user interface while still using the
Source to control the physical device.
1-4 TWAIN 2.3 Specification

2
Technical Overview

Chapter Contents

TWAIN Architecture. 2-1

TWAIN User Interface . 2-4

Communication Between the Elements of TWAIN . 2-5

Using Operation Triplets . 2-10

The State-Based Protocol . 2-11

Capabilities . 2-14

The TWAIN protocol and API are easiest to understand when you see the overall picture. This
chapter provides a technical overview of TWAIN.

TWAIN Architecture
The transfer of data is made possible by three software elements that work together in TWAIN:
the application, the Source Manager, and the Source.

These elements use the architecture of TWAIN to communicate. The TWAIN architecture consists
of four layers:

• Application

• Protocol

• Acquisition

• Device

The TWAIN software elements occupy the layers as illustrated below. Each layer is described in
the sections that follow.
TWAIN 2.3 Specification 2-1

Chapter 2
Figure 2-1 TWAIN Software Elements

Application

The user’s software application executes in this layer.

TWAIN describes user interface guidelines for the application developer regarding how users
access TWAIN functionality and how a particular Source is selected.

TWAIN is not concerned with how the application is implemented. TWAIN has no effect on any
inter-application communication scheme that the application may use.

Protocol

The protocol is the “language” spoken and syntax used by TWAIN. It implements precise
instructions and communications required for the transfer of data.

The protocol layer includes:

• The portion of application software that provides the interface between the application and
TWAIN

• The TWAIN Source Manager provided by TWAIN

• The software included with the Source device to receive instructions from the Source Manager
and transfer back data and Return Codes

The contents of the protocol layer are discussed in more detail in “Communication Between the
Elements of TWAIN” on page 2-5.
2-2 TWAIN 2.3 Specification

http://www.twain.org

Acquisition

Acquisition devices may be physical (like a scanner or digital camera) or logical (like an image
database). The software elements written to control acquisitions are called Sources and reside
primarily in this layer.

The Source transfers data for the application. It uses the format and transfer mechanism agreed
upon by the Source and application.

The Source always provides a built-in user interface that controls the device(s) the Source was
written to drive. An application can override this and present its own user interface for
acquisition, if desired.

Device

This is the location of traditional low-level device drivers. They convert device-specific commands
into hardware commands and actions specific to the particular device the driver was written to
accompany. Applications that use TWAIN no longer need to ship device drivers because they are
part of the Source.

TWAIN is not concerned with the device layer at all. The Source hides the device layer from the
application. The Source provides the translation from TWAIN operations and interactions with
the Source’s user interface into the equivalent commands for the device driver that cause the
device to behave as desired.

Note: The Protocol layer is the most thoroughly and rigidly defined to allow precise
communications between applications and Sources. The information in this document
concentrates on the Protocol and Acquisition layers.
TWAIN 2.3 Specification 2-3

Chapter 2
TWAIN User Interface
When an application uses TWAIN to acquire data, the acquisition process may be visible to the
application’s users in the following three areas:

Figure 2-2 Data Acquisition Process

The Application

The user needs to select the device from which they intend to acquire the data. They also need to
signal when they are ready to have the data transferred. To allow this, TWAIN strongly
recommends the application developer add two options to their File menu:

• Select Source - to select the device

• Acquire - to begin the transfer process

The Source Manager

When the user chooses the Select Source option, the application requests that the Source Manager
display its Select Source dialog box. This lists all available devices and allows the user to highlight
and select one device. If desired, the application can write its own version of this user interface.

The Source

Every TWAIN-compliant Source provides a user interface specific to its particular device. When
the application user selects the Acquire option, the Source’s User Interface may be displayed. If
desired, the application can write its own version of this interface, too.
2-4 TWAIN 2.3 Specification

Communication Between the Elements of TWAIN
Communication between elements of TWAIN is possible through two entry points. They are
called DSM_Entry() and DS_Entry(). DSM means Data Source Manager and DS means Data
Source.

Figure 2-3 Entry Points for Communicating Between Elements

The Application

The goal of the application is to acquire data from a Source. However, applications cannot contact
the Source directly. All requests for data, capability information, error information, etc. must be
handled through the Source Manager.

Approximately 140 operations are defined by TWAIN. The application sends them to the Source
Manager for transmission. The application specifies which element, Source Manager or Source, is
the final destination for each requested operation.

The application communicates to the Source Manager through the Source Manager’s only entry
point, the DSM_Entry() function.

The parameter list of the DSM_Entry function contains:

• An identifier structure providing information about the application that originated the
function call

• The destination of this request (Source Manager or Source)

• A triplet that describes the requested operation. The triplet specifies:

• Data Group for the Operation (DG_)

• Data Argument Type for the Operation (DAT_)

• Message for the Operation (MSG_)
TWAIN 2.3 Specification 2-5

Chapter 2
• (These are described more in the section called Using Operation Triplets located later in this
chapter.)

• A pointer field to allow the transfer of data

The function call returns a value (the Return Code) indicating the success or failure of the
operation.

TW_UINT16 TW_CALLINGSTYLE DSM_Entry

(pTW_IDENTITY pOrigin, // source of message
pTW_IDENTITY pDest, // destination of message
TW_UINT32 DG, // data group ID: DG_xxxx
TW_UINT16 DAT, // data argument type: DAT_xxxx
TW_UINT16 MSG, // message ID: MSG_xxxx
TW_MEMREF pData // pointer to data

);

Note: Data type definitions are covered in Chapter 8, "Data Types and Data Structures", and in
the file called TWAIN.H which can be downloaded from the TWAIN Working Group web
site http://www.twain.org.)

The Source Manager

The Source Manager provides the communication path between the application and the Source,
supports the user’s selection of a Source, and loads the Source for access by the application.
Communications from application to Source Manager arrive in the DSM_Entry() entry point.

• If the destination in the DSM_Entry call is the Source Manager

The Source Manager processes the operation itself.

• If the destination in the DSM_Entry call is the Source

The Source Manager translates the parameter list of information, removes the destination
parameter and calls the appropriate Source. To reach the Source, the Source Manager calls the
Source’s DS_Entry() function. TWAIN requires each Source to have this entry point.

Written in C code form, the DS_Entry function call looks like this:

TW_UINT16 TW_CALLINGSTYLE DSM_Entry

 (pTW_IDENTITY pOrigin, // source of message
 TW_UINT32 DG, // data group ID: DG_xxxx
 TW_UINT16 DAT, // data argument type: DAT_xxxx
 TW_UINT16 MSG, // message ID: MSG_xxxx
 TW_MEMREF pData // pointer to data
);

In addition, the Source Manager can initiate three operations that were not originated by the
application. These operation triplets exist just for Source Manager to Source communications and
are executed by the Source Manager while it is displaying its Select Source dialog box. The
operations are used to identify the available Sources and to open or close Sources.

The implementation of the Source Manager differs between the supported systems:
2-6 TWAIN 2.3 Specification

On Windows

• The Source Manager is a Dynamic Link Library (TWAINDSM.DLL).

• The Source Manager can manage simultaneous sessions between an applications and many
Sources.

On Macintosh

• The Source Manager is a Mach-O framework (TWAIN.framework).

On Linux

• The Source Manager is a shared library (/usr/local/lib/libtwaindsm.so).

• The Source Manager can manage simultaneous sessions between an application and many
Sources.

The Source

The Source receives operations either from the application, via the Source Manager, or directly
from the Source Manager. It processes the request and returns the appropriate Return Code (the
codes are prefixed with TWRC_) indicating the results of the operation to the Source Manager. If
the originator of the operation was the application, then the Return Code is passed back to the
application as the return value of its DSM_Entry() function call. If the operation was
unsuccessful, a Condition Code (the codes are prefixed with TWCC_) containing more specific
information is set by the Source. Although the Condition Code is set, it is not automatically passed
back. The application must invoke an operation to inquire about the contents of the Condition
Code.

The implementation of the Source is the same as the implementation of the Source Manager:

On Windows

• The Source is a Dynamic Link Library (DLL) with a .ds extension.

On Macintosh

• The Source is implemented as a bundle (preferably Mach-O) with a .ds extension.

On Linux

• The Source is a shared library (.so) with a .ds extension.

Communication Flowing from Source to Application

The majority of operation requests are initiated by the application and flow to the Source Manager
and Source. The Source, via the Source Manager, is able to pass back data and Return Codes.

However, there are four times when the Source needs to interrupt the application and request that
an action occur. These situations are:

• Notify the application that a data transfer is ready to occur. The time required for a Source to
prepare data for a transfer will vary. Rather than have the application wait for the preparation
to be complete, the Source just notifies it when everything is ready. The MSG_XFERREADY
notice is used for this purpose.
TWAIN 2.3 Specification 2-7

Chapter 2
• Request that the Source’s user interface be disabled. This notification should be sent by the
Source to the application when the user clicks on the “Close” button of the Source’s user
interface. The MSG_CLOSEDSREQ notice is used for this purpose.

• Notify the application that the OK button has been pressed, accepting the changes the user
has made. This is only used if the Source is opened with DG_CONTROL /
DAT_USERINTERFACE / MSG_ENABLEDSUIONLY. The MSG_CLOSEDSOK notice is used for
this purpose.

• A Device Event has occurred. This notification is sent by the Source to the Application when a
specific event has occurred, but only if the Application gave the Source prior instructions to
pass along such events. The MSG_DEVICEEVENT notice is used for this purpose.

These notices are presented to the application in its event (or message) loop. The process used for
these notifications is covered more fully in Chapter 12, "Operating System Dependencies", in the
discussion of the application’s event loop.

Identifying TWAIN 2.0 Elements

It is not sufficient to test the TW_IDENTITY.ProtocolMajor field to determine if an Application, a
Data Source Manager or a Source is TWAIN 2.0 compliant. Check the
TW_IDENTITY.SupportedGroups field for the Application or the Source, and look for the
following:

• DF_APP2, indicating that the Application is 2.0 compliant

• DF_DSM2, indicating that the Data Source Manager is 2.0 compliant

• DF_DS2, indicating that the Data Source is 2.0 compliant

Applications

All TWAIN 2.0 compliant Applications must report DF_APP2 in their
TW_IDENTITY.SupportedGroups field.

All TWAIN 2.0 compliant Applications must test for the DF_DSM2 flag in the
TW_IDENTITY.SupportedGroups field, after a call to DG_CONTROL / DAT_PARENT /
MSG_OPENDSM. If this flag is not found, then follow the legacy behavior for 1.x Applications,
using the memory management functions detailed in the TWAIN Specification.

If the flag is found, then the Application must call DG_CONTROL / DAT_ENTRYPOINT /
MSG_GET in State 3, before performing any other operation, to obtain pointers to the memory
management functions.

Sources

All TWAIN 2.0 compliant Sources must report DF_DS2 in their
TW_IDENTITY.SupportedGroups field.

All TWAIN 2.0 compliant Sources must be prepared to receive the DG_CONTROL /
DAT_ENTRYPOINT / MSG_SET call in State 3, before DG_CONTROL / DAT_IDENTITY /
MSG_OPENDS is called. If this operation is not called, then follow the legacy behavior for 1.x
Sources, using the memory management functions detailed in the TWAIN Specification, and
locating the Data Source Manager as indicated.
2-8 TWAIN 2.3 Specification

If the operation is called then the Source must use the pointers to the memory management
functions, and must use the supplied entry point to access DSM_Entry.

Using DAT_CALLBACK to Messages from the Source to the Application

Applications

TWAIN Applications running on Linux or Apple Macintosh OS X must use DG_CONTROL /
DAT_CALLBACK / MSG_REGISTER_CALLBACK to register to receive asynchronous notifications
for events like MSG_XFERREADY.

TWAIN Sources using older versions of the Data Source Manager (no DF_DSM2 flag detected)
must use legacy behavior. Please refer to Chapter 12, "Operating System Dependencies" for more
information.

Please note that TWAIN Applications are advised to return as soon as possible from a callback
function. Events like MSG_XFERREADY should initiate the image transfer on the same thread that
did MSG_ENABLEDS so that the callback can return immediately.

Sources

TWAIN Sources that detect the presence of the DF_DSM2 flag inside of
TW_IDENTITY.SupportedGroups must use DG_CONTROL / DAT_NULL with the appropriate
message to return events like MSG_XFERREADY.

TWAIN Source using older versions of the Data Source Manager (no DF_DSM2 flag detected) must
use legacy behavior. Please refer to Chapter 12, "Operating System Dependencies" for more
information.

Installation of the Data Source Manager

TWAIN Applications and Sources should install the latest version of the Data Source Manager. Please
check the TWAIN website http://www.twain.org to see if your Operating System or distro is
represented, and if not, please consider making a submission to the TWAIN Working Group.

Refer to Chapter 12, "Operating System Dependencies".

Memory Management in TWAIN 2.0 and Higher

TWAIN requires Applications and Sources to manage each other’s memory. The chief problem is
guaranteeing agreement on the API’s to use.

TWAIN 2.0 introduces four new functions that are obtained from the Source Manager through
DAT_ENTRYPOINT.

TW_HANDLE TW_CALLINGSTYLE DSM_MemAllocate (TW_UINT32)

void TW_CALLINGSTYLE DSM_MemFree (TW_HANDLE)

TW_MEMREF TW_CALLINGSTYLE DSM_MemLock (TW_HANDLE)

void TW_CALLINGSTYLE DSM_MemUnlock (TW_HANDLE)

The Source Manager takes the responsibility to make sure that all components are using the same
memory management API’s.
TWAIN 2.3 Specification 2-9

Chapter 2
If DAT_ENTRYPOINT is not obtained from the Source Manager then Applications and Sources
must use the legacy calls. Refer to Chapter 12, "Operating System Dependencies".

Also see DSMInterface.cpp sample source here: http://twain-samples.svn.sourceforge.net/

Using Operation Triplets
The DSM_Entry() and DS_Entry() functions are used to communicate operations. An
operation is an action that the application or Source Manager invokes. Typically, but not always, it
involves using data or modifying data that is indicated by the last parameter (pData) in the
function call.

Requests for actions occur in one of these ways:

The desired action is defined by an operation triplet passed as three parameters in the function
call. Each triplet uniquely, and without ambiguity, specifies a particular action. No operation is
specified by more than a single triplet. The three parameters that make up the triplet are Data
Group, Data Argument Type, and Message ID. Each parameter conveys specific information.

Data Group (DG_xxxx)

Operations are divided into large categories by the Data Group identifier. The following are
the currently defined Data Groups in TWAIN:

• CONTROL (The identifier is DG_CONTROL.): These operations involve control of the
TWAIN session. An example where DG_CONTROL is used as the Data Group identifier is
the operation to open the Source Manager.

• IMAGE (The identifier is DG_IMAGE.): These operations work with image data. An
example where DG_IMAGE is used as a Data Group is an operation that requests the
transfer of image data.

• AUDIO (The identifier is DG_AUDIO): These operations work with audio data (supported
by some digital cameras). An example where DG_AUDIO is used as a Data Group is an
operation that requests the transfer of audio data.

Data Argument Type (DAT_xxxx)

This parameter of the triplet identifies the type of data that is being passed or operated upon.
The argument type may reference a data structure or a variable. There are many data
argument types. One example is DAT_IDENTITY.

From To Using this function

The application The Source Manager DSM_Entry with the pDest parameter set to
NULL

The application The Source (via the
Source Manager)

DSM_Entry with the pDest parameter set to
point to a valid structure that identifies the
Source

The Source Manager The Source DS_Entry
2-10 TWAIN 2.3 Specification

http://twain-samples.svn.sourceforge.net/viewvc/twain-samples/trunk/TWAIN-Samples/Twain_DS_sample01/src/DSMInterface.cpp?view=markup

The DAT_IDENTITY type is used to identify a TWAIN element such as a Source. Data is
typically passed or modified through the pData parameter of the DSM_Entry and
DSM_Entry. In this case, the pData parameter would point to a data structure of type
TW_IDENTITY. The data argument type begins with DAT_xxxx and the associated data
structure begins with TW_xxxx and duplicates the second part of the name. This pattern is
followed consistently for most data argument types and their data structures. Any exceptions
are noted on the reference pages in Chapter 7, "Operation Triplets" and Chapter 8, "Data
Types and Data Structures".

Message ID (MSG_xxxx)

This parameter identifies the action that the application or Source Manager wishes to have
taken. There are many different messages such as MSG_GET or MSG_SET. They all begin with
the prefix of MSG_.

Examples of Operation Triplets

• The triplet the application sends to the Source Manager to open the Source Manager
module is:

DG_CONTROL / DAT_PARENT / MSG_OPENDSM

• The triplet that the application sends to instruct the Source Manager to display its Select
Source dialog box and thus allow the user to select which Source they plan to obtain data
from is:

DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT

• The triplet the application sends to transfer data from the Source into a file is:

DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET

The State-Based Protocol
The application, Source Manager, and Source must communicate to manage the acquisition of
data. It is logical that this process must occur in a particular sequence. For example, the
application cannot successfully request the transfer of data from a Source before the Source
Manager is loaded and prepared to communicate the request.

To ensure the sequence is executed correctly, the TWAIN protocol defines seven states that exist in
TWAIN sessions. A session is the period while an application is connected to a particular Source
via the Source Manager. The period while the application is connected to the Source Manager is
another unique session. At a given point in a session, the TWAIN elements of Source Manager and
Source each occupy a particular state. Transitions to a new state are caused by operations
requested by the application or Source. Transitions can be in the forward or backward direction.
Most transitions are single-state transitions. For example, an operation moves the Source Manager
from State 1 to State 2 not from State 1 to State 3. (There are situations where a two-state transition
may occur. They are discussed in Chapter 3, "Application Implementation".)

When viewing the state-based protocol, it is helpful to remember:

States 1, 2, and 3

• Are occupied only by the Source Manager.
TWAIN 2.3 Specification 2-11

Chapter 2
• The Source Manager never occupies a state greater than State 3.

States 4, 5, 6, and 7

• Are occupied exclusively by Sources.

• A Source never has a state less than 4 if it is open. If it is closed, it has no state.

• If an application uses multiple Sources, each connection is a separate session and each
open Source “resides” in its own state without regard for what state the other Sources are
in.

The State Transition Diagram looks like this:

Figure 2-4 State Transition Diagram

1
Pre-Session

Source Manager not
loaded

2
Source Manager

Loaded
App: Get Entry Point

3
Source Manager

Opened
User: Select Source

App: Load
Source Manager

App: Open
Source Manager

App: Unload Source
Manager

App: Close Source
Manager

App: Open Source

Source: Transition
when no more image
transfers are pending

Source: Notify App
to Disable Source.
App: Disable Source

App: Initiate
transfer

Source: Notify App
that transfer is ready

User: Acquire
App: Enable Source

App: Acknowledge
end of transfer

4
Source Open

Capability Negotiation

5
Source Enabled

Source: Show User
Interface

6
Transfer Ready
App: Inquire Image

Information or Audio
Information

7
Transferring

Source: Transfer Data

App: Close Source

Source Manager States Source States
2-12 TWAIN 2.3 Specification

The Description of the States

The following sections describe the states.

State 1 — Pre-Session

The Source Manager resides in State 1 before the application establishes a session with it.

At this point, the Source Manager code has been installed on the disk but typically is not
loaded into memory yet.

The only case where the Source Manager could already be loaded and running is under
Windows because the implementation is a DLL (hence, the same instance of the Source
Manager can be shared by multiple applications). If that situation exists, the Source Manager
will be in State 2 or 3 with the application that loaded it.

State 2 — Source Manager Loaded

The Source Manager now is loaded into memory. It is not open yet.

At this time, the Source Manager is prepared to accept other operation triplets from the
application.

State 3 — Source Manager Open

The Source Manager is open and ready to manage Sources.

The Source Manager is now prepared to provide lists of Sources, to open Sources, and to close
Sources.

The Source Manager will remain in State 3 for the remainder of the session until it is closed.
The Source Manager refuses to be closed while the application has any Sources open.

State 4 — Source Open

The Source has been loaded and opened by the Source Manager in response to an operation
from the application. It is ready to receive operations.

The Source should have verified that sufficient resources (i.e. memory, device is available,
etc.) exist for it to run.

The application can inquire about the Source’s capabilities (i.e. levels of resolution, support of
color or black and white images, automatic document feeder available, etc.). The application
can also set those capabilities to its desired settings. For example, it may restrict a Source
capable of providing color images to transferring black and white only.

Note: Inquiry about a capability can occur while the Source is in States 4, 5, 6, or 7. But, an
application can set a capability only in State 4 unless special permission is negotiated
between the application and Source.

State 5 — Source Enabled

The Source has been enabled by an operation from the application via the Source Manager
and is ready for user-enabled transfers.

If the application has allowed the Source to display its user interface, the Source will do that
when it enters State 5.

State 6 — Transfer is Ready

The Source is ready to transfer one or more data items (images) to the application.
TWAIN 2.3 Specification 2-13

Chapter 2
The transition from State 5 to 6 is triggered by the Source notifying the application that the
transfer is ready.

Before initiating the transfer, the application must inquire information about the image
(resolution, image size, etc.). If the Source supports audio, then before transferring the image,
the Application must transfer all the audio snippets that are associated with the image.

It is possible for more than one image to be transferred in succession. This topic is covered
thoroughly in Chapter 4, "Advanced Application Implementation".

State 7 — Transferring

The Source is transferring the image to the application.

The transfer mechanism being used was negotiated during State 4.

The transfer will either complete successfully or terminate prematurely. The Source sends the
appropriate Return Code indicating the outcome.

Once the Source indicates that the transfer is complete, the application must acknowledge the
end of the transfer.

A TWAIN 2.0 compliant Application tests its TW_IDENTITY .SupportedGroups for DF_DSM2 after
a call to DG_CONTROL/DAT_PARENT/MSG_OPENDSM and if found it issues a call to DG_CONTROL
/ DAT_ENTRYPOINT / MSG_GET.

A TWAIN 2.0 compliant Source is sent DG_CONTROL / DAT_ENTRYPOINT / MSG_SET; it tests the
Application’s TW_IDENTITY.SupportedGroups for DF_DSM2 and DF_APP2.

Capabilities
One of TWAIN’s benefits is it allows applications to easily interact with a variety of acquisition
devices. Devices can provide image or audio data. For instance,

• Some devices have automatic document feeders.

• Some devices are not limited to one image but can transfer multiple images.

• Some devices support color images.

• Some devices offer a variety of halftone patterns.

• Some devices support a range of resolutions while others may offer different choices.

• Some devices allow the recording of audio data associated with an image.

Developers of applications need to be aware of a Source’s capabilities and may influence the
capabilities that the Source offers to the application’s users. To do this, the application can perform
capability negotiation. The application generally follows this process:

• Determine if the selected Source supports a particular capability.

• Inquire about the Current Value for this capability. Also, inquire about the capability’s
Default Value and the set of Available Values that are supported by the Source for that
capability.

• Request that the Source set the Current Value to the application’s desired value. The Current
Value will be displayed as the current selection in the Source’s user interface.
2-14 TWAIN 2.3 Specification

• Limit, if needed, the Source’s Available Values to a subset of what would normally be offered.
For instance, if the application wants only black and white data, it can restrict the Source to
transmit only that. If a limitation effects the Source’s user interface, the Source should modify
the interface to reflect those changes. For example, it may gray out options that are not
available because of the application’s restrictions.

• Verify that the new values have been accepted by the Source.

TWAIN capabilities are divided into three groups:

• CAP_xxxx: Capabilities whose names begin with CAP are capabilities that could apply to any
general Source. Such capabilities include use of automatic document feeders, identification of
the creator of the data, etc.

• ICAP_xxxx: Capabilities whose names begin with ICAP are capabilities that apply to image
devices. The “I” stands for image. (When TWAIN is expanded to support other data transfer
such as text or fax data, there will be TCAPs and FCAPs in a similar style.)

• ACAP_xxxx: Capabilities whose names begin with ACAP are capabilities that apply to
devices that support audio. The “A” stands for audio.

Capability Containers

Capabilities exist in many varieties but all have a Default Value, Current Value, and may have
other values available that can be supported if selected. To help categorize the supported values
into clear structures, TWAIN defines four types of containers for capabilities.

Name of the Data
Structure for the Container

Type of Contents

TW_ONEVALUE A single value whose current and default values are
coincident. The range of available values for this type of
capability is simply this single value. For example, a
capability that indicates the presence of a document
feeder could be of this type.

TW_ARRAY An array of values that describes the current logical
item. The available values may be a larger array of
values. For example, a list of the names, such as the
supported capabilities list returned by the
CAP_SUPPORTEDCAPS capability, would use this type
of container.

TW_RANGE Many capabilities allow users to select their current
value from a range of regularly spaced values. The
capability can specify the minimum and maximum
acceptable values and the incremental step size between
values. For example, resolution might be supported
from 100 to 600 in steps of 50 (100, 150, 200, ..., 550, 600).
TWAIN 2.3 Specification 2-15

Chapter 2
In general, most capabilities can have more than one of these containers applied to them
depending on how the particular Source implements the capability. The data structure for each of
these containers is defined in Chapter 8, "Data Types and Data Structures". A complete table with
all defined capabilities is located in Chapter 10, "Capabilities". A few of the capabilities must be
supported by the application and Source. The remainder of the capabilities are optional.

Capability Negotiation and Container Types

It is very important for Application and Data Source developers to note that Container types are
dictated by the Data Source in all cases where a value is queried. Also the allowable container
types of each capability are clearly defined in Chapter 10, "Capabilities", of the TWAIN
Specification. The only time it is appropriate for the calling Application to specify a container type
is during the MSG_SET operation. At that time, the Application must also consider the allowable
containers and types for the particular capability.

It is recommended that an Application use the containers for MSG_SET that it received in
MSG_GET.

Capability Containers and String Values

The only containers that can possibly hold a string are the following:

TW_ENUMERATION

TW_ARRAY

TW_ONEVALUE

It is not possible or useful to use this type in a TW_RANGE. In fact, there is no case where a
capability has been defined in Chapter 10, "Capabilities", of the TWAIN Specification where a
TW_RANGE is allowed for a TW_STRxxxx type of value.

There are four types of TWAIN strings defined for developer use:

TW_STR32

TW_STR64

TW_STR128

TW_STR256

As of version 1.7, only the following capabilities accept strings:

CAP_AUTHOR, TW_ONEVALUE, TW_STR128

TW_ENUMERATION This is the most general type because it defines a list of
values from which the Current Value can be chosen. The
values do not progress uniformly through a range and
there is not a consistent step size between the values. For
example, if a Source’s resolution options did not occur in
even step sizes then an enumeration would be used (for
example, 150, 400, and 600).

Name of the Data
Structure for the Container

Type of Contents
2-16 TWAIN 2.3 Specification

CAP_CAPTION, TW_ONEVALUE, TW_STR255

CAP_TIMEDATE, TW_ONEVALUE, TW_STR32

ICAP_HALFTONES, TW_ONEVALUE/TW_ENUMERATION/TW_ARRAY, TW_STR32

The definition of the various container types could be confusing. For example, the definition of a
TW_ONEVALUE is as follows:

/* TWON_ONEVALUE. Container for one value. */

typedef struct {

 TW_UINT16 ItemType;

 TW_UINT32 Item;

} TW_ONEVALUE, FAR * pTW_ONEVALUE;

At first glance, it is tempting to try placing the string into this container by assigning “Item” to be
a pointer. This is not at all consistent with the implementation of other structures in the
specification and introduces a host of problems concerning management of the memory occupied
by the string. (See TW_IDENTITY for consistent TWAIN string use)

The correct and consistent method of holding a string in a TWAIN container is to ensure the string
is embedded in the container itself. Either a new structure is defined within the developers code,
or the added size is considered when allocating the container.

The following examples are designed to demonstrate possible methods of using TWAIN Strings in
Containers. These examples are suitable for demonstration only, and require refinement to be put
to real use.

Example 1:

TW_ONEVALUE structure defined for holding a TW_STR32 value

/* TWON_ONEVALUESTR32. Container for one value holding TW_STR32. */

typedef struct {

 TW_UINT16 ItemType;

 TW_STR32 Item;

} TW_ONEVALUESTR32, FAR * pTW_ONEVALUESTR32;

Note: Pay attention to two-byte structure packing when defining custom container structures.

This clearly demonstrates where the memory is allocated and where the string resides. The data
source does not have to be concerned with how the string is managed locally, and the application
does not have to be concerned with managing the string memory or contents.

Example 2:

TW_ONEVALUE structure allocated and filled with consideration of holding a TW_STR32 value
(Windows Example)

HGLOBAL AllocateAndFillOneValueStr32(const pTW_STR32 pInString)

{

DWORD dwContainerSize = 0l;
TWAIN 2.3 Specification 2-17

Chapter 2
HGLOBAL hContainer = NULL;
pTW_ONEVALUE pOneValue = NULL;
pTW_STR32 pString = NULL;
assert(pInString);

// Note: This calculation will yield a size approximately one
// pointer larger than that required for this container
// (sizeof(TW_UINT32)). For simplicity the size difference
// is negligible. The first TW_STR32 item shall be located
// immediately after the pEnum->DefaultIndex member.

dwContainerSize = sizeof(TW_ONEVALUE) + sizeof(TW_STR32);
hContainer = GlobalAlloc(GPTR, dwContainerSize);

if(hContainer)
{

pOneValue = (pTW_ONEVALUE)GlobalLock(hContainer);
if(pOneValue)
{

 pOneValue->ItemType = TWTY_STR32;
 pString = (pTW_STR32)&pOneValue->Item;

 memcpy(pString, pInString, sizeof(TW_STR32));
 GlobalUnlock(hContainer);
 pOneValue = NULL;
 pString = NULL;

 }

 }

 return hContainer;
}

Example 3:

TW_ENUMERATION structure allocated with consideration of holding TW_STR32 values (Windows
Example)

HGLOBAL AllocateEnumerationStr32(TW_UINT32 unNumItems)

{

DWORD dwContainerSize = 0l;
HGLOBAL hContainer = NULL;
pTW_ENUMERATION pEnum = NULL;

// Note: This calculation will yield a size approximately
// one pointer larger than that required for this container
// (sizeof(pTW_UINT8)). For simplicity the size difference is
// negligible. The first TW_STR32 item shall be located
// immediately after the pEnum->DefaultIndex member.
dwContainerSize = sizeof(TW_ENUMERATION) + (sizeof(TW_STR32) *
unNumItems);
hContainer = GlobalAlloc(GPTR, dwContainerSize);
2-18 TWAIN 2.3 Specification

if(hContainer)
{
 pEnum = (pTW_ENUMERATION) GlobalLock(hContainer);
 if(pEnum)
 {
 pEnum->ItemType = TWTY_STR32;
 pEnum->NumItems = unNumItems;

 GlobalUnlock(hContainer);
 pEnum = NULL;
 }
}
return hContainer;

}

Example 4

 Indexing a string from an Enumeration Container

pTW_STR128 IndexStr128FromEnumeration(pTW_ENUMERATION pEnum, TW_UINT32
unIndex)

{

 BYTE *pBegin = (BYTE *)&pEnum->ItemList[0];
 assert(pEnum->NumItems > unIndex);
 assert(pEnum->ItemType == TWTY_STR128);
 pBegin += (unIndex * sizeof(TW_STR128));
 return (pTW_STR128)pBegin;

}

Modes Available for Data Transfer
There are three different modes that can be used to transfer data from the Source to the
application: native, disk file, and buffered memory.

Note: At this time, TWAIN support for audio only allows native and disk file transfers.)

Native

Every Source must support this transfer mode. It is the default mode and is the easiest for an
application to implement. However, it is restrictive (i.e. limited to the DIB, PICT, or TIFF formats
and limited by available memory).

The format of the data is platform-specific:

• Windows: DIB (Device-Independent Bitmap)

• Macintosh: A PICT image in memory

• Linux: A TIFF image file in memory
TWAIN 2.3 Specification 2-19

Chapter 2
The Source allocates a single block of memory and writes the image data into the block. It passes a
pointer to the application indicating the memory location. The application is responsible for
freeing the memory after the transfer.

Disk File

A Source is not required to support this transfer mode but it is recommended.

The application creates the file to be used in the transfer and ensures that it is accessible by the
Source for reading and writing.

A capability exists that allows the application to determine which file formats the Source supports.
The application can then specify the file format and file name to be used in the transfer.

The disk file mode is ideal when transferring large images that might encounter memory
limitations with Native mode. Disk File mode is simpler to implement than the buffered mode
discussed next. However, Disk File mode is a bit slower than Buffered Memory mode and the
application must be able to manage the file after creation.

Buffered Memory

Every Source must support this transfer mode.

The transfer occurs through memory using one or more buffers. Memory for the buffers are
allocated and deallocated by the application.

The data is transferred as an unformatted bitmap. The application must use information available
during the transfer (TW_IMAGEINFO and TW_IMAGEMEMXFER) to learn about each individual
buffer and be able to correctly interpret the bitmap.

If using the Native or Disk File transfer modes, the transfer is completed in one action. With the
Buffered Memory mode, the application may need to loop repeatedly to obtain more than one
buffer of data.

Buffered Memory transfer offers the greatest flexibility, both in data capture and control.
However, it is the least simple to implement.
2-20 TWAIN 2.3 Specification

3
Application Implementation

Chapter Contents

Levels of TWAIN Implementation . 3-1

Installation of the Source Manager Software . 3-2

Changes Needed to Prepare for a TWAIN Session . 3-2

Controlling a TWAIN Session from Your Application . 3-9

Error Handling. 3-26

Best Practices for TWAIN Compliant Applications . 3-28

Legacy Issues . 3-40

This chapter provides the basic information needed to implement TWAIN at a minimum level.

Advanced topics are discussed in Chapter 4, "Advanced Application Implementation". They
include how to take advantage of Sources that offer automatic feeding of multiple images.

For OS specific requirements refer to Chapter 12, "Operating System Dependencies".

Levels of TWAIN Implementation
Application developers can choose to implement TWAIN features in their application along a
range of levels.

• At the minimum level: The application does not have to take advantage of capability
negotiation or transfer mode selection. Using TWAIN defaults, it can just acquire a single
image in the Native mode.

• At a greater level: The application can negotiate with the Source for desired capabilities or
image characteristics and specify the transfer arrangement. This gives the application more
control over the type of image it receives. To do this, developers should follow the
instructions provided in this chapter and use information from Chapter 4, "Advanced
Application Implementation", as well.

• At the highest level: An application may choose to negotiate capabilities, select transfer
mode, and create/present its own user interfaces instead of using the built-in ones provided
TWAIN 2.3 Specification 3-1

Chapter 3
with the Source Manager and Source. Again, refer to this chapter and Chapter 4, "Advanced
Application Implementation".

Installation of the Source Manager Software
The TWAIN Source Manager is an Open Source project maintained and owned by the TWAIN
Working Group (TWG). Binaries are built and distributed by the TWG for a few Operating
Systems. Applications are responsible for distributing and installing the most recent release of the
Source manager software available from twain.org.

For OS specific requirements refer to Chapter 12, "Operating System Dependencies".

Changes Needed to Prepare for a TWAIN Session
The following areas of the application must be changed before a TWAIN session can begin. The
application developer must:

• Alter the application’s user interface to add Select Source and Acquire menu choices.

• Include the file called TWAIN.H in your application.

• Alter the application’s event loop.

Alter the Application’s User Interface to Add Select Source and Acquire Options

As mentioned in the Chapter 2, "Technical Overview", the application should include two menu
items in its File menu: Select Source... and Acquire.... It is strongly recommended that you use
these phrases since this consistency will benefit all users.

Figure 3-1 User Interface for Selecting a Source and Acquiring Options

Note the following:
3-2 TWAIN 2.3 Specification

Detailed information on the operations used by the application to successfully acquire data is
provided later in this chapter in “Controlling a TWAIN Session from Your Application” on
page 3-9.

Include the TWAIN.H File in Your Application

The TWAIN.H file that is shipped with this TWAIN Developer’s Toolkit contains all of the critical
definitions needed for writing a TWAIN-compliant application or Source. Be sure to include it in
your application’s code and print out a copy to refer to while reading this chapter.

The TWAIN.H file contains:

Category Prefix for each item

Data Groups DG_

Data Argument Types DAT_

Messages MSG_

Capabilities CAP_, ICAP_, or ACAP_

Return Codes TWRC_

Condition Codes TWCC_

Type Definitions TW_

Structure Definitions TW_

Entry points These are DSM_Entry and DS_Entry

In addition, there are many constants defined in TWAIN.H which are not listed here.

Alter the Application’s Event Loop

The application passes the request for all actions to the Source Manager via the DSM_Entry
function call, which contains an operation triplet describing the requested action. In code form, the
DSM_Entry function looks like this:

TW_UINT16 TW_CALLINGSTYLE DSM_Entry
 (pTW_IDENTITY pOrigin, // source of message
 pTW_IDENTITY pDest, // destination of message
 TW_UINT32 DG, // data group ID: DG_xxxx
 TW_UINT16 DAT, // data argument type: DAT_xxxx
 TW_UINT16 MSG, // message ID: MSG_xxxx

When this is selected: The application does this:

Select Source... The application requests that the Source Manager’s Select
Source Dialog Box appear (or it may display its own version).
After the user selects the Source they want to use, control
returns to the application.

Acquire... The application requests that the Source display its user
interface. (Again, the application can create its own version of
a user interface or display no user interface.)
TWAIN 2.3 Specification 3-3

Chapter 3
 TW_MEMREF pData // pointer to data
);

The DG, DAT, and MSG parameters contain the operation triplet. The parameters must follow these
rules:

pOrigin

References the application’s TW_IDENTITY structure. The contents of this structure must not
be changed by the application from the time the connection is made with the Source Manager
until it is closed.

pDest

Set to NULL if the operation’s final destination is the Source Manager.

Otherwise, set to point to a valid TW_IDENTITY structure for an open Source.

DG_xxxx

Data Group of the operation. Currently, only DG_CONTROL, DG_IMAGE, and DG_AUDIO are
defined. Custom Data Groups can be defined.

DAT_xxxx

Designator that uniquely identifies the type of data object (structure or variable) referenced by
pData.

MSG_xxxx

Message specifies the action to be taken.

pData

Refers to the TW_xxxx structure or variable that will be used during the operation. Its type is
specified by the DAT_xxxx. This parameter should always be typecast to TW_MEMREF when it
is being referenced.

Operation Triplets - Application to Source Manager

The following operation triplets can be sent from the application to be consumed by the Source
Manager. They all use the DG_CONTROL data group and they use three different data argument
types: DAT_IDENTITY, DAT_PARENT, and DAT_STATUS. The following table lists the data
group, data argument type, and messages that make up each operation. The list is in alphabetical
order not the order in which they are typically called by an application. Details about each
operation are available in reference format in Chapter 7, "Operation Triplets".

Control Operations from Application to Source Manager

DG_CONTROL / DAT_IDENTITY

MSG_CLOSEDS : Prepare specified Source for unloading

MSG_GETDEFAULT : Get identity information of the default Source

MSG_GETFIRST : Get identity information of the first available Source

MSG_GETNEXT : Get identity of the next available Source

MSG_OPENDS : Load and initialize the specified Source

MSG_SET : Set identity information of the default Source
3-4 TWAIN 2.3 Specification

MSG_USERSELECT : Present “Select Source” dialog

DG_CONTROL / DAT_PARENT

MSG_CLOSEDSM : Prepare Source Manager for unloading

MSG_OPENDSM : Initialize the Source Manager

DG_CONTROL / DAT_STATUS

MSG_GET : Return Source Manager’s current Condition Code

Operation Triplets - Application to Source

The next group of operations are sent to a specific Source by the application. These operations are
still passed via the Source Manager using the DSM_Entry call. The first set of triplets use the
DG_CONTROL identification for their data group. These are operations that could be performed on
any kind of TWAIN device. The second set of triplets use the DG_IMAGE identification for their
data group which indicates these operations are specific to image data. Details about each
operation are available in reference format in Chapter 7, "Operation Triplets".

Control Operations from Application to Source

DG_CONTROL / DAT_CAPABILITY

MSG_GET Return a Capability’s available value(s) including the current
and default values

MSG_GETCURRENT Get a Capability’s current value

MSG_GETDEFAULT Get a Capability’s preferred default value (Source specific)

MSG_RESET Change a Capability’s current value to its TWAIN-defined
default

MSG_SET Change a Capability’s current value only (TWAIN 2.2 and
higher)

MSG_SETCONSTRAINT Change a Capability’s current, default, and available value(s)
(Same functionality as MSG_SET prior to TWAIN 2.2)

DG_CONTROL / DAT_DEVICEEVENT

MSG_GET: Get an event from the Source (issue this call only in response
to a DG_CONTROL / DAT_NULL / MSG_DEVICEEVENT from
the Source)

DG_CONTROL / DAT_EVENT

MSG_PROCESSEVENT Pass an event to the Source from the application

DG_CONTROL / DAT_FILESYSTEM

MSG_AUTOMATICCAPTUREDIRECTORY
Select directory to receive automatically captured images

MSG_CHANGEDIRECTORY Change the current domain, host, directory, or device.

MSG_COPY Copy files

MSG_CREATEDIRECTORY Create a directory

MSG_DELETE Delete a file or directory
TWAIN 2.3 Specification 3-5

Chapter 3
MSG_FORMATMEDIA Format a storage device

MSG_GETCLOSE Close a context created by a call to MSG_GETFILEFIRST

MSG_GETFIRSTFILE Get the first file in a directory

MSG_GETINFO Get information about the current file context

MSG_RENAME Rename a file

DG_CONTROL / DAT_PASSTHRU / MSG_PASSTHRU

MSG_PASSTHRU Special command for the use by Source vendors when
writing diagnostic Applications

DG_CONTROL / DAT_PENDINGXFERS

MSG_ENDXFER Application acknowledges or requests the end of data
transfer

MSG_GET Return the number of transfers the Source is ready to supply

MSG_RESET Set the number of pending transfers to zero

MSG_STOPFEEDER Stop ADF without ending session

DG_CONTROL / DAT_SETUPFILEXFER

MSG_GET Return info about the file that the Source will write the
acquired data into

MSG_GETDEFAULT Return the default file transfer information

MSG_RESET Reset current file information to default values

MSG_SET Set file transfer information for next file transfer

DG_CONTROL / DAT_SETUPMEMXFER

MSG_GET Return Source’s preferred, minimum, and maximum transfer
buffer sizes

DG_CONTROL / DAT_STATUS

MSG_GET Return the current Condition Code from specified Source

DG_CONTROL / DAT_USERINTERFACE

MSG_DISABLEDS Cause Source’s user interface to be taken down

MSG_ENABLEDS Cause Source to prepare to display its user interface

DG_CONTROL / DAT_XFERGROUP

MSG_GET Return the Data Group (currently DG_IMAGE or a custom
data group) for the upcoming transfer

There are additional DG_CONTROL operations for communications between the Source Manager
and the Source. They are discussed in Chapter 5, "Source Implementation".

Image Operations from Application to Source

DG_IMAGE / DAT_CIECOLOR

MSG_GET Return the CIE XYZ information for the current transfer
3-6 TWAIN 2.3 Specification

DG_IMAGE / DAT_GRAYRESPONSE

MSG_RESET Reinstate identity response curve for grayscale data

MSG_SET Source uses specified response curve on grayscale data

DG_IMAGE / DAT_IMAGEFILEXFER

MSG_GET Initiate image acquisition using the Disk File transfer mode

DG_IMAGE / DAT_IMAGEINFO

MSG_GET Return information that describes the image for the next
transfer

DG_IMAGE / DAT_IMAGELAYOUT

MSG_GET Describe physical layout / position of “original” image

MSG_GETDEFAULT Default information on the layout of the image

MSG_RESET Set layout information for the next transfer to defaults

MSG_SET Set layout for the next image transfer

DG_IMAGE / DAT_IMAGEMEMXFER

MSG_GET Initiate image acquisition using the Buffered Memory
transfer mode

DG_IMAGE / DAT_IMAGEMEMFILEXFER

MSG_GET Initiate image acquisition using the Buffered Memory
transfer mode, but transferring the same data one would
save to a file

DG_IMAGE / DAT_IMAGENATIVEXFER

MSG_GET Initiate image acquisition using the Native transfer mode

DG_IMAGE / DAT_JPEGCOMPRESSION

MSG_GET Return JPEG compression parameters for current transfer

MSG_GETDEFAULT Return default JPEG compression parameters

MSG_RESET Use Source’s default JPEG parameters on JPEG transfers

MSG_SET Use specified JPEG parameters on JPEG transfers

DG_IMAGE / DAT_PALETTE8

MSG_GET Return palette information for current transfer

MSG_GETDEFAULT Return Source’s default palette information for current pixel
type

MSG_RESET Use Source’s default palette for transfer of this pixel type

MSG_SET Use specified palette for transfers of this pixel type

DG_IMAGE / DAT_RGBRESPONSE

MSG_RESET Use Source’s default (identity) RGB response curve

MSG_SET Use specified response curve for RGB transfers
TWAIN 2.3 Specification 3-7

Chapter 3
DG_AUDIO / DAT_AUDIOFILEXFER

MSG_GET Transfers audio data in file mode

DG_AUDIO / DAT_AUDIOINFO

MSG_GET Gets information about the current transfer

DG_AUDIO / DAT_AUDIONATIVEXFER

MSG_GET Transfers audio data in native mode

DSM_Entry Parameters

The parameters for the DG_xxxx, DAT_xxxx, and MSG_xxxx fields are determined by the
operation triplet. The other parameters are filled as follows:

• pOrigin

Refers to a copy of the application’s TW_IDENTITY structure.

• pDest

If the operation’s destination is the Source Manager: Always holds a value of NULL. This
indicates to the Source Manager that the operation is to be consumed by it not passed on to a
Source.

If the operation’s destination is a Source: This parameter references a copy of the Source’s
TW_IDENTITY structure that is maintained by the application. The application received this
structure in response to the DG_CONTROL / DAT_IDENTITY / MSG_OPENDS operation sent
from the application to the Source Manager. This is discussed more in the next section
(“Controlling a TWAIN Session from Your Application” - State 3 to 4).

• pData

Always references a structure or variable corresponding to the TWAIN type specified by the
DAT_xxxx parameter. Typically, but not always, the data argument type name corresponds to
a TW_xxxx data structure name. For example, the DAT_IDENTITY argument type uses the
corresponding TW_IDENTITY data structure. All data structures can be seen in the file called
TWAIN.H. The application is responsible for allocating and deallocating the structure or
element and assuring that pData correctly references it.

Note that there are two cases when the Source, rather than the application, allocates a
structure that is used during an operation.

- One occurs during DG_CONTROL / DAT_CAPABILITY / MSG_GET, MSG_GETCURRENT,
MSG_GETDEFAULT, and MSG_RESET operations. The application still allocates *pData
but the Source allocates a structure referenced by *pData called a “container structure”.

- The other occurs during the DG_IMAGE / DAT_JPEGCOMPRESSION operations. The
topic of data compression is covered in Chapter 4, "Advanced Application
Implementation".

In all cases, the application still deallocates all structures.

Application Callback Function

The following TWAIN triplet is used, by the application, to register a function to receive callback
messages from the Source:

• DG_CONTROL / DAT_CALLBACK / MSG_REGISTER_CALLBACK
3-8 TWAIN 2.3 Specification

Note that the older event loop method still works on Windows, but it is recommended to use
Callback. For the older event loop method refer to the TWAIN 1.9 Specification for
implementation. Applications will register the callback after opening the DS using the
DG_CONTROL/ DAT_CALLBACK/ MSG_REGISTER_CALLBACK triplet.

The callback function takes the form:

TW_UINT16 TWAIN_callback(pTW_IDENTITY pOrigin,
pTW_IDENTITY pDest,
TW_UINT32 DG,
TW_UINT16 DAT,
TW_UINT16 MSG,
TW_MEMREF pData)

{
 // The message should not be processed here.
 // A flag is set so the Message can be processed in the same
 thread that Enabled the Data Source.
 m_Message = MSG;
 return TWRC_SUCCESS; // or failure etc
}

An application registers the callback function in the following fashion:

TW_CALLBACK callback = { 0 };
callback.CallBackProc = TWAIN_callback;
Result = DSM_Entry(&appIdentity, NULL,
 DG_CONTROL, DAT_CALLBACK, MSG_REGISTER_CALLBACK,
 (TW_MEMREF)&callback);

The application passes the request for the action to the Source Manager via the DSM_Entry
function call which contains an operation triplet describing the requested action.

Controlling a TWAIN Session from Your Application
In addition to the preparations discussed at the beginning of this chapter, the application must be
modified to actually initiate and control a TWAIN session.

The session consists of the seven states of the TWAIN protocol as introduced in the Technical
Overview. However, the application is not forced to move the session from State 1 to State 7
without stopping. For example, some applications may choose to pause in State 3 and move
among the higher states (4 - 7) to repeatedly open and close Sources when acquisitions are
requested by the user. Another example of session flexibility occurs when an application transfers
multiple images during a session. The application will repeatedly move the session from State 6
to State 7 then back to State 6 and forward to State 7 again to transfer the next image.

For the sake of simplicity, this chapter illustrates moving the session from State 1 to State 7 and
then backing it out all the way from State 7 to State 1. The diagram on the next page shows the
operation triplets that are used to transition the session from one state to the next. Detailed
information about each state and its associated transitions follow. The topics include:

• State 1 to 2 - Load the Source Manager and Get the DSM_Entry
TWAIN 2.3 Specification 3-9

Chapter 3
• State 2 to 3 - Open the Source Manager

• State 3 - Select the Source

• State 3 to 4 - Open the Source

• State 4 - Negotiate Capabilities with the Source

• State 4 to 5 - Request the Acquisition of Data from the Source

• State 5 to 6 - Recognize that the Data Transfer is Ready

• State 6 to 7 - Start and Perform the Transfer

• State 7 to 6 to 5 - Conclude the Transfer

• State 5 to 1 - Disconnect the TWAIN Session

Note: Sources and Applications that support the DAT_FILESYSTEM operation may negotiate
and select different device contexts immediately after the opening of a Source. For
example, an Application may choose to browse through the stored images on a digital
camera, rather than treat it as a real-time capture device.
3-10 TWAIN 2.3 Specification

Figure 3-2 TWAIN States

State 1 to 2 - Load the Source Manager and Get the DSM_Entry

The application must load the Source Manager before it is able to call its DSM_Entry point.

Operations Used:

No TWAIN operations are used for this transition. Instead it is an OS specific operation, please
refer to the Operating System chapter.
TWAIN 2.3 Specification 3-11

Chapter 3
State 2 to 3 - Open the Source Manager

The Source Manager has been loaded. The application must now open the Source Manager.

One Operation is Used:

DG_CONTROL / DAT_PARENT / MSG_OPENDSM

pOrigin

The application must allocate a structure of type TW_IDENTITY and fill in all fields except for
the Id field. Once the structure is prepared, this pOrigin
parameter should point at that structure.

During the MSG_OPENDSM operation, the Source Manager will fill in the Id field with a unique
identifier of the application. The value of this identifier is only
valid while the application is connected to the Source Manager.

The application must save the entire structure. From now on, the structure will be referred to
by the pOrigin parameter to identify the application in every
call the application makes to DSM_Entry().

The TW_IDENTITY structure is defined in the TWAIN.H file but for quick reference, it looks
like this:

typedef struct {
TW_UINT32 Id; /* Unique number assigned by DSM for

identification*/
TW_VERSION Version;
TW_UINT16 ProtocolMajor;
TW_UINT16 ProtocolMinor;
TW_UINT32 SupportedGroups
TW_STR32 Manufacturer;
TW_STR32 ProductFamily;
TW_STR32 ProductName;

} TW_IDENTITY, FAR *pTW_IDENTITY;

pDest

Set to NULL indicating the operation is intended for the Source Manager.

pData

Typically, you would expect to see this point to a structure of type TW_PARENT but this is not
the case. This is an exception to the usual situation where the DAT field of the triplet identifies
the data structure for pData.

• On Windows: pData points to the window handle (hWnd) that will act as the Source’s
“parent”. The Source Manager will maintain a copy of this window handle for posting
messages back to the application.

• On Macintosh: pData should be a NULL value.

• On Linux: pData should be a NULL value.

How to Initialize the TW_IDENTITY Structure

Here is a Windows example of code used to initialize the application’s TW_IDENTITY structure.

TW_IDENTITY AppID; // App’s identity structure
 AppID.Id = 0; // Initialize to 0 (Source Manager
3-12 TWAIN 2.3 Specification

 // will assign real value)
 AppID.Version.MajorNum = 3; //Your app's version number
 AppID.Version.MinorNum = 5;
 AppID.Version.Language = TWLG_ENGLISH_USA;
 AppID.Version.Country = TWCY_USA;
 lstrcpy (AppID.Version.Info, "Your App's Version String");
 AppID.ProtocolMajor = 2; //Use yours not the one from twain.h
 AppID.ProtocolMinor = 2; //Use yours not the one from twain.h
 AppID.SupportedGroups = DF_APP2 | DG_IMAGE | DG_CONTROL;
 lstrcpy (AppID.Manufacturer, "App's Manufacturer");
 lstrcpy (AppID.ProductFamily, "App's Product Family");
 lstrcpy (AppID.ProductName, "Specific App Product Name");

On Windows: Using DSM_Entry to open the Source Manager
TW_UINT16 rc;
rc = (*pDSM_Entry) (&AppID,
 NULL,
 DG_CONTROL,
 DAT_PARENT,
 MSG_OPENDSM,
 (TW_MEMREF) &hWnd);

where AppID is the TW_IDENTITY structure that the application set up to identify itself and
hWnd is the application’s main window handle.

On Macintosh: Using DSM_Entry to open the Source Manager

rc = DSM_Entry(&AppID,

 NULL,

 DG_CONTROL,

 DAT_PARENT,

 MSG_OPENDSM,

 NULL);

On Linux: Using DSM_Entry to open the Source Manager
TW_UINT16 rc;
rc = (*pDSM_Entry) (&AppID,
 NULL,
 DG_CONTROL,
 DAT_PARENT,
 MSG_OPENDSM,
 NULL);

where AppID is the TW_IDENTITY structure that the application set up to identify.

If your data source requires resources, it is responsible for loading and unloading them at run
time. The Source Manager no longer manages resources automatically.

State 3 - Select the Source

The Source Manager has just been opened and is now available to assist your application in the
selection of the desired Source.
TWAIN 2.3 Specification 3-13

Chapter 3
DG_CONTROL / DAT_PARENT / MSG_OPENDSM. If it finds DF_DSM2 then the Application must
issue the DG_CONTROL / DAT_ENTRYPOINT / MSG_GET call before it opens the Source. This takes
the form:

DG_CONTROL / DAT_ENTRYPOINT / MSG_GET

pOrigin

Points to the application’s TW_IDENTITY structure.

pDest

Set to NULL.

pData

Points to a structure of type TW_ENTRYPOINT

The Source Manager returns pointers to functions that the Application must use when managing
memory that is either freed or allocated by the Source.

One Operation is Used:

DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT

pOrigin

Points to the application’s TW_IDENTITY structure. The desired data type should be
specified by the application. This was done when you initialized the SupportedGroups
field in your application’s TW_IDENTITY structure.

This causes the Source Manager to make available for selection by the user only those Sources
that can provide the requested data type(s). All other Sources are grayed out. (Note, if more
than one data type were available, for example image and text, and the application wanted to
accept both types of data, it would do a bit-wise OR of the types’ constants and place the
results into the SupportedGroups field.)

pDest

Set to NULL.

pData

Points to a structure of type TW_IDENTITY. The application must allocate this structure prior
to making the call to DSM_Entry. Once the structure is allocated, the application must:

• Set the Id field to zero.

• Set the ProductName field to the null string (“\0”). (If the application wants a specific
Source to be highlighted in the Select Source dialog box, other than the system default, it
can enter the ProductName of that Source into the ProductName field instead of null.
The system default Source and other available Sources can be determined by using the
DG_CONTROL / DAT_IDENTITY / MSG_GETDEFAULT, MSG_GETFIRST and
MSG_GETNEXT operations.)

Additional fields of the structure will be filled in by the Source Manager during this operation
to identify the selected Source. Make sure the application keeps a copy of this updated
structure after completing this call. You will use it to identify the Source from now on.

The most common approach for selecting the Source is to use the Source Manager’s Select
Source dialog box. This is typically displayed when the user clicks on your Select Source
option. To do this:
3-14 TWAIN 2.3 Specification

1. The application sends a DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT operation
to the Source Manager to have it display its dialog box. The dialog displays a list of all
Sources that are installed on the system that can provide data of the type specified by the
application. It highlights the Source that is the system default unless the application requests
otherwise.

2. The user selects a Source or presses the Cancel button. If no devices are available, the
Select Source Dialog’s Select/OK button will be grayed out and the user will have no choice
but to select Cancel.

3. The application must check the Return Code of DSM_Entry to determine the user’s
action.

a: If TWRC_SUCCESS: Their selected Source is listed in the TW_IDENTITY structure
pointed to by the pData parameter and is now the default Source.

b: If TWRC_CANCEL: The user either clicked Cancel intentionally or had no other choice
because no devices were listed. Do not attempt to open a Source.

c: If TWRC_FAILURE: Use the DG_CONTROL / DAT_STATUS / MSG_GET operation (sent
to the Source Manager) to determine the cause. The most likely cause is a lack of
sufficient memory.

As an alternative to using the Source Manager’s Select Source dialog, the application can
devise its own method for selecting a Source. For example, it could create and display its own
user interface or simply select a Source without offering the user a choice. This alternative is
discussed in Chapter 4, "Advanced Application Implementation".

State 3 to 4 - Open the Source

The Source Manager is open and able to help your application open a Source.

One Operation is Used:

DG_CONTROL / DAT_IDENTITY / MSG_OPENDS

pOrigin

Points to the application’s TW_IDENTITY structure.

pDest

Set to NULL.

pData

Points to a structure of type TW_IDENTITY.

Typically, this points to the application’s copy of the Source’s TW_IDENTITY structure filled
in during the MSG_USERSELECT operation previously.

However, if the application wishes to have the Source Manager simply open the default
Source, it can do this by setting the TW_IDENTITY.ProductName field to “\0” (null string)
and the TW_IDENTITY.Id field to zero.

During the MSG_OPENDS operation, the Source Manager assigns a unique identifier to the
Source and records it in the TW_IDENTITY.Id field. Copy the resulting TW_IDENTITY
structure. Once the Source is opened, the application will point to this resulting structure via
the pDest parameter on every call that the application makes to DSM_Entry where the
desired destination is this Source.
TWAIN 2.3 Specification 3-15

Chapter 3
Note: The user is not required to take advantage of the Select Source option. They may click on
the Acquire option without having selected a Source. In that case, your application
should open the default Source. The default source is either the last one used by the
user or the last one installed.

State 4 - Negotiate Capabilities with the Source

At this point, the application has a structure identifying the open Source. Operations can now be
directed from the application to that Source. To receive a single image from the Source, only one
capability, CAP_XFERCOUNT, must be negotiated now. All other capability negotiation is
optional.

Note: When the application detects DF_DSM2 in its TW_IDENTITY.SupportedGroups, then
the Application must use the DSM_MemAllocate, DSM_MemFree, DSM_MemLock and
DSM_MemUnlock functions it got from DG_CONTROL / DAT_ENTRYPOINT / MSG_GET to
manage any memory it uses with the Source.

Two Operations are Used:

DG_CONTROL / DAT_CAPABILITY / MSG_GET

DG_CONTROL / DAT_CAPABILITY / MSG_SET

The parameters for each of the operations, in addition to the triplet, are these:

pOrigin

Points to the application’s TW_IDENTITY structure.

pDest

Points to the desired Source’s TW_IDENTITY structure. The Source Manager will receive the
DSM_Entry call, recognize that the destination is a Source rather than itself, and pass the
operation along to the Source via the DS_Entry function.

pData

Points to a structure of type TW_CAPABILITY.

The definition of TW_CAPABILITY is:

typedef struct {
 TW_UINT16 Cap; /* ID of capability to get or set */
 TW_UINT16 ConType; /* TWON_ONEVALUE, TWON_RANGE, */
 /* TWON_ENUMERATION or TWON_ARRAY */
 TW_HANDLE hContainer; /* Handle to container of type */
 /* ConType */
} TW_CAPABILITY, FAR *pTW_CAPABILITY;

The Source allocates the container structure pointed to by the hContainer field when called by
the MSG_GET operation. The application allocates it when calling with the MSG_SET operation.
Regardless of who allocated it, the application deallocates the structure either when the operation
is complete or when the application no longer needs to maintain the information.

Each operation serves a special purpose:
3-16 TWAIN 2.3 Specification

MSG_GET

Since Sources are not required to support all capabilities, this operation can be used to determine
if a particular TWAIN-defined capability is supported by a Source. The application needs to set
the Cap field of the TW_CAPABILITY structure to the identifier representing the capability of
interest. The constants identifying each capability are listed in the TWAIN.H file.

If the capability is supported and the operation is successful, it returns the Current, Default, and
Available values. These values reflect previous MSG_SET operations on the capability which may
have altered them from the TWAIN default values for the capability.

This operation may fail due to several causes. If the capability is not supported by the Source, the
Return Code will be TWRC_FAILURE and the condition code will be one of the following:

TWCC_CAPUNSUPPORTED Capability not supported by Source

TWCC_CAPBADOPERATION Operation not supported by capability

TWCC_CAPSEQERROR Capability has dependency on other capability

Applications should be prepared to receive the condition code TWCC_BADCAP from Sources
written prior to TWAIN 1.7, which maps to any of the three situations mentioned above.

MSG_SET

Changes the Current Value(s) of the specified capability to those requested by the application.

If the Return Code indicates TWRC_FAILURE, check the Condition Code. A code of
TWCC_BADVALUE can mean:

• The application sent an invalid value for this Source’s range.

• The Source does not allow the setting of this capability.

• The Source doesn’t allow the type of container used by the application to set this capability.

Capability negotiation gives the application developer power to guide the Source and control the
images they receive from the Source. The negotiation typically occurs during State 4. The
following material illustrates only one very basic capability and container structure. Refer to
Chapter 4, "Advanced Application Implementation" for a more extensive discussion of capabilities
including information on how to delay the negotiation of some capabilities beyond State 4.

Note: It is important here to once again remind application writers to always check the return
code from any negotiated capabilities transactions.

MSG_SETCONSTRAINT

Changes the Current Value(s) of the specified capability to those requested by the application, and
constrains the allowable contents of an array, enumeration or range container.

If the Return Code indicates TWRC_FAILURE, check the Condition Code. A code of
TWCC_BADVALUE can mean:

• The application sent an invalid value for this Source’s container.

• The Source doesn’t allow the type of container used by the application to set this capability.
TWAIN 2.3 Specification 3-17

Chapter 3
Capability negotiation gives the application developer power to guide the Source and control the
images they receive from the Source. The negotiation typically occurs during State 4. The
following material illustrates only one very basic capability and container structure. Refer to
Chapter 4, "Advanced Application Implementation" for a more extensive discussion of capabilities
including information on how to delay the negotiation of some capabilities beyond State 4.

Note: It is important here to once again remind application writers to always check the return
code from any negotiated capability transactions.

Set the Capability to Specify the Number of Images the Application can Transfer

The capability that specifies how many images an application can receive during a TWAIN
session is CAP_XFERCOUNT. All Sources must support this capability. Possible values for
CAP_XFERCOUNT are:

The default value allows multiple images to be transferred. The code example online illustrates
the setting of a capability and specifically shows how to limit the number of images to one.

See set_CapabilityOneValue function for live code example in TwainApp.cpp at
http://twain-samples.svn.sourceforge.net

Other Capabilities

Image Type

The application should be aware of the Source’s ICAP_PIXELTYPE and ICAP_BITDEPTH. If
your application cannot accept all of the Source’s Available Values, capability negotiation
should be done. (Refer to Chapter 4, "Advanced Application Implementation".)

Transfer Mode

The default transfer mode is Native. That means the Source will access the largest block of
memory available and use it to transfer the entire image to the application at once. If the
available memory is not large enough for the transfer, then the Source should fail the transfer.
The application does not need to do anything to select this transfer mode. If the application
wishes to specify a different transfer mode, Disk File or Buffered Memory, further capability
negotiation is required. (Refer to Chapter 4, "Advanced Application Implementation".)

Value: Description:

1 Application wants to receive a single image.

greater than 1 Application wants to receive this specific number of images.

-1 Application can accept any arbitrary number of images during the
session. This is the default for this capability.

0 This value has no legitimate meaning and the application should not
set the capability to this value. If a Source receives this value during
a MSG_SET operation, it should maintain the Current Value without
change and return TWRC_FAILURE and TWCC_BADVALUE.
3-18 TWAIN 2.3 Specification

http://twain-samples.svn.sourceforge.net/viewvc/twain-samples/trunk/TWAIN-Samples/Twain_App_sample01/src/TwainApp.cpp?view=markup

State 4 to 5 - Request the Acquisition of Data from the Source

The Source device is open and capabilities have been negotiated. The application now enables the
Source so it can show its user interface, if requested, and prepare to acquire data.

One Operation is Used:

DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS

pOrigin

Points to the application’s TW_IDENTITY structure.

pDest

Points to the Source’s TW_IDENTITY structure.

pData

Points to a structure of type TW_USERINTERFACE.

The definition of TW_USERINTERFACE is:

typedef struct {
 TW_BOOL ShowUI;
 TW_BOOL ModalUI;
 TW_HANDLE hParent;
} TW_USERINTERFACE, FAR *pTW_USERINTERFACE;

Set the ShowUI field to TRUE if you want the Source to display its user interface. Otherwise,
set to FALSE.

The Application will set the ModalUI field to TRUE if it wants the Source to run modal, and
FALSE if it wants the Source to run modeless. Please note that to successfully run modal, it
may be necessary for the application to disable inputs to its windows while the Source’s GUI
is running.

• On Windows - It is not recommended to set this field to TRUE. The Source may ignore
this value and use FALSE if it is version 2.1 or lower. If both Source and the Application
are 2.2 or higher, then the Source must return TWRC_CHECKSTATUS if it does not
support requested value.

• On Macintosh - It is recommended to use this field.

• On Linux - This field is not used.

The application sets the hParent field differently depending on the platform on which the
application runs.

• On Windows - The application should place a handle to the Window that is acting as
the Source’s parent.

• On Macintosh - The application sets this field to NULL.

• On Linux - The application sets this field to NULL.

In response to the user choosing the application’s Acquire menu option, the application sends this
operation to the Source to enable it. The application typically requests that the Source display the
Source’s user interface to assist the user in acquiring data. If the Source is told to display its user
interface, it will display it when it receives the operation triplet. Modal and Modeless interfaces
are discussed in Chapter 4, "Advanced Application Implementation" and Chapter 5, "Source
Implementation". Sources must check the ShowUI field and return an error if they cannot
support the specified mode. In other words it is unacceptable for a source to ignore a ShowUI =
FALSE request and still activate its user interface. The application may develop its own user
TWAIN 2.3 Specification 3-19

Chapter 3
interface instead of using the Source’s. This is discussed in Advanced Application
Implementation.

Note: Once the Source is enabled via the DG_CONTROL / DAT_USERINTERFACE/
MSG_ENABLEDS operation, all events that enter the application’s main event loop must be
immediately forwarded to the Source. The explanation for this is given in Chapter 12,
"Operating System Dependencies" when modifying the event loop in preparation for a
TWAIN session.

State 5 to 6 - Recognize that the Data Transfer is Ready

The Source is now working with the user to arrange the transfer of the desired data. Unlike all the
earlier transitions, the Source, not the application, controls the transition from State 5 to
State 6.

No Operations (from the application) are Used:

This transition is not triggered by the application sending an operation. The Source causes the
transition.

• On Windows - while the application has the Source enabled, the application is forwarding all
events in its event loop to the Source by using the DG_CONTROL / DAT_EVENT /
MSG_PROCESSEVENT operation.

Refer to Chapter 12, "Operating System Dependencies" for this.

The application will receive one of these MSG_XFERREADY, MSG_CLOSEDSREQ, or
MSG_CLOSEDSOK messages in its callback function. When the Application receives
MSG_XFERREADY it will transit from State 5 to State 6.

For legacy methods, please refer to version 1.9 of the Specification.

State 6 to 7 - Start and Perform the Transfer

The Source indicated it is ready to transfer data. It is waiting for the application to inquire about
the image details, initiate the actual transfer, and, hence, transition the session from State 6 to 7.

Two Operations are Used:

The application may want to inquire about the image data that it will be receiving. The DG_IMAGE
/ DAT_IMAGEINFO / MSG_GET operation allows this. Other operations, such as DG_IMAGE /
DAT_IMAGELAYOUT / MSG_GET, provide additional information. This information can be used
to determine if the application actually wants to initiate the transfer.

DG_IMAGE / DAT_IMAGEINFO / MSG_GET

pOrigin

Points to the application’s TW_IDENTITY structure.

pDest

Points to the Source’s TW_IDENTITY structure.
3-20 TWAIN 2.3 Specification

pData

Points to a structure of type TW_IMAGEINFO. The definition of TW_IMAGEINFO is:
typedef struct {
 TW_FIX32 XResolution;
 TW_FIX32 YResolution;
 TW_INT32 ImageWidth;
 TW_INT32 ImageLength;
 TW_INT16 SamplesPerPixel;
 TW_INT16 BitsPerSample[8];
 TW_INT16 BitsPerPixel;
 TW_BOOL Planar;
 TW_INT16 PixelType;
 TW_UINT32 Compression;
} TW_IMAGEINFO, FAR *pTW_IMAGEINFO;

The Source will fill in information about the image that is to be transferred. The application uses
this operation to get the information regardless of which transfer mode (Native, Disk File, or
Buffered Memory) will be used to transfer the data.

The application may want to inquire about the image data that it will be receiving. The DG_IMAGE
/ DAT_IMAGEINFO / MSG_GET operation allows this. Other operations, such as DG_IMAGE /
DAT_IMAGELAYOUT / MSG_GET, provide additional information. This information can be used
to determine if the application actually wants to initiate the transfer.

To transfer the data in the Native mode, the application invokes the DG_IMAGE /
DAT_IMAGENATIVEXFER / MSG_GET operation. The Native mode is the default transfer mode
and will be used unless a different mode was negotiated via capabilities in State 4. For the Native
mode transfer, the application only invokes this operation once per image. The Source returns the
TWRC_XFERDONE value when the transfer is complete. This type of transfer cannot be aborted by
the application once initiated. (Whether it can be aborted from the Source’s User Interface
depends on the Source.) Use of the other transfer modes, Disk File and Buffered Memory, are
discussed in Chapter 4, "Advanced Application Implementation".

If the initiation (DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET) fails, the session does not
transition to State 7 but remains in State 6.

DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

pOrigin

Points to the application’s TW_IDENTITY structure.

pDest

Points to the Source’s TW_IDENTITY structure.

pData

Points to an OS specific native Image format returned by the Data Source. For more
information see Chapter 12, "Operating System Dependencies".

• On Windows: The Source will set pData to point to a device-independent bitmap (DIB)
that it allocates.

• On Macintosh: The Source will set pData to point to a PicHandle that it allocates.

• On Linux: The Source will set pData to point to a TIFF that it allocates.
TWAIN 2.3 Specification 3-21

Chapter 3
The application is responsible for de-allocating the memory block holding the Native-format
image.

The function initiateTransfer_Native illustrates how to get information about the image
that will be transferred, and how to actually perform a native transfer.

Refer to TwainApp.cpp at http://twain-samples.svn.sourceforge.net.

State 7 to 6 to 5 - Conclude the Transfer

While the transfer occurs, the session is in State 7. When the Source indicates via the Return Code
that the transfer is done (TWRC_XFERDONE) or canceled (TWRC_CANCEL), the application needs to
transition the session backwards.

One Operation is Used:

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER

pOrigin

Points to the application’s TW_IDENTITY structure.

pDest

Points to the Source’s TW_IDENTITY structure.

pData

Points to a structure of type TW_PENDINGXFERS.

The DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER operation is sent by the application to
the Source at the end of every transfer, successful or canceled, to indicate the application has
received all the data it expected.

After this operation returns, the application should examine the pData->Count field to
determine if there are more images waiting to be transferred. The value of pData->Count
indicates the following:

Value Description

pData->Count = 0 If zero, the Source will “automatically” transition back to State 5
without the application needing to take any additional action.
Application writers please make special note of this instance of an
implied source transition.

The application should return to its main event loop and await
notification from the Source (either MSG_XFERREADY or
MSG_CLOSEDSREQ).
3-22 TWAIN 2.3 Specification

http://twain-samples.svn.sourceforge.net/viewvc/twain-samples/trunk/TWAIN-Samples/Twain_App_sample01/src/TwainApp.cpp?view=markup

If more images were pending and your application does not wish to transfer all of them, you can
discard one or all pending images by doing the following:

• To discard just the next pending image, use the DG_CONTROL / DAT_PENDINGXFERS /
MSG_ENDXFER operation. Then, check the Count field again to determine if there are
additional images pending.

• To discard all pending images, use the DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET
operation. Following successful execution of this operation, the session will be in State 5.

The function DoAbortXfer illustrates how to stop a transfer in TwainApp.cpp on
http://twain-samples.svn.sourceforge.net.

State 5 to 1 - Disconnect the TWAIN Session

Once the application has acquired all desired data from the Source, the application can disconnect
the TWAIN session. To do this, the application transitions the session backwards.

In the last section, the Source transitioned to State 5 when there were no more images to transfer
(TW_PENDINGXFERS.Count = 0) or the application called the DG_CONTROL /
DAT_PENDINGXFERS / MSG_RESET operation to purge all remaining transfers. To back out the
remainder of the session:

Three Operations (plus some platform-dependent code) are Used:

To move from State 5 to State 4

DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS

pOrigin

Points to the application’s TW_IDENTITY structure.

pDest

Points to the Source’s TW_IDENTITY structure.

pData

Points to a structure of type TW_USERINTERFACE.

The definition of TW_USERINTERFACE is:

typedef struct {

pData->Count = -
1
or
pData->Count > 0

The Source has more transfers available and is waiting in State 6.

If the value is -1, that means the Source has another image available but
it is unsure of how many more will be available. This might occur if
the Source was controlling a device equipped with a document feeder
and some unknown number of documents were stacked in that feeder.

If the number of images is known, the Count will be a value greater
than 0.

Either way, the Source will remain in State 6 ready for the application
to initiate another transfer. The Source will NOT send another
MSG_XFERREADY to trigger this. The application should proceed as if
it just received a MSG_XFERREADY.

Value Description
TWAIN 2.3 Specification 3-23

http://twain-samples.svn.sourceforge.net/viewvc/twain-samples/trunk/TWAIN-Samples/Twain_App_sample01/src/TwainApp.cpp?view=markup

Chapter 3
 TW_BOOL ShowUI;
 TW_BOOL ModalUI;
 TW_HANDLE hParent;
} TW_USERINTERFACE, FAR *pTW_USERINTERFACE;

Its contents are not used.

Note the following:

• If the Source’s User Interface was displayed: This operation causes the Source’s user
interface, if displayed during the transition from State 4 to 5, to be lowered. This operation is
sent by the application in response to a MSG_CLOSEDSREQ from the Source. This request from
the Source appears in the TWMessage field of the TW_EVENT structure. It is sent back from
the DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT operation used by the application to
send events to the application.

• If the application did not have the Source’s User Interface displayed: The application
invokes this command when all transfers have been completed. In addition, the application
could invoke this operation to transition back to State 4 if it wanted to modify one or more of
the capability settings before acquiring more data.

To move from State 4 to State 3

DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS

pOrigin

Points to the application’s TW_IDENTITY structure.

pDest

Should reference a NULL value (indicates destination is Source Manager)

pData

Points to a structure of type TW_IDENTITY

This is the same TW_IDENTITY structure that you have used throughout the session to direct
operation triplets to this Source.

When this operation is completed, the Source is closed. (In a more complicated scenario, if the
application had more than one Source open, it must close them all before closing the Source
Manager. Once all Sources are closed and the application does not plan to initiate any other
TWAIN session with another Source, the Source Manager should be closed by the application.)

To move from State 3 to State 2

DG_CONTROL / DAT_PARENT / MSG_CLOSEDSM

pOrigin

Points to the application’s TW_IDENTITY structure.

pDest

Should reference a NULL value (indicates destination is Source Manager)

pData

Typically, you would expect to see this point to a structure of type TW_PARENT but this is not
the case. This is an exception to the usual situation where the DAT field of the triplet identifies
the data structure for pData. pData is the same value used for MSG_OPENDSM.
3-24 TWAIN 2.3 Specification

On Windows: pData points to the window handle (hWnd) that acted as the Source’s
“parent”.

On Macintosh: pData should be a NULL value.

On Linux: pData should be a NULL value.

To move from State 2 to State 1

Once the Source Manager has been closed, the application must unload it from memory before
continuing.

See Chapter 12, "Operating System Dependencies" for more information.

TWAIN Session Review

Applications have flexibility regarding which state they leave their TWAIN sessions in between
TWAIN commands (such as Select Source and Acquire).

For example:

• An application might load the Source Manager on start-up and unload it on exit. Or, it might
load the Source Manager only when it is needed (as indicated by Select Source and Acquire).

• An application might open a Source and leave it in State 4 between acquires.

The following is the simplest view of application’s TWAIN flow. All TWAIN actions are initiated
by a TWAIN command, either user-initiated (Select Source and Acquire) or notification from the
Source (MSG_XFERREADY and MSG_CLOSEDSREQ).

Application
Receives

State Application Action

Select Source... 1 -> 2

2 -> 3

3 -> 2

2 -> 1

Load Source Manager

DG_CONTROL / DAT_PARENT / MSG_OPENDSM

DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT

DG_CONTROL / DAT_PARENT / MSG_CLOSEDSM

Unload Source Manager

Acquire... 1 -> 2

2 -> 3

3 -> 4

4 -> 5

Load Source Manager

DG_CONTROL / DAT_PARENT / MSG_OPENDSM

DG_CONTROL / DAT_IDENTITY / MSG_OPENDS

Capability Negotiation

DG_CONTROL / DAT_USERINTERFACE /
MSG_ENABLEDS
TWAIN 2.3 Specification 3-25

Chapter 3
Error Handling
Your application must be robust enough to recognize and handle error conditions that may occur
during a TWAIN session. Every TWAIN operation triplet has a defined set of Return Codes and
Conditions Codes that it may generate. These codes are listed on the reference pages for each
triplet located in Chapter 7, "Operation Triplets". Be sure to check the Return Code following
every call to the DSM_Entry function. If it is TWRC_FAILURE, make sure your code checks the
Condition Code and handles the error condition appropriately.

The following code segment illustrates the basic operations for doing this:

TW_STATUS twStatus;
if (rc == TWRC_FAILURE)
 //check Condition Code
 rc = (*pDSM_Entry) (&AppID,
 &SourceID,
 DG_CONTROL,
 DAT_STATUS,
 MSG_GET,
 (TW_MEMREF)&twStatus);
 switch (twStatus.ConditionCode)
 //handle each possible Condition Code for the operation

Common Types of Error Conditions

Sequence Errors

The TWAIN protocol allows the invoking of specific operations only while the TWAIN session is
in a particular state or states. The valid states for each operation are listed on the operation’s

MSG_XFERREADY 6

6 -> 7

7 -> 6

6 -> 5

For each pending transfer:

 DG_IMAGE / DAT_IMAGEINFO / MSG_GET

 DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET

 DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT

 DG_IMAGE / DAT_IMAGExxxxXFER / MSG_GET

 DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER

Automatic transition to State 5 if
TW_PENDINGXFERS.Count equals 0.

MSG_CLOSEDSREQ 5 -> 4

4 -> 3

3 -> 2

2 -> 1

DG_CONTROL / DAT_USERINTERFACE /
MSG_DISABLEDS

DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS

DG_CONTROL / DAT_PARENT / MSG_CLOSEDSM

Unload the Source Manager

Application
Receives

State Application Action
3-26 TWAIN 2.3 Specification

reference pages inChapter 7, "Operation Triplets". If an operation is called from an inappropriate
state, the call will return an error, TWRC_FAILURE, and set the Condition Code to
TWCC_SEQERROR. Although this error should not occur if both the application and Source are
behaving correctly, it is possible for the session to get out of sync.

If this error occurs, correct it by assuming the Source believes it is in State 7. The application
should invoke the correct operations to back up from State 7 to State 6 and so on down the states
until an operation succeeds. Then, the application can continue or terminate the session.

The following pseudo code illustrates this:

if (TWCC_SEQERROR)

 // Assume State 7, start backing out from State 7 until

 // the Condition Code != TWCC_SEQERROR

 State 7 to 6 DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER

 State 6 to 5 DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET

 State 5 to 4 DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS

 State 4 to 3 DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS

Low Memory Errors

Another common type of error condition occurs when insufficient memory is available to perform
a requested operation. The most likely times for this to occur are:

• When a Source is being opened

• When a Source is being enabled

• During a Native image transfer

Your application must check the Return Code and Condition Code (TWRC_FAILURE /
TWCC_LOWMEMORY) to recognize this. Your application may be able to free up sufficient memory
to continue or it must quit.

State Transition Operation Triplet Errors

Many operations normally cause state transitions. If one of these operations fails, for example,
returns TWRC_FAILURE, do not make the state transition. The application must check the Return
Code following every operation and update the current state only if the operation succeeds.

An implied state transition during DG_CONTROL/DAT_PENDINGXFERS/ MSG_ENDXFER
deserves special note here. If the Count field of the TW_PENDINGXFERS structure is zero then the
source will automatically transition back to State 5. Application writers should be aware of this
condition and react accordingly.

Error Handling and State Transitions

It is possible that during execution of any triplet that the data source will fail unexpectedly. It is
very important that applications pay attention to the TWAIN State of the data source at the time of
failure. A hanging or deadlock condition will occur if the application fails to recover from error
conditions with the proper state transitions. Most error handling is fairly obvious, however the
following items have been mishandled in the past.
TWAIN 2.3 Specification 3-27

Chapter 3
Failing Transition to State 5

A data source may fail a call to DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS
unexpectedly. It is important to note that if an application requests the User Interface be
suppressed, and the data source returns a code of TWRC_CHECKSTATUS, this means only that User
Interface suppression was not possible. The transition to State 5 still occurred. If the application
does not like this condition, then it may call MSG_DISABLEDS to close the data source without
further user interaction. A return code of TWRC_FAILURE indicates that the transition to State 5
has not occurred.

Failure During State 6 or 7

It is important to be aware that when an error occurs during image transfer, a state transition to
State 5 is not implicit. A call to DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET or
MSG_ENDXFER is required for a state transition back to State 5. If an applications calls
MSG_DISABLEDS immediately after such a failure without first making the required calls to
DAT_PENDINGXFERS, the resulting behavior of the data source will not be predictable. The data
source should fail any call to MSG_DISABLEDS outside of State 5.

Best Practices for TWAIN Compliant Applications
The following items are covered in this section:

• Handling Status Returns

• States 1, 2, 3: Finding and Opening a Data Source

• States 4, 5: Capability Negotiation

• States 6, 7: Transferring Data

• Stepping Back Down the States

Handling Status Returns

TWAIN supports a small number of status return codes and condition codes. If an operation
returns TWRC_FAILURE, then the application must immediately issue the DG_CONTROL /
DAT_STATUS / MSG_GET operation to collect the condition code.

The following tables describe the meaning for each return code and condition code, and explains
the action that an application should take in response.

Return Code Meaning / Action

TWRC_CANCEL Intended for use with the DAT_IMAGE*XFER operations. Operation
has been canceled.

Call DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER as
one normally does after a successful transfer.
3-28 TWAIN 2.3 Specification

TWRC_CHECKSTATUS Intended for use with DAT_CAPABILITY and DAT_IMAGELAYOUT.
Operation failed to completely perform the desired operation. For
example, setting ICAP_BRIGHTNESS to 3 when its range is -1000 to
1000 with a step of 200. The data source may opt to set the value to
0 and return this status.

The application should confirm its last setting, if it depends on
getting the exact value it requested.

TWRC_DATANOTAVAILABLE Intended for use with DAT_EXTIMAGEINFO. There is no data
available for the requested TWEI_ item.

Scanning may continue. The decision to continue with scanning is
at the discretion of the application, depending on which field
reported this status.

TWRC_DSEVENT Intended for use with DAT_EVENT. The data source processed the
event.

The application must not take any further action on this message.

TWRC_ENDOFLIST Intended for use with DAT_IDENTITY and DAT_FILESYSTEM.

There are no more items to enumerate in this list. If a call is needed
to close the list, it must be called next.

TWRC_FAILURE May be returned by any operation. An error has occurred.

The application must call DAT_STATUS, and refer to the condition
code for more information.

TWRC_INFONOTSUPPORTED Intended for use with DAT_EXTIMAGEINFO. The requested TWEI_
data is either not supported by this data source, or is not supported
for this particular image.

Scanning may continue. The decision to continue with scanning is
at the discretion of the application, depending on which field
reported this status.

TWRC_NOTDSEVENT Intended for use with DAT_EVENT. The data source did not process
the event.

The application passes the message to its own dialogs.

TWRC_SUCCESS Operation was successful.

The application continues as normal.

TWRC_XFERDONE Intended for use with the DAT_IMAGE*XFER operations. The
image has been fully transferred.

The application must be in state 7. It should call DAT_IMAGEINFO
or DAT_EXTIMAGEINFO, if it needs to collect metadata for this
image.

Return Code Meaning / Action
TWAIN 2.3 Specification 3-29

Chapter 3
Condition Code Meaning / Action

TWCC_BADCAP Intended for use with DAT_CAPABILITY. Returned by pre-1.7 data
sources to indicate that the capability is not supported, that the
value was bad, or that the desired value could not be set at this time.

The application should use the MSG_GET call for the operation to
find out the constraints on the current values, if any, and to confirm
the current value.

TWCC_BADDEST May be returned by any operation (save for the DAT_PARENT
operations). The TW_IDENTITY for the destination (the data
source) does not match any items opened by MSG_OPENDS.

The application may have a corrupt TW_IDENTITY, or it may have
already closed the data source associated with the values in the
TW_IDENTITY structure. It should return to state 3 if it wants to
attempt to reopen the data source.

TWCC_BADPROTOCOL May be returned by any operation. The requested DG_* / DAT_*
/ MSG_* is not supported by the data source.

The application cannot perform this operation; any further action is
at its discretion.

TWCC_BADVALUE May be returned by any operation. The capability or operation has
rejected the requested setting.

The application should use the MSG_GET call for the operation to
find out the constraints on the current values, if any, and to confirm
the current value.

TWCC_BUMMER May be returned by any operation. The data source is in a critical
state.

The application must save any important information and exit as
soon as possible.

TWCC_CAPBADOPERATION Intended for use with DAT_CAPABILITY. The capability does not
support the requested operation.

The application must use DG_CONTROL / DAT_CAPABILITY /
MSG_QUERYSUPPORT to determine what operations a capability
supports.

TWCC_CAPSEQERROR Intended for use with DAT_CAPABILITY. The capability being
MSG_SET or MSG_RESET cannot be modified due to a setting for a
related capability. For instance, this may be returned by
ICAP_CITTKFACTOR if ICAP_COMPRESSION is set to any value
other than TWCP_GROUP32D.

The application must set values in the correct order.
3-30 TWAIN 2.3 Specification

TWCC_CAPUNSUPPORTED Intended for use with DAT_CAPABILITY. The capability is not
supported.

The application cannot negotiate this capability.

TWCC_CHECKDEVICEONLINE May be returned for any operation in state 4 or higher, except ones
that reduce state (DAT_PENDINGXFERS / MSG_ENDXER,
DAT_PENDINGXFERS / MSG_RESET, DAT_USERINTERFACE /
MSG_DISABLEDS, DAT_IDENTITY / MSG_CLOSEDS,
DAT_PARENT / MSG_CLOSEDSM).

When received the application uses CAP_DEVICEONLINE to
determine when the device is available.

TWCC_DAMAGEDCORNER Intended for use with the DAT_IMAGE*XFER operations.

Call DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER as
one normally does after a successful transfer.

TWCC_DENIED Intended for DAT_IMAGEFILEXFER and DAT_FILESYSTEM, the
specified file or directory cannot be modified or deleted.

If for DAT_IMAGEFILEXFER, then select a different filename and
try again. If for DAT_FILESYSTEM, then alert the user.

TWCC_DOCTOODARK Intended for use with the DAT_IMAGE*XFER operations.

Call DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER as
one normally does after a successful transfer.

TWCC_DOCTOOLIGHT Intended for use with the DAT_IMAGE*XFER operations.

Call DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER as
one normally does after a successful transfer.

TWCC_FILEEXISTS Intended for DAT_FILESYSTEM. The specified file or directory
already exists.

Pick a different file name and try again.

TWCC_FILENOTFOUND Intended for DAT_IMAGEFILEXFER and DAT_FILESYSTEM. The
specified file or directory cannot be found.

If received during scanning the application may select a new
directory path and try again, otherwise alert the user.

TWCC_FILEWRITEERROR Intended for DAT_IMAGEFILEXFER and DAT_FILESYSTEM, the
specified file or directory could not be written, usually indicating a
disk full condition, though it may also indicate a file or directory
that the user has no permission to write.

If received during scanning the application may free resources and
try again, otherwise alert the user.

Condition Code Meaning / Action
TWAIN 2.3 Specification 3-31

Chapter 3
TWCC_FOCUSERROR Intended for use with the DAT_IMAGE*XFER operations.

Call DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER as
one normally does after a successful transfer.

TWCC_INTERLOCK Intended for use with the DAT_IMAGE*XFER operations.

The application takes action to return to state 5 (the GUI is up) or
state 4 (no GUI).

TWCC_LOWMEMORY May be returned for any operation except ones that reduce state
(DAT_PENDINGXFERS / MSG_ENDXER, DAT_PENDINGXFERS /
MSG_RESET, DAT_USERINTERFACE / MSG_DISABLEDS,
DAT_IDENTITY / MSG_CLOSEDS, DAT_PARENT /
MSG_CLOSEDSM).

When received the application may free resources and try again.

TWCC_MAXCONNECTIONS Intended for use with DAT_IDENTITY / MSG_OPENDS. The data
source cannot support any more connections to this device.

Try again later.

TWCC_NODS Intended for use with DAT_IDENTITY / MSG_OPENDS. The
device is not online.

Try again later.

TWCC_NOMEDIA Intended for use with the DAT_IMAGE*XFER operations.

Call DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER as
one normally does after a successful transfer.

TWCC_NOTEMPTY Intended for use with DAT_FILESYSTEM. Directory is in use, and
cannot be deleted.

Delete the contents of the directory first, then delete the directory.

TWCC_OPERATIONERROR The operation failed, but the user has already been informed by the
data source.

If CAP_INDICATORS is TRUE or TW_USERINTERFACE.ShowUI
was set to TRUE, then the application should not issue its own
message to the user. If these values are FALSE (meaning that no
user interface is showing) then the application should alert the user
and treat the condition as a TWCC_BADPROTOCOL. If the current
state is 5, 6 or 7 return back to state 4 as soon as possible.

TWCC_PAPERDOUBLEFEED Intended for use with the DAT_IMAGE*XFER operations.

Call DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER as
one normally does after a successful transfer.

TWCC_PAPERJAM Intended for use with the DAT_IMAGE*XFER operations.

Call DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER as
one normally does after a successful transfer.

Condition Code Meaning / Action
3-32 TWAIN 2.3 Specification

States 1, 2, 3: Finding and Opening a Data Source

Registering as a TWAIN 2.x+ Application

The application loads the TWAIN Data Source Manager. When this is done it constructs a
TW_IDENTITY structure, which includes the following flag in the
TW_IDENTITY.SupportedGroups field: DF_APP2. It then issues the DG_CONTROL /
DAT_PARENT / MSG_OPENDSM command with this TW_IDENTITY structure.

Confirming that the DSM is 2.x

The application examines the TW_IDENTITY.SupportedGroups field. If it contains the
DF_DSM2 flag, then the DSM supports the TWAIN 2.x interface.

Issuing DAT_ENTRYPOINT

If the DF_DSM2 flag is detected, then the application issues the DG_CONTROL /
DAT_ENTRYPOINT / MSG_GET call to retrieve function pointers for the memory allocation
routines. The application must use these routines for any handles that it sends to the data source.

Selecting a Data Source

If the application wishes to use the default data source, it can issue the DG_CONTROL /
DAT_IDENTITY / MSG_GETDEFAULT command. This is preferred to calling DG_CONTROL /
DAT_IDENTITY / MSG_OPENDS with an empty structure.

If the application wishes to get the list of available data sources it uses DG_CONTROL /
DAT_IDENTITY / MSG_GETFIRST and DG_CONTROL / DAT_IDENTITY / MSG_GETNEXT,
retaining the TW_IDENTITY of the data source it wants to use. This structure must not be
modified in any way.

Use of DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT is discouraged because it is not
localized for many languages, and because it is not available on systems other than Windows.

States 4, 5: Capability Negotiation

Overview

An application may negotiate settings with a data source in one of these ways:

• through the data source’s built-in user interface

• using snapshots of the data source’s previous settings

• through TWAIN’s programmatic interface

TWCC_SUCCESS Operation was successful. This value should only be paired with
TWRC_SUCCESS.

If it is paired with another return code, like TWRC_FAILURE, treat it
as TWCC_BADPROTOCOL. If it happens during state 5, 6 or 7, then
return to state 4 as soon as possible.

Condition Code Meaning / Action
TWAIN 2.3 Specification 3-33

Chapter 3
In all cases the application is responsible for negotiating capabilities relating to data transfers.
These capabilities come with defaults which must serve as the startup value for any data source
(refer to the chapter on Capabilities to find the default values). These values will not appear on
any data source’s user interface, and they will not be affected by any data source’s
DAT_CUSTOMDSDAT:

CAP_XFERCOUNT

ICAP_XFERMECH

ICAP_UNITS

All other settings may be negotiated using one of the techniques described above.

The Data Source’s User Interface

When calling DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS with
TW_USERINTERFACE.ShowUI set to TRUE, an application may not make assumptions about
what settings the user may change. Any programmatic changes (other than the items mentioned
above) may be overridden by the user interface.

Use of TW_USERINTERFACE.ModalUI set to TRUE is discouraged. An application should take
responsibility for disabling its interface if it wants modal behavior.

Using Snapshots

The application raises the data source’s user interface using DG_CONTROL /
DAT_USERINTERFACE / MSG_ENABLEDSUIONLY. If MSG_CLOSEDSREQ is received, then no
action is taken (other than calling DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS).

If MSG_CLOSEDSOK is received, then immediately after calling DG_CONTROL /
DAT_USERINTERFACE / MSG_DISABLEDS the application calls DG_CONTROL /
DG_CUSTOMDSDATA / MSG_GET.

The data returned by a data source in the TW_CUSTOMDSDATA structure is opaque; an application
must not examine or alter this data in any way.

To restore settings, the application calls DG_CONTROL / DG_CUSTOMDSDATA / MSG_SET with
the data from the previous MSG_GET operation.

This method requires a small amount of coding, but it allows the application to control all aspects
of the data source, including custom features. It can be combined with the programmatic
interface, using DAT_CUSTOMDSDATA to select most settings and the programmatic interface to
make a smaller set of adjustments.

Programmatic Interface

Programmatic is the most advanced method of controlling a data source. It takes place in state 4.
The application uses a functional approach; features are discovered through the TWAIN interface,
not by hardcoded settings or relying on version numbers.

Available functions are determined through the following capabilities and operations (details on
these items are covered later in the Specification):

CAP_SUPPORTEDCAPS

CAP_SUPPORTEDDATS
3-34 TWAIN 2.3 Specification

CAP_SUPPORTEDEXTIMAGEINFO

CAP_CUSTOMINTERFACEGUID

DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT

As a matter of good defensive programming an application should make no assumptions about
the available capabilities, not even ones that are mandatory.

Assumptions should not be made about the value of capabilities when a data source is opened.
Use the DG_CONTROL / DAT_CAPABILITY / MSG_RESETALL operation or DG_CONTROL /
DAT_CUSTOMDSDATA / MSG_SET to make sure that negotiation is starting from a known state.

Applications should follow the instructions in the Capability Ordering section to navigate the
dependencies that capabilities have on one another. If a change is made out of order, then all
capabilities dependent on that setting must be renegotiated.

Assumptions should not be made about the container types returned by a data source. For
instance, a DG_CONTROL / DAT_CAPABILITY / MSG_GET for ICAP_XRESOLUTION may
return TW_ONEVALUE if only one resolution is supported, TW_ENUMERATION if a small set of
discontinuous resolutions is supported, or TW_RANGE.

Each of the containers has a field named .Item, .ItemList or value fields, which receives the
new setting. These fields are variable, so a cast is needed. For example:

((TW_UINT16)&ptwonevalue->Item) = TWSX_MEMORY;

((TW_UINT16*)&ptwarray->ItemList)[2] = TWFT_RED;

((TW_FRAME*)&ptwenumeration->ItemList)[0] = twframeValue;

((TW_FIX32)&ptwrange->CurrentValue) = twfix32Value;

Strings in TWAIN are zero padded, not zero terminated. An application should not assume that
the string will end with ASCII 0. Use memcpy to move the data to a string, and make sure to
properly terminate it. For Mac OS X the first byte is a prefix indicating the valid number of
characters in the string.

One safe method of setting any current value is to take the following steps:

• call DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT on the desired capability

• determine the container type from the TW_CAPABILITY.ConType field

• for TWON_ONEVALUE, do the following:

- lock the container using the DAT_ENTRYPOINT.DSM_MemLock function

- determine the item type from the container’s .ItemType field

- update the .Item field with the desired value

- unlock the container using the DAT_ENTRYPOINT.DSM_MemUnlock function

• for TWON_ARRAY, do the following:

- lock the container using the DAT_ENTRYPOINT.DSM_MemLock function

- determine the item type from the container’s .ItemType field

- create a new container (with sufficient room for all the elements) using the
DAT_ENTRYPOINT.DSM_MemAllocate function
TWAIN 2.3 Specification 3-35

Chapter 3
- lock the new container using the DAT_ENTRYPOINT.DSM_MemLock function

- set the .ItemType field to the one reported by MSG_GETCURRENT

- set the .NumItems field to the number of desired elements

- set the .ItemList field with the desired values

- unlock the new container using the DAT_ENTRYPOINT.DSM_MemUnlock function

- unlock the original container using the DAT_ENTRYPOINT.DSM_MemUnlock function

- free the original container using the DAT_ENTRYPOINT.DSM_MemFree function

• call MSG_SET with the updated container

• free the container using the DAT_ENTRYPOINT.DSM_MemFree function

• respond to the status returned by MSG_SET

If setting constraints, then do the following:

• call DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT to confirm that the
capability has TWQC_SETCONSTRAINT

• call DG_CONTROL / DAT_CAPABILITY / MSG_GET on the desired capability

• determine the container type from the TW_CAPABILITY.ConType field

• for TWON_ONEVALUE, do the following:

- lock the container using the DAT_ENTRYPOINT.DSM_MemLock function

- determine the item type from the container’s .ItemType field

- update the .Item field with the desired value

- unlock the container using the DAT_ENTRYPOINT.DSM_MemUnlock function

• for TWON_ARRAY, do the following:

- lock the container using the DAT_ENTRYPOINT.DSM_MemLock function

- determine the item type from the container’s .ItemType field

- create a new container (with sufficient room for all the elements) using the
DAT_ENTRYPOINT.DSM_MemAllocate function

- lock the new container using the DAT_ENTRYPOINT.DSM_MemLock function

- set the .ItemType field to the one reported by MSG_GET

- set the .NumItems field to the number of desired elements

- set the .ItemList field with the desired values

- unlock the new container using the DAT_ENTRYPOINT.DSM_MemUnlock function

- unlock the original container using the DAT_ENTRYPOINT.DSM_MemUnlock function

- free the original container using the DAT_ENTRYPOINT.DSM_MemFree function

• for TWON_ENUMERATION, do the following:

- lock the container using the DAT_ENTRYPOINT.DSM_MemLock function

- determine the item type from the container’s .ItemType field
3-36 TWAIN 2.3 Specification

- create a new container (with sufficient room for all the elements) using the
DAT_ENTRYPOINT.DSM_MemAllocate function

- lock the new container using the DAT_ENTRYPOINT.DSM_MemLock function

- set the .ItemType field to the one reported by MSG_GETCURRENT

- set the .NumItems field to the number of desired elements

- set the .ItemList field with the desired values

- set the .CurrentIndex field with the 0-based index of the .ItemList value that
represents the current value

- set the .DefaultIndex field to 0 (this value will be ignored by the data source)

- unlock the new container using the DAT_ENTRYPOINT.DSM_MemUnlock function

- unlock the original container using the DAT_ENTRYPOINT.DSM_MemUnlock function

- free the original container using the DAT_ENTRYPOINT.DSM_MemFree function

• call MSG_SETCONSTRAINT with the updated container

• free the container using the DAT_ENTRYPOINT.DSM_MemFree function

• respond to the status returned by MSG_SET

The Graphical User Interface

This section assumes the application sets TW_USERINTERFACE.ShowUI to TRUE.

The application must not negotiate any values using DG_CONTROL / DAT_CAPABILITY /
MSG_SET or MSG_RESET or MSG_RESETALL while in state 5.

Using MSG_ENABLEDS

The DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS operation raises a data source
GUI that contains a Scan and a Cancel button. The Scan button may result in the receipt of a
DG_CONTROL / DAT_NULL / MSG_XFERREADY message from the data source to the
application, at which point the application must move to state 6 and begin image transfers.

The Cancel button causes the receipt of a DG_CONTROL / DAT_NULL / MSG_CLOSEDSREQ
message from the data source to the application, at which point the application must issue the
appropriate operations to the data source to take it from its current state (which may be 5, 6 or 7)
to state 4.

Using MSG_ENABLEDSUIONLY

The DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDSUIONLY operation raises a data
source GUI that contains an OK and a Cancel button. The OK button causes the receipt of a
DG_CONTROL / DAT_NULL / MSG_CLOSEDSOK message from the data source to the
application, at which point the application must issue DG_CONTROL / DAT_USERINTERFACE /
MSG_DISABLEDS to the data source. The application must immediately take action on the OK
request, for instance, calling DG_CONTROL / DAT_CUSTOMDSDATA / MSG_GET.

The Cancel button causes the receipt of a DG_CONTROL / DAT_NULL / MSG_CLOSEDSREQ
message from the data source to the application, at which point the application must issue
DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS to the data source. Any changes
made by the GUI will be discarded, but the application should consider issuing DG_CONTROL /
TWAIN 2.3 Specification 3-37

Chapter 3
DAT_CAPABILTY / MSG_RESETALL or DG_CONTROL / DAT_CUSTOMDSDATA / MSG_SET to
make sure the data source is in a known state.

States 6, 7: Transferring Data

When the DG_CONTROL / DAT_NULL / MSG_XFERREADY message is received by the
application, it moves to state 6 and begins transferring images. There are four transfer methods,
as specified by ICAP_XFERMECH:

TWSX_NATIVE, which uses DAT_IMAGENATIVEXFER

TWSX_MEMORY, which uses DAT_IMAGEMEMXFER

TWSX_FILE, which uses DAT_IMAGEFILEXFER

TWSX_MEMFILE, which uses DAT_IMAGEMEMFILEXFER

Each method has advantages and disadvantages.

Using DAT_IMAGENATIVEXFER

Native transfers are the default and must be supported by all data sources. Being ‘native’ to the
operating system they vary, with Bitmaps used on Windows and TIFF used on Mac OS X and
Linux. Since they include meta-data describing the image no other call is required to view the
image, and saving the image to disk is easy.

The chief drawback to native transfers is their size. Bitmaps cannot be compressed, and even TIFF
files must be kept entirely in physical memory during the transfer. Some formats, like Bitmap
may require additional image processing, such as changing the packing order for color data, or the
location of the image origin, or realignment of each raster line.

Using DAT_IMAGEMEMXFER

Memory transfers must be supported by all data sources. They allow for efficient use of physical
memory, since they transfer data using stripes or tiles. They support compressed images.

Memory transfers may not include any meta-data about the image, requiring a call to DG_IMAGE
/ DAT_IMAGEINFO / MSG_GET or DG_IMAGE / DAT_EXTIMAGEINFO / MSG_GET.

Using DAT_IMAGEFILEXFER

File transfers are optional for data sources. They are supported if the data source accepts a value
of TWSX_FILE for ICAP_XFERMECH. They allow for efficient use of physical memory, since they
transfer data using the disk drive. They support compressed images. Since they include meta-
data describing the image no other call is required to view the image.

Being optional means that file transfer may not be an option for a given data source. There is also
no guarantee that the data source supports the image file format needed by the application.

Using DAT_IMAGEMEMFILEXFER

Memory File transfers are optional for data sources. They are supported if the data source accepts
a value of TWSX_MEMFILE for ICAP_XFERMECH. They allow for efficient use of physical memory,
since they transfer data using stripes or tiles. They support compressed images. Since they
include meta-data describing the image no other call is required to view the image.
3-38 TWAIN 2.3 Specification

Being optional means that memory file transfer may not be an option for a given data source.
There is also no guarantee that the data source supports the image file format needed by the
application.

The Image Transfer Loop

When the application receives DG_CONTROL / DAT_NULL / MSG_XFERREADY it goes to state 6
and transfers the first image.

DAT_IMAGENATIVEXFER and DAT_IMAGEFILEXFER only require one call to transfer the
complete image. DAT_IMAGEMEMXFER and DAT_IMAGEMEMFILEXFER may require multiple calls
returning TWRC_SUCCESS to indicate when there is more data to transfer for the current image.
All of the calls return TWRC_XFERDONE when the image is completely transferred. Any other
status is an error.

When TWRC_XFERDONE is received the application may call DG_IMAGE / DAT_IMAGEINFO /
MSG_GET or DG_IMAGE / DAT_EXTIMAGEINFO / MSG_GET to get information about the
image. Calling DAT_IMAGEINFO before TWRC_XFERDONE is received may result in an error or
data that does not correspond exactly to the transferred image.

After either a successful transfer or an error the application calls DG_CONTROL /
DAT_PENDINGXFERS / MSG_ENDXFER. It determines if there are more images to transfer by
examining the value of TW_PENDINGXFERS.Count.

If there are more images the state goes to 6. If TW_PENDINGXFERS.Count is equal to zero then
the state skips 6 and goes to 5.

The application has the option to discard an image by calling DG_CONTROL /
DAT_PENDINGXFERS / MSG_ENDXFER without first transferring the data. It also has the option
to gracefully exit the scanning state with DG_CONTROL / DAT_PENDINGXFERS /
MSG_STOPFEEDER, or it can immediately abort scanning using DG_CONTROL /
DAT_PENDINGXFERS / MSG_RESET.

Stepping Back Down the States

The application and the data source both track a current state from 1 to 7 (with the most time
spent in states 4 to 7). If they get out of sync, then the data source returns TWRC_FAILURE /
TWCC_SEQERROR for an operation being called in the wrong state.

When this happens the application must take measures to resynchronize itself with the data
source. The easiest way to go about this is to use the following call sequence, stopping at the
desired state.

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER → state 7 to 6

DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET → state 6 to 5

DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS → state 5 to 4

DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS → state 4 to 3

Ignore the status returns from the calls prior to the one yielding the desired state. For instance, if a
call during scanning returns TWCC_SEQERROR and the desire is to return to state 5, then use the
following commands.

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER → state 7 to 6
TWAIN 2.3 Specification 3-39

Chapter 3
DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET → state 6 to 5

Being sure to confirm that DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET returned
success, the return status from DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER may be
ignored.

Legacy Issues

ICAP_BITDEPTH

Data Sources

Report the number-of-channels times the depth-per-channel. For example, a typical value for
ICAP_BITDEPTH when ICAP_PIXELTYPE is TWPT_RGB is 3 x 8 = 24.

Applications

Ambiguity in the Specification prior to version 2.2 may result in some Data Sources reporting just
the depth-per-channel. In the majority of cases a value of 8 for ICAP_BITDEPTH when
ICAP_PIXELTYPE is TWPT_RGB may be treated as if the bit depth is really 24.

Also, owing to a bug in an old version of the sample driver, some Data Sources may report all of
their possible bit depth values, instead of those that apply just to the current ICAP_PIXELTYPE
value. For instance, with a setting of TWPT_RGB, ICAP_BITDEPTH may report allowed value of 1,
8 and 24, when only 24 is really permitted.

CAP_DUPLEXENABLED

Data Sources

If a Data Source supports one of MSG_GET, MSG_GETCURRENT, or MSG_GETDEFAULT for a
capability, it should support all get messages.

Applications

Ambiguity in the Specification prior to version 2.2 may result in some Data Sources not
supporting MSG_GET for CAP_DUPLEXENABLED. The Data Source may only support
MSG_GETCURRENT to determine if duplex option is enabled or not.

CAP_ENDORSER vs CAP_PRINTERINDEX

Technically, endorsers differ from printers. Printers are typically used to mark physical sheets so
that it’s easier to correlate images with physical documents. Endorsers are used to confirm that a
given sheet of paper has passed through the scanner, usually with some kind of non-ink stamp.

True endorsers are rare, and have been used interchangeably with printers. TWAIN applications
and data sources should treat them as identical.
3-40 TWAIN 2.3 Specification

Data Sources

Deprecate the use of CAP_ENDORSER in favor of CAP_PRINTER, which offers more options. If
there’s a history of using CAP_ENDORSER, map it to CAP_PRINTERINDEX.

Applications

Check for CAP_PRINTERINDEX, and use it when it’s available. Be prepared to check for
CAP_ENDORSER with pre-TWAIN 2.3 data sources.

ICAP_FRAMES

Applications

Some scanners may handle having the origin of a frame as 0,0 differently. The spec states that
when an application is only interested in the extent of image scanned it can set the origin to 0,0
with MSG_SET. Some center feed or right feed scanners may scan from the left edge of the
scanner. They expect the application to center (or right align) the frame using the physical extent
of the scanner.

ICAP_XFERMECH

Data Sources

Applications are supposed to alert a data source to the transfer mechanism they’ll be using in
states 6 and 7 by setting ICAP_XFERMECH. However, not all applications do this. So, when
possible, a data source should tolerate this, and use return the image data using whatever
DAT_IMAGE*XFER call the application selects.
TWAIN 2.3 Specification 3-41

Chapter 3
3-42 TWAIN 2.3 Specification

4
Advanced Application Implementation

Chapter Contents

Capabilities . 4-1

Options for Transferring Data . 4-17

The ImageData and Its Layout . 4-23

Transfer of Multiple Images. 4-26

Transfer of Compressed Data . 4-32

Alternative User Interfaces. 4-35

Grayscale and Color Information for an Image . 4-38

Using TWAIN to acquire a raster image from a device is relatively simple to implement as
demonstrated in Chapter 3, "Application Implementation". However, TWAIN also allows
application developers to go beyond the simple acquisition of a single image in Native (DIB or
PICT) format. These more advanced topics are discussed in this chapter.

Capabilities
Capabilities, and the power of an application to negotiate capabilities with the Source, give control
to TWAIN-compliant applications. In Chapter 12, "Operating System Dependencies", you will see
the negotiation of one capability, CAP_XFERCOUNT. This capability is negotiated during State 4 as
is always the case unless delayed negotiation is agreed to by both the application and Source. In
fact, there is much more to know about capabilities.

Capability Values

Several values are used to define each capability. As seen in Chapter 10, "Capabilities", TWAIN
defines a Default Value and a set of Allowed Values for each of the capabilities. The application is
not able to modify the Default Value. However, it is able to limit the values offered to a user to a
subset of the Allowed Values and to select the capability’s Current Value.

Default Value

When a Source is opened, the Current Values for each of its capabilities are set to the TWAIN
Default Values listed in Chapter 10, "Capabilities". If no default is defined by TWAIN, the Source
TWAIN 2.3 Specification 4-1

Chapter 4
will select a value for its default. An application can return a capability to its TWAIN-defined
default by issuing a DG_CONTROL / DAT_CAPABILITY / MSG_RESET operation.

Although TWAIN defines defaults for many of the capabilities, a Source may have a different
value that it would prefer to use as its default because it would be more efficient. For example, the
Source may normally use a 0 bit in a black and white image to indicate white. However, the
default for ICAP_PIXELFLAVOR is TWPF_CHOCOLATE which states that a 0 represents black.
Although the TWAIN default is TWPF_CHOCOLATE, the Source’s preferred default would be
TWPF_VANILLA. When the application issues a DG_CONTROL / DAT_CAPABILITY /
MSG_GETDEFAULT operation, the Source returns information about its preferred defaults. The
Source and application may be able to negotiate a more efficient transfer based on this
information.

Note that this does not imply that the TWAIN defaults should be completely disregarded.
When trying to resolve the conflict between the “preferred” value of a particular data source
capability and the TWAIN-specified default, it should be considered that the problem is similar to
storing and restoring image attributes from session to session. It is reasonable to assume that a
data source will want to store the current values for some capabilities to be restored as the current
values in a future session. It is then also reasonable to expect that these restored values will be
reflected as the current settings for the appropriate capabilities. While storing settings is only
really useful for image attributes (the data source would not store the value of
ICAP_PIXELFLAVOR, but it might store the current ICAP_RESOLUTION), it should be stated that
preferred values of a data source are to be treated in the same manner.

At the time of loading the data source, all current values for the appropriate capabilities would be
set to values that have either been restored from a previous session, or those that are “preferred”
by the data source. This current value will remain until it has been explicitly changed by the
calling application, or that application issues a MSG_RESET.

These are best illustrated using examples, since not all capabilities are suitable for preferred
values, and most are not suitable to be stored and restored across multiple scanning sessions.

Example 1:
Scan Parameters are stored in one session and restored in another

1. User configures the data source User Interface with the following parameters: 4x6 inch image
in 24-bit at 200 DPI X and Y resolution

2. User selects “Scan” and data source signals application to transfer.

3. Application acquires the image successfully.

4. Application disables the data source.

5. Application inquires during State 4 the current values of Frame, Pixel Type, Bit Depth, and
Resolution.

6. Data source reports to each inquiry the current values that were set by the user: 4x6 inch
image in 24-bit at 200 DPI X and Y resolution.

7. Application closes the data source.

8. During close procedure, the data source stores the current Frame, Pixel Type, Bit Depth and
Resolution.

9. Application opens data source.
4-2 TWAIN 2.3 Specification

10. During open procedure, the data source restores current Frame, Pixel Type, Bit Depth and
Resolution.

11. Application inquires during State 4 the current values of Frame, Pixel Type, Bit Depth, and
Resolution.

12. Data source reports to each inquiry the current values that were restored from previous
session: 4x6 inch image in 24-bit at 200 DPI X and Y resolution in one session.

Example 2:
Data Source represents the preferred Pixel Flavor without compromising TWAIN Defined
Default value

1. Application opens data source for the first time

2. Application inquires during State 4 about the Default Pixel Flavor

3. Data source reports that the default pixel flavor is TWPF_CHOCOLATE. (See Chapter 10,
"Capabilities".)

4. Application inquires during State 4 about the current pixel flavor.

5. Data source reports that the current pixel flavor is TWPF_VANILLA (because this device
returns data in that gender natively).

6. Application issues reset to current pixel flavor.

7. During reset operation, data source changes current value to TWPF_CHOCOLATE and prepares
to invert data during transfer to accommodate the calling application request.

There is a condition where this logic falls apart. If the data source wants to return a
TW_ENUMERATION to a MSG_GET request for a constrained capability, there is a chance that the
Default value imposed by the TWAIN Specification (Chapter 10, "Capabilities") will not exist
within the constrained set of values. In this case, the application should consider the default value
to be undefined. Common sense should dictate that the data source provide some default that is
reasonable within the currently available set of values for safety (a bad index in a
TW_ENUMERATION could be a disaster). When the default value is actually used (during
MSG_RESET) the constraints shall be lifted, and the original default value will once again exist and
be defined. (See next section on Constrained Capabilities about MSG_RESET) This is only a
problem with a TW_ENUMERATION container, since it contains an index to the default.

Current Value

The application may request to set the Current Value of a capability. If the Source’s user interface
is displayed, the Current Value should be reflected (perhaps by highlighting). If the application
sets the Current Value, it will be used for the acquire and transfer unless the user or an automatic
Source process changes it. The application can determine if changes were made by checking the
Current Value during State 6.

To determine just the capability’s Current Value, use DG_CONTROL / DAT_CAPABILITY /
MSG_GETCURRENT. To determine both the Current Value and the Available Values, use the
DG_CONTROL / DAT_CAPABILITY / MSG_GET operation. For example, you could do a MSG_GET
on ICAP_PIXELTYPE and the Source might return a TW_ENUMERATION container containing
TWPT_BW, TWPT_GRAY, and TWPT_RGB as Available Values.

To set the Current Value:

Use DG_CONTROL / DAT_CAPABILITY / MSG_SET and one of the following containers:
TWAIN 2.3 Specification 4-3

Chapter 4
• TWON_ONEVALUE: Place the desired value in TW_ONEVALUE.Item.

• TWON_ARRAY: Place only the desired items in TW_ARRAY.ItemList.

These must be a subset of the items returned by the Source from a MSG_GET operation.

It is also possible to set Current Values using the TW_ENUMERATION and TW_RANGE containers.
See the Available Values information for details.

Available Values

To limit the settings the Source can use during the acquire and transfer process, the application
may be able to restrict the Available Values. The Source should not use a value outside these
values. These restrictions should be reflected in the Source’s user interface so unavailable values
are not offered to the user.

For example, if the MSG_GET operation on ICAP_PIXELTYPE indicates the Source supports
TWPT_BW, TWPT_GRAY, and TWPT_RGB images and the application only wants black and white
images, it can request to limit the Available Values to black and white.

To limit the Available Values:

Use DG_CONTROL / DAT_CAPABILITY / MSG_SETCONSTRAINT and one of the following
containers:

• TWON_ENUMERATION: Place only the desired values in the
TW_ENUMERATION.ItemList field. The Current Value can also be set at this time by
setting the CurrentIndex to point to the desired value in the ItemList.

• TWON_RANGE: Place only the desired values in the TW_RANGE fields. The current value
can also be set by setting the CurrentValue field.

Note: TW_ONEVALUE containers cannot be used to limit the Available Values.

Capability Negotiation

The negotiation process consists of three basic parts:

1. The application determines which capabilities a Source supports

2. The application sets the supported capabilities as desired

3. The application verifies that the settings were accepted by the Source

Negotiation (Part 1)
Application Determines Which Capabilities the Source Supports

Step 1

Application allocates a TW_CAPABILITY structure and fills its fields as follows:

• Cap = the CAP_ , ICAP_ or ACAP_ name for the capability it is interested in

• ConType = TWON_DONTCARE16

• hContainer = NULL
4-4 TWAIN 2.3 Specification

Step 2

Application uses the TW_CAPABILITY structure in a DG_CONTROL / DAT_CAPABILITY /
MSG_GET operation.

Step 3

The Source examines the Cap field to see if it supports the capability. If it does, it creates
information for the application. In either case, it sets its Return Code appropriately.

Step 4

Application examines the Return Code, and maybe the Condition Code, from the operation.

If TWRC_SUCCESS then the Source does support the capability and

• The ConType field was filled by the Source with a container identifier (TWON_ARRAY,
TWON_ENUMERATION, TWON_ONEVALUE, or TWON_RANGE)

• The Source allocated a container structure of ConType and referenced the hContainer
field to this structure. It then filled the container with values describing the capability’s
Current Value, Default Value, and Available Values.

Based on the type of container and its contents (whose type is indicated by its ItemType
field), the application can read the values. The application must deallocate the container.

If TWRC_FAILURE and TWCC_CAPUNSUPPORTED

• Source does not support this capability

The application can repeat this process for every capability it wants to learn about. If the
application really only wants to get the Current Value for a capability, it can use the
MSG_GETCURRENT operation instead. In that case, the ConType will just be TWON_ONEVALUE or
TWON_ARRAY but not TWON_RANGE or TWON_ENUMERATION.

Note: The capability, CAP_SUPPORTEDCAPS, returns a list of capabilities that a Source supports.
But it doesn’t indicate whether the supported capabilities can be negotiated, If the Source
does not support the CAP_SUPPORTEDCAPS capabilities, it returns TWRC_FAILURE /
TWCC_CAPUNSUPPORTED.

Negotiation (Part 2)
The Application Sets the Supported Capability as Desired

Step 1

Application allocates a TW_CAPABILITY structure and fills its fields as follows:

• Cap = the CAP_, ICAP_, or ACAP_ name for the capability it is interested in

• ConType = TWON_ARRAY, TWON_ENUMERATION, TWON_ONEVALUE or TWON_RANGE
(Refer to Chapter 10, "Capabilities" to see each capability and what type(s) of container
may be used to set a particular capability.)

• hContainer = The application must allocate a structure of type ConType and reference
this field to it. (See the next step.)

Step 2

Application allocates a structure of type ConType and fills it. Based on values received from
the Source during the MSG_GET, it can specify the desired Current Value and Available Values
that it wants the Source to use. The application should not attempt to set the Source’s Default
Value, just put an appropriate constant in that field (ex. TWON_DONTCARE32).
TWAIN 2.3 Specification 4-5

Chapter 4
Note: The application is responsible for deallocating the container structure when the operation
is finished.

Step 3

Send the request to the Source using DG_CONTROL / DAT_CAPABILITY /
MSG_SETCONSTRAINT.

Negotiation (Part 3)
The Application MUST Verify the Result of Their Request

Step 1

Even if a Source supports a particular capability, it is not required to support the setting of
that capability. The application must examine the Return Code from the MSG_SET request to
see what took place.

If TWRC_SUCCESS then the Source set the capability as requested.

If TWRC_CHECKSTATUS then

• The Source could not use one or more of your exact values. For instance, you asked for a
value of 310 but it could only accept 100, 200, 300, or 400. Your request was within its
legitimate range so it rounded it to its closest valid setting.

Use the DG_CONTROL / DAT_CAPABILITY / MSG_GET operation to determine the current
and available settings at this time. This is the only way to determine if the Source’s choice was
acceptable to your application.

If TWRC_FAILURE / TWCC_BADVALUE then

• Either the Source is not granting your request to set or restrict the value.

• Or, your requested values were not within its range of legitimate values. It may have
attempted to set the value to its closest available value.

Use the DG_CONTROL / DAT_CAPABILITY / MSG_GET operation to determine the current
and available settings at this time. This is the only way to determine if your application can
continue without your requested values.

You can repeat the setting and verifying processes for every capability of interest to your
application. Remember, your application must deallocate all container structures.

The Most Common Capabilities

TWAIN defines over 150 capabilities. Although the number may seem overwhelming, it is easier
to handle if you recognize that some of the capabilities are more commonly used. Here are some
of these capabilities:

Basic Capabilities

Units

The ICAP_UNITS capability determines the unit of measure which will be used by the Source.
The default is inches but centimeters, pixels, etc. are allowed. This capability’s value is used
when measuring several other values in capabilities and data structures including:

ICAP_PHYSICALHEIGHT,

ICAP_PHYSICALWIDTH,

ICAP_XNATIVERESOLUTION,
4-6 TWAIN 2.3 Specification

ICAP_YNATIVERESOLUTION,

ICAP_XRESOLUTION,

ICAP_YRESOLUTION,

TW_FRAME,

TW_IMAGEINFO.XResolution,

TW_IMAGEINFO.YResolution

Sense of the Pixel

The ICAP_PIXELFLAVOR specifies how a bit of data should be interpreted when transferred
from Source to application. The default is TWPF_CHOCOLATE which means a 0 indicates black
(or the darkest color). The alternative, TWPF_VANILLA, means a 0 indicates white (or the
lightest color).

Resolution

The image resolution is reported in the TW_IMAGEINFO structure. To inquire or set the
Source’s resolution, use ICAP_XRESOLUTION and ICAP_YRESOLUTION.

Refer also to ICAP_XNATIVERESOLUTION and ICAP_YNATIVERESOLUTION.

Image Type Capabilities

Types of Pixel

The application should negotiate ICAP_PIXELTYPE and ICAP_BITDEPTH unless it can
handle all pixel types at all bit depths. The allowed pixel types are: TWPT_BW, TWPT_GRAY,
TWPT_RGB, TWPT_PALETTE, TWPT_CMY, TWPT_CMYK, TWPT_YUV, TWPT_YUVK,
TWPT_CIEXYZ, and TWPT_INFRARED.

Depth of the Pixels (in bits)

A pixel type such as TWPT_BW allows only 1 bit per pixel (either black or white). The other
pixel types may allow a variety of bits per pixel (4-bit or 8-bit gray, 24-bit or 48-bit color). Be
sure to set the ICAP_PIXELTYPE first, then set the ICAP_BITDEPTH.

Parameters for Acquiring the Image

Exposure

Several capabilities can influence this. They include ICAP_BRIGHTNESS, ICAP_CONTRAST,
ICAP_SHADOW, ICAP_HIGHLIGHT, ICAP_GAMMA, and ICAP_AUTOBRIGHT.

Scaling

To instruct a Source to scale an image before transfer, refer to ICAP_XSCALING and
ICAP_YSCALING.

Rotation

To instruct a Source to rotate the image before transfer, refer to ICAP_ROTATION and
ICAP_ORIENTATION.

Constrained Capabilities and Message Responses

There is some confusion about how the data source should respond to various capability queries
when the application has imposed constraints upon the supported values. The following
guidelines should help clarify the situation.
TWAIN 2.3 Specification 4-7

Chapter 4
MSG_RESET

It is known that this call resets the current value of the requested capability to the default. It must
also be stated that this call will also reset any application imposed constraints upon the requested
capability.

MSG_GETCURRENT, and MSG_GETDEFAULT

It is intuitive to assume that this message should not be supported by capabilities that have no
Current or Default value. However, the specification says otherwise in Chapter 10, "Capabilities"
(a good example is CAP_SUPPORTEDCAPS). In this case, it makes sense to simply respond to these
messages in the same manner as MSG_GET.

It can also be assumed that it is more intuitive for a data source to respond to this capability with a
TW_ONEVALUE container in all cases that a TW_ONEVALUE container is allowed.

MSG_GET

If an application has constrained the current capability, then the data source response to this
message should reflect those constraints. Otherwise, this should respond with all the values that
the data source supports. Of course, the number of values that can be placed in the response are
restricted by the allowed containers for the particular current capability outlined in Chapter 10,
"Capabilities".

MSG_SET (applies if either the application or the driver is TWAIN 2.1 or less)

As indicated in Chapter 7, "Operation Triplets", description of this capability triplet:

“Current Values are set when the container is a TW_ONEVALUE or TW_ARRAY. Available and
Current Values are set when the container is a TW_ENUMERATION or TW_RANGE.”

To further clarify this operation, it should be stated that when an application imposes a constraint,
the data source must consider the set of supported values and the set of requested constraints. The
resulting set of values shall contain only the values that are shared by those supported and those
requested.

A condition may arise after constraints are imposed, where the default value is no longer within
the set of supported values. When using a TW_ENUMERATION, the reported default index should
be changed by the data source to something that falls within the new constrained set. This is
simply a precaution to ensure it is a valid index. In this case, the Default index in a
TW_ENUMERATION loses meaning and should be ignored by applications, since MSG_RESET shall
cause the constraints to be eliminated.

MSG_SET (applies if both the application and the driver is TWAIN 2.2 or more)

When both the application and the driver are TWAIN 2.2 or higher MSG_SET only changes the
current value, it has no effect on the available values. This applies regardless of the container type
used. In other words, TW_ENUMERATION and TW_RANGE can be used to set the current value
using MSG_SET. In the case of TW_ENUMERATION only the ItemType, CurrentIndex and ItemList
fields are used to get the current value. In the case of TW_RANGE only the ItemType and
CurrentValue fields are used.
4-8 TWAIN 2.3 Specification

MSG_SETCONSTRAINT (applies if both the application and the driver is TWAIN 2.2 or
more)

As noted in Chapter 7, "Operation Triplets":

“Current Values are set when the container is a TW_ONEVALUE or TW_ARRAY. Available and
Current Values are set when the container is a TW_ENUMERATION or TW_RANGE.”

To further clarify this operation, it should be stated that when an application imposes a constraint,
the data source must consider the set of supported values and the set of requested constraints. The
resulting set of values shall contain only the values that are shared by those supported and those
requested.

A condition may arise after constraints are imposed, where the default value is no longer within
the set of supported values. When using a TW_ENUMERATION, the reported default index should
be changed by the data source to something that falls within the new constrained set. This is
simply a precaution to ensure it is a valid index. In this case, the Default index in a
TW_ENUMERATION loses meaning and should be ignored by applications, since MSG_RESET shall
cause the constraints to be eliminated.

Capability Containers in Code Form

Capability information is passed between application and Source by using data structures called
containers: TW_ARRAY, TW_ENUMERATION, TW_ONEVALUE, and TW_RANGE. The actions needed
to create (pack) and read (unpack) containers are illustrated here in the following code segments.
Containers are flexible in that they can be defined to contain one of many types of data. Only one
ItemType (TWTY_xxxx) is illustrated per Container (TWON_xxxx) here. Refer to the toolkit disk
for complete packing and unpacking utilities that you can use with containers.

Reading (unpacking) a Container from a MSG_GET Operation

//---

//Example of DG_CONTROL / DAT_CAPABILITY / MSG_GET

//---

TW_CAPABILITY twCapability;

TW_INT16 rc;

//Setup TW_CAPABILITY Structure

 twCapability.Cap = Cap; //Fill in capability of interest

 twCapability.ConType = TWON_DONTCARE16;

 twCapability.hContainer = NULL;

//Send the Triplet

 rc = (*pDSM_Entry)(&AppID,

 &SourceID,

 DG_CONTROL,

 DAT_CAPABILITY,

 MSG_GET,

 (TW_MEMREF)&twCapability);
TWAIN 2.3 Specification 4-9

Chapter 4
//Check return code

 if (rc == TWRC_SUCCESS)

{

//Switch on Container Type

 switch (twCapability.ConType)

 {

//-----ENUMERATION

 case TWON_ENUMERATION:

 {

 pTW_ENUMERATION pvalEnum;

 TW_UINT16 valueU16;

 TW_UINT16 index;

 pvalEnum =
(pTW_ENUMERATION)GlobalLock(twCapability.hContainer);

 NumItems = pvalEnum->NumItems;

 CurrentIndex = pvalEnum->CurrentIndex;

 DefaultIndex = pvalEnum->DefaultIndex;

 for (index = 0; index < pvalEnum->NumItems; index++)

 {

 if (pvalEnum->ItemType == TWTY_UINT16)

 {

 valueU16 = ((TW_UINT16)(pvalEnum->ItemList[index*2]));

 //Store Item Value

 }

 else if (pvalOneValue->ItemType == TWTY_BOOL)

 {

 valueBool = ((TW_BOOL*)&pvalEnum->ItemList)[index];

 //Store Item Value

 }

 }

 GlobalUnlock(twCapability.hContainer);

 }

 break;

//-----ONEVALUE

 case TWON_ONEVALUE:
4-10 TWAIN 2.3 Specification

 {

 pTW_ONEVALUE pvalOneValue;

 TW_BOOL valueBool;

 pvalOneValue =
(pTW_ONEVALUE)GlobalLock(twCapability.hContainer);

 if (pvalOneValue->ItemType == TWTY_BOOL)

 {

 valueBool = (TW_BOOL)pvalOneValue->Item;

 //Store Item Value

 }

 GlobalUnlock(twCapability.hContainer);

 }

 break;

//-----RANGE

 case TWON_RANGE:

 {

 pTW_RANGE pvalRange;

 pTW_FIX32 pTWFix32;

 float valueF32;

 TW_UINT16 index;

 pvalRange = (pTW_RANGE)GlobalLock(twCapability.hContainer);

 if ((TW_UINT16)pvalRange->ItemType == TWTY_FIX32)

 {

 pTWFix32 = &(pvalRange->MinValue);

 valueF32 = FIX32ToFloat(*pTWFix32);

 //Store Item Value

 pTWFix32 = &(pvalRange->MaxValue);

 valueF32 = FIX32ToFloat(*pTWFix32);

 //Store Item Value

 pTWFix32 = &(pvalRange->StepSize);

 valueF32 = FIX32ToFloat(*pTWFix32);

 //Store Item Value

 }

 GlobalUnlock(twCapability.hContainer);

 }

 break;
TWAIN 2.3 Specification 4-11

Chapter 4
//-----ARRAY

 case TWON_ARRAY:

 {

 pTW_ARRAY pvalArray;

 TW_UINT16 valueU16;

 TW_UINT16 index;

 pvalArray = (pTW_ARRAY)GlobalLock(twCapability.hContainer);

 for (index = 0; index < pvalArray->NumItems; index++)

 {

 if (pvalArray->ItemType == TWTY_UINT16)

 {

 valueU16 = ((TW_UINT16)(pvalArray->ItemList[index*2]));

 //Store Item Value

 }

 }

 GlobalUnlock(twCapability.hContainer);

 }

 break;

 } //End Switch Statement

 GlobalFree(twCapability.hContainer);

 } else {

 //Capability MSG_GET Failed check Condition Code

 }

/**

* Fix32ToFloat

* Convert a FIX32 value into a floating point value.

**/

float FIX32ToFloat (TW_FIX32 fix32)

{

 float floater;

 floater = (float)fix32.Whole + (float)fix32.Frac / 65536.0;
 return floater;

}

Creating (packing) a Container for a MSG_SET Operation

//---

//Example of DG_CONTROL / DAT_CAPABILITY / MSG_SET
4-12 TWAIN 2.3 Specification

//---

TW_CAPABILITY twCapability;

TW_INT16 rc;

TW_UINT32 NumberOfItems;

 twCapability.Cap = Cap; //Insert Capability of Interest

 twCapability.ConType = Container;

 //Use TWON_ONEVALUE or TWON_ARRAY to set current value

 //Use TWON_ENUMERATION or TWON_RANGE to limit available values

 switch (twCapability.ConType)

 {

//-----ENUMERATION

 case TWON_ENUMERATION:

 {

 pTW_ENUMERATION pvalEnum;

 //The number of Items in the ItemList

 NumberOfItems = 2;

 //Allocate memory for the container and additional ItemList

 // entries

 twCapability.hContainer = GlobalAlloc(GHND,
 (sizeof(TW_ENUMERATION) + sizeof(TW_UINT16) *
(NumberOfItems)));

 pvalEnum = (pTW_ENUMERATION)GlobalLock(twCapability.hContainer);

 pvalEnum->NumItems = 2 //Number of Items in ItemList

 pvalEnum->ItemType = TWTY_UINT16;

 ((TW_UINT16)(pvalEnum->ItemList[0])) = 1;

 ((TW_UINT16)(pvalEnum->ItemList[1])) = 2;

 GlobalUnlock(twCapability.hContainer);

 }

 break;

//-----ONEVALUE

 case TWON_ONEVALUE:

 {

 pTW_ONEVALUE pvalOneValue;

 twCapability.hContainer = GlobalAlloc(GHND,
sizeof(TW_ONEVALUE));
TWAIN 2.3 Specification 4-13

Chapter 4
 pvalOneValue =
(pTW_ONEVALUE)GlobalLock(twCapability.hContainer);

 (TW_UINT16)pvalOneValue->ItemType = TWTY_UINT16;

 (TW_UINT16)pvalOneValue->Item = 1;

 GlobalUnlock(twCapability.hContainer);

 }

 break;

//-----RANGE

 case TWON_RANGE:

 {

 pTW_RANGE pvalRange;

 TW_FIX32 TWFix32;

 float valueF32;

 twCapability.hContainer = GlobalAlloc(GHND, sizeof(TW_RANGE));

 pvalRange = (pTW_RANGE)GlobalLock(twCapability.hContainer);

 (TW_UINT16)pvalRange->ItemType = TWTY_FIX32;

 valueF32 = 100;

 TWFix32 = FloatToFIX32 (valueF32);

 pvalRange->MinValue = *((pTW_INT32) &TWFix32);

 valueF32 = 200;

 TWFix32 = FloatToFIX32 (valueF32);

 pvalRange->MaxValue = *((pTW_INT32) &TWFix32);

 GlobalUnlock(twCapability.hContainer);

 }

 break;

//-----ARRAY

 case TWON_ARRAY:

 {

 pTW_ARRAY pvalArray;

 //The number of Items in the ItemList

 NumberOfItems = 2;

 //Allocate memory for the container and additional ItemList
entries

 twCapability.hContainer = GlobalAlloc(GHND,
 (sizeof(TW_ARRAY) + sizeof(TW_UINT16) * (NumberOfItems)));

 pvalArray = (pTW_ARRAY)GlobalLock(twCapability.hContainer);
4-14 TWAIN 2.3 Specification

 (TW_UINT16)pvalArray->ItemType = TWTY_UINT16;

 (TW_UINT16)pvalArray->NumItems = 2;

 ((TW_UINT16)(pvalArray->ItemList[0])) = 1;

 ((TW_UINT16)(pvalArray->ItemList[1])) = 2;

 GlobalUnlock(twCapability.hContainer);

 }

 break;

 }

//-----MSG_SET

 rc = (*pDSM_Entry)(&AppID,

 &SourceID,

 DG_CONTROL,

 DAT_CAPABILITY,

 MSG_SET,

 (TW_MEMREF)&twCapability);

 GlobalFree(twCapability.hContainer);

 switch (rc)

 {

 case TWRC_SUCCESS:

 //Capability's Current or Available value was set as specified

 case TWRC_CHECKSTATUS:

 //The Source matched the specified value(s) as closely as
possible

 //Do a MSG_GET to determine the settings made

 case TWRC_FAILURE:

 //Check the Condition Code for more information

 }

/**

* FloatToFix32

* Convert a floating point value into a FIX32.

**/

TW_FIX32 FloatToFix32 (float floater)

{

 TW_FIX32 Fix32_value;

 TW_INT32 value = (TW_INT32) (floater * 65536.0 + 0.5);

 Fix32_value.Whole = value >> 16;

 Fix32_value.Frac = value & 0x0000ffffL;
TWAIN 2.3 Specification 4-15

Chapter 4
 return (Fix32_value);

}

Delayed Negotiation - Negotiating Capabilities After State 4

Applications may inquire about a Source’s capability values at any time during the session with
the Source. However, as a rule, applications can only request to set a capability during State 4.
The rationale behind this restriction is tied to the display of the Source’s user interface when the
Source is enabled. Many Sources will modify the contents of their user interface in response to
some of the application’s requested settings. These user interface modifications prevent the user
from selecting choices that do not meet the application’s requested values. The Source’s user
interface is never displayed in State 4 so changes can be made without the user’s awareness.
However, the interface may be displayed in States 5 through 7.

Some capabilities have no impact on the Source’s user interface and the application may really
want to set them later than State 4. To allow delayed negotiation, the application must request,
during State 4, that a particular capability be able to be set later (during States 5, 6 or 7). The
Source may agree to this request or deny it. The request is negotiated by the application with the
Source by using the DG_CONTROL / DAT_CAPABILITY operations on the CAP_EXTENDEDCAPS
capability.

On the CAP_EXTENDEDCAPS capability, the DG_CONTROL / DAT_CAPABILITY operations:

MSG_GET

Indicates the capabilities the Source is willing to negotiate in States 5, 6 or 7.

MSG_SET

Specifies which capabilities the application wishes to negotiate in States 5, 6 or 7. For TWAIN
2.3 or later data sources, this value will already to be set to the values allowed by the data
source, the list never starts empty.

MSG_GETCURRENT

Provides an array of the capabilities the Source allows to be negotiated in States 5, 6 and 7. For
TWAIN 2.3 or later data sources, this value will already to be set to the values allowed by the
data source, the list never starts empty.

As with any other capability, if the Source does not support negotiating CAP_EXTENDEDCAPS, it
will return the Return Code TWRC_FAILURE with the Condition Code TWCC_CAPUNSUPPORTED.

If an application attempts to set a capability in State 5, 6 or 7 and the Source has not previously
agreed to this arrangement, the operation will fail with a Return Code of TWRC_FAILURE and a
Condition Code of TWCC_SEQERROR.

If an application does not use the Source’s user interface but presents its own, the application
controls the state of the Source explicitly. If the application wants to set the value of any
capability, it returns the Source to State 4 and does so. Therefore, an application using its own
user interface will probably not need to use CAP_EXTENDEDCAPS.
4-16 TWAIN 2.3 Specification

Options for Transferring Data
As discussed previously, there are three modes defined by TWAIN for transferring data:

• Native

• Disk File

• Buffered Memory

A Source is required to support Native and Buffered Memory transfers.

Native Mode Transfer

The use of Native mode, the default mode, for transferring data was covered in Chapter 3,
"Application Implementation". There is one potential limitation that can occur in a Native mode
transfer. That is, there may not be an adequately large block of RAM available to hold the image.
This situation will not be discovered until the transfer is attempted when the application issues
the DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET operation.

When the lack of memory appears, the Source may respond in one of several ways. It can:

• Simply fail the operation.

• Clip the image to make it fit in the available RAM - The Source should notify the user that the
clipping operation is taking place due to limited RAM. The clipping should maintain both the
aspect ratio of the selected image and the origin (upper-left).

• Interact with the user to allow them to resize the image or cancel the capture.

The Return Code / Condition Code returned from the DG_IMAGE / DAT_IMAGENATIVEXFER /
MSG_GET operation may indicate one of these actions occurred.

If the Return Code is TWRC_XFERDONE:

This indicates the transfer was completed and the session is in State 7. However, it does not
guarantee that the Source did not clip the image to make it fit. Even if the application issued a
DG_IMAGE / DAT_IMAGEINFO / MSG_GET operation prior to the transfer to determine the image
size, it cannot assume that the ImageWidth and ImageLength values returned from that operation
really apply to the image that was ultimately transferred. If the dimensions of the image are
important to the application, the application should always check the actual transferred image
size after the transfer is completed. To do this:

1. Execute a DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER operation to move the
session from State 7 to State 6 (or 5).

2. Determine the actual size of the image that was transferred by reading the header of the
actual image data transferred.

See Chapter 12, "Operating System Dependencies" for more information.

If the Return Code is TWRC_CANCEL:

The acquisition was canceled by the user. The session is in State 7. Execute a DG_CONTROL /
DAT_PENDINGXFERS / MSG_ENDXFER operation to move the session from State 7 to State 6 (or 5).
TWAIN 2.3 Specification 4-17

Chapter 4
If the Return Code is TWRC_FAILURE:

Check the Condition Code to determine the cause of the failure. The session is in State 6. No
memory was allocated for the DIB or PICT. The image is still pending. If lack of memory was the
cause, you can try to free additional memory or discard the pending image by executing
DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER.

Disk File Mode Transfer

The disk file mode is identified as TWSX_FILE. Sources are not required to support Disk File
Transfer so it is important to verify its support.

Determine if a Source Supports the Disk File Mode

• Use the DG_CONTROL / DAT_CAPABILITY / MSG_GET operation.

• Set the TW_CAPABILITY’s Cap field to ICAP_XFERMECH.

• The Source returns information about the transfer modes it supports in the container structure
pointed to by the hContainer field of the TW_CAPABILITY structure. The disk file mode is
identified as TWSX_FILE.

After Verifying Disk File Transfer is Supported, Set Up the Transfer

During State 4:

• Set the ICAP_XFERMECH to TWSX_FILE. Use the DG_CONTROL / DAT_CAPABILITY /
MSG_SET operation.

• Use the DG_CONTROL / DAT_CAPABILITY / MSG_GET operation to determine which file
formats the Source can support. Set TW_CAPABILITY. Cap to ICAP_IMAGEFILEFORMAT
and execute the MSG_GET. The Source returns the supported format identifiers which
start with TWFF_ and may include TWFF_PICT, TWFF_BMP, TWFF_TIFF, etc. They are
listed in the TWAIN.H file and in the Constants section of Chapter 8, "Data Types and Data
Structures".

During States 4, 5, or 6:

To set up the transfer the DG_CONTROL / DAT_SETUPFILEXFER operation of MSG_GET,
MSG_GETDEFAULT, and MSG_SET can be used.

The data structure used in the DSM_Entry call is a TW_SETUPFILEXFER structure (for
DAT_SETUPFILEXFER):

typedef struct {
 TW_STR255 FileName; /* File to contain data */
 TW_UINT16 Format; /* A TWFF_xxxx constant */
 TW_HANDLE VrefNum; /* Used for Macintosh only */
 } TW_SETUPFILEXFER, FAR *pTW_SETUPFILEXFER;

The application could use the MSG_GETDEFAULT operation to determine the default file
format and filename (TWAIN.TMP or TWAIN.AUD in the current directory). If acceptable, the
application could just use that file. However, most applications prefer to set their own values
for filename and format. The MSG_SET operation allows this. It is done during State 6. To set
your own filename and format, do the following:

1. Allocate the required TW_SETUPFILEXFER structure. Then, fill in the appropriate fields:
4-18 TWAIN 2.3 Specification

a. FileName – the desired filename. On Windows, be sure to include the complete path
name.

b. Format – the constant for the desired, and supported, format (TWFF_xxxx). If you
set it to an unsupported format, the operation returns TWRC_FAILURE /
TWCC_BADVALUE and the Source resets itself to write data to the default file.

c. VRefNum – On Macintosh, write the file’s volume reference number. On Windows,
fill in the field with a TWON_DONTCARE16.

2. Invoke the DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET as appropriate.

Execute the Transfer into the File

After the application receives the MSG_XFERREADY notice from the Source and has issued the
DG_CONTROL / DAT_SETUPFILEXFER / MSG_GET.

Use the following operation: DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET

This operation does not have an associated data structure but just uses NULL for the pData
parameter in the DSM_Entry call.

• If the application has not specified a filename (during the setup) - the Source will use either its
default file or the last file information it was given.

• If the file specified by the application does not exist - the Source should create it.

• If the file exists but already has data in it - the Source should overwrite the existing data.
Notice, if you are transferring multiple files and using the same file name each time, you will
overwrite the data unless you copy it to a different filename between transfers.

Note: The application cannot abort a Disk File transfer once initiated. However, the Source’s
user interface may allow the user to cancel the transfer.

Following execution, be sure to check the Return Code:

TWRC_XFERDONE: File was written successfully. The application needs to invoke the
DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER to transition the session back to State 6
(or 5) as was illustrated in Chapter 3, "Application Implementation".

TWRC_CANCEL: The user canceled the transfer. The contents of the file are undefined.
Invoke DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER to transition the session back
to State 6 (or 5) as was illustrated in Chapter 3, "Application Implementation".

TWRC_FAILURE
The Source remained in State 6.
The contents of the file are undefined.
The image is still pending. To discard it, use DG_CONTROL / DAT_PENDINGXFERS /
MSG_ENDXFER.
TWAIN 2.3 Specification 4-19

Chapter 4
Check the Condition Code to determine the cause of the failures. The alternatives are:

TWCC_BADDEST = Operation aimed at invalid Source

TWCC_OPERATIONERROR = Either the file existed but could not be accessed or a system
error occurred during the writing

TWCC_SEQERROR = Operation invoked in invalid state (i.e. not 6)

Buffered Memory Mode Transfer

Set Capability Values for the Buffered Memory Mode, if Desired

Data is typically transferred in uncompressed format. However, if you are interested in knowing
if the Source can transfer compressed data when using the buffered memory mode, perform a
DG_CONTROL / DAT_CAPABILITY / MSG_GET on the ICAP_COMPRESSION. The values will
include TWCP_NONE (the default) and perhaps others such as TWCP_PACKBITS, TWCP_JPEG ,etc.
(See the list in the Constants section of Chapter 8, "Data Types and Data Structures".) More
information on compression is available later in this chapter in the section called Transfer of
Compressed Data.

Set up the Transfer

During State 4:

Set the ICAP_XFERMECH to TWSX_MEMORY by using the DG_CONTROL / DAT_CAPABILITY /
MSG_SET operation.

During States 4, 5, or 6:

The DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET operation is used by the application to
determine what buffer sizes the Source wants to use during the transfer. The Source might
have more accurate information in State 6.

The data structure used in the DSM_Entry call is a TW_SETUPMEMXFER structure:

typedef struct {

 TW_UINT32 MinBufSize /* Minimum buffer size in bytes */

 TW_UINT32 MaxBufSize /* Maximum buffer size in bytes */

 TW_UINT32 Preferred /* Preferred buffer size in bytes */

} TW_SETUPMEMXFER, FAR *pTW_SETUPMEMXFER;

The Source will fill in the appropriate values for its device.

Buffers Used for Uncompressed Strip Transfers

• The application is responsible for allocating and deallocating all memory used during the
buffered memory transfer.

• For optimal performance, create buffers of the Preferred size.

• In all cases, the size of the allocated buffers must be within the limits of MinBufSize to
MaxBufSize. If outside of these limits, the Source will fail the transfer operation with a Return
Code of TWRC_FAILURE / TWCC_BADVALUE.

• If using more than one buffer, all buffers must be the same size.

• Raster lines must be double-word aligned and padded with zeros is recommended .
4-20 TWAIN 2.3 Specification

Execute the Transfer Using Buffers

After the application receives the MSG_XFERREADY notice from the Source and has issued the
DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET operation:

• Allocate one or more buffers of the same size. The best size is the one indicated by the
TW_SETUPMEMXFER.Preferred field. If that is impossible, be certain the buffer size is between
MinBufSize and MaxBufSize.

• Allocate the TW_IMAGEMEMXFER structure. It will be used in the DG_IMAGE /
DAT_IMAGEMEMXFER / MSG_GET operation.

The TW_IMAGEMEMXFER structure looks like this:

typedef struct {

 TW_UINT16 Compression;

 TW_UINT32 BytesPerRow;

 TW_UINT32 Columns;

 TW_UINT32 Rows;

 TW_UINT32 XOffset;

 TW_UINT32 YOffset;

 TW_UINT32 BytesWritten;

 TW_MEMORY Memory;

} TW_IMAGEMEMXFER, FAR *pTW_IMAGEMEMXFER;

Fill in the TW_IMAGEMEMXFER’s first field with TWON_DONTCARE16 and the following six fields
with TWON_DONTCARE32.

The TW_MEMORY structure embedded in there looks like this:

typedef struct {

 TW_UINT32 Flags;

 TW_UINT32 Length;

 TW_MEMREF TheMem;

} TW_MEMORY, FAR *pTW_MEMORY;

Fill in the TW_MEMORY structure as follows:

Memory.Flags

Place TWMF_APPOWNS bit-wise ORed with TWMF_POINTER or TWMF_HANDLE

Memory.Length

The size of the buffer in bytes

Memory.TheMem

A handle or pointer to the memory buffer allocated above (depending on which one was
specified in the Flags field).

Following each buffer transfer, the Source will have filled in all the fields except Memory which it
uses as a reference to the memory block for the data.

The flow of the transfer of buffers is as follows:
TWAIN 2.3 Specification 4-21

Chapter 4
Step 1

Buffered Memory transfers provide no embedded header information. Therefore, the
application must determine the image attributes. After receiving the MSG_XFERREADY, i.e.
while in State 6, the application issues the DG_IMAGE / DAT_IMAGEINFO / MSG_GET and
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET operations to learn about the image’s bitmap
characteristics and the size and location of the original image on the original page (before
scaling or other processing). If additional information is desired, use the DG_CONTROL /
DAT_CAPABILITY / MSG_GET operation.

Step 2

The application issues DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET.

Step 3

The application checks the Return Code.

• If TWRC_SUCCESS:

Examine the TW_IMAGEMEMXFER structure for information about the buffer. If you plan
to reuse the buffer, copy the data to another location.

Loop back to Step 2 to get another buffer. Be sure to reinitialize the information in the
TW_IMAGEMEMXFER structure (including the Memory fields), if necessary. Issue another
DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET operation.

• If TWRC_XFERDONE:

This is how the Source indicates it just transferred the last buffer successfully. Examine
the TW_IMAGEMEMXFER structure for information about the buffer. Perhaps, copy the
data to another location, as desired, then go to Step 4.

• If TWRC_CANCEL:

The user aborted the transfer. The application must send a DG_CONTROL /
DAT_PENDINGXFERS / MSG_ENDXFER as described in Chapter 3, "Application
Implementation" to move from State 7 to State 6 (or 5).

• If TWRC_FAILURE:

Examine the Condition Code to determine the cause and handle it.
If the failure occurred during the transfer of the first buffer, the session is in State 6. If the
failure occurred on a subsequent buffer, the session is in State 7.

The contents of the buffer are invalid and the transfer of the buffer is still pending. To
abort it, use DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER.

Step 4

Once the TWRC_XFERDONE has been returned, the application must send the DG_CONTROL /
DAT_PENDINGXFERS / MSG_ENDXFER to conclude the transfer. This was described in
Chapter 3, "Application Implementation" in the section called State 7 to 6 to 5 - Conclude the
Transfer.

Note: The majority of Sources divide the image data into strips when using buffered transfers.
A strip is a horizontal band starting at the leftmost side of the image and spanning the
entire width but covering just a portion of the image length. The application can verify
that strips are being used if the information returned from the Source in the
TW_IMAGEMEMXFER structure’s XOffset field is zero and the Columns field is equal to
the value in the TW_IMAGEINFO structure’s ImageWidth field.
4-22 TWAIN 2.3 Specification

An alternative to strips is the use of tiles although they are used by very few Sources. Refer to the
TW_IMAGEMEMXFER information in Chapter 8, "Data Types and Data Structures" for an
illustration of tiles.

Buffered Memory Mode Transfer With File Format

This operation works very much like Buffered Memory Mode, but the data transferred from the
Source to the Application conforms to the image file format specified by a previous call to
DG_IMAGE / DAT_SETUPFILEXFER / MSG_GET. There is no requirement for the data to be
transferred as complete image lines or for any kind of padding, the data is assumed to be self-
contained and self-describing.

The ImageData and Its Layout
The image which is transferred from the Source to the application has several attributes. Some
attributes describe the size of the image. Some describe where the image was located on the
scanner. Still others might describe information such as resolution or number of bits per pixel.
TWAIN provides means for the application to learn about these attributes.

Users are often able to select and modify an image’s attributes through the Source’s user interface.
Additionally, TWAIN provides capabilities and operations that allow the application to impact
these attributes prior to acquisition and transfer.

Getting Information About the Image That will be Transferred

Before the transfer occurs, while in State 6, the Source can provide information to the application
about the actual image that it is about to transfer. Note, the information is lost once the transfer
takes place so the application should save it, if needed. This information can be retrieved through
two operations:

• DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET

• DG_IMAGE / DAT_IMAGEINFO / MSG_GET

The area of an image to be acquired will always be a rectangle called a frame. There may be one or
more frames located on a page. Frames can be selected by the user or designated by the
application. The TW_IMAGELAYOUT structure communicates where the image was located on the
original page relative to the origin of the scanner. It also indicates, in its FrameNumber field, if
this is the first frame, or a later frame, to be acquired from the page.

The TW_IMAGELAYOUT structure looks like this:

typedef struct {
 TW_FRAME Frame;
 TW_UINT32 DocumentNumber;
 TW_UINT32 PageNumber;
 TW_UINT32 FrameNumber;
 } TW_IMAGELAYOUT, FAR *pTW_IMAGELAYOUT;

The TW_FRAME structure specifies the values for the Left, Right, Top, and Bottom of the frame to
be acquired based on the origin of the scanner. Values are given in ICAP_UNITS.
TWAIN 2.3 Specification 4-23

Chapter 4
Figure 4-1. TW_FRAME Structure

The DG_IMAGE / DAT_IMAGEINFO / MSG_GET operation communicates other attributes of the
image being transferred. The TW_IMAGEINFO structure looks like this:

typedef struct {
 TW_FIX32 XResolution;
 TW_FIX32 YResolution;
 TW_INT32 ImageWidth;
 TW_INT32 ImageLength;
 TW_INT16 SamplesPerPixel;
 TW_INT16 BitsPerSample[8];
 TW_INT16 BitsPerPixel;
 TW_BOOL Planar;
 TW_INT16 PixelType;
 TW_UINT16 Compression;
 } TW_IMAGEINFO, FAR * pTW_IMAGEINFO;

The ImageWidth and ImageLength relate to the frame described by the TW_IMAGELAYOUT
structure after ICAP_ROTATION is taken into account.

Changing the Image Attributes

Normally, the user will select the desired attributes. However, the application may wish to do this
initially during State 4. For example, if the user interface will not be displayed, the application
may wish to select the frame. The application can use a DG_IMAGE / DAT_IMAGELAYOUT /
MSG_SET operation to define the area (frame) to be acquired. Although, there is no corresponding
DG_IMAGE / DAT_IMAGEINFO / MSG_SET operation, the application can change those attributes
by setting capabilities and the TW_IMAGELAYOUT data structure.

Here are the relationships:

TW_IMAGEINFO fields Capability or data structure that impacts the attribute

XResolution ICAP_XRESOLUTION
4-24 TWAIN 2.3 Specification

**ImageWidth and ImageLength are actually provided in pixels whereas TW_FRAME uses
ICAP_UNITS. If ICAP_ROTATION is 90 or -90 then ImageWidth and ImageLength are
exchanged.

Resolving Conflict Between ICAP_FRAMES, ICAP_SUPPORTEDSIZES, DAT_IMAGELAYOUT

Since there are several ways to negotiate the scan area, it becomes confusing when deciding what
should take precedence. It is logical to assume that the last method used to set the frame will
dictate the current frame. However, it may still be confusing to decide how that is represented
during a MSG_GET operation for any of the three methods. The following behavior is suggested.

Note: Frame extents are only limited by ICAP_PHYSICALWIDTH and ICAP_PHYSICALHEIGHT.
Setting ICAP_SUPPORTEDSIZES does NOT imply a new extent limitation. TWSS_xxxx
sizes combined with ICAP_ORIENTATION are simply predefined fixed frame sizes.

• If the frame is set in DAT_IMAGELAYOUT

• ICAP_FRAMES shall respond to MSG_GETCURRENT with the dimensions of the frame set
in the DAT_IMAGELAYOUT call.

• ICAP_SUPPORTEDSIZES shall respond to MSG_GETCURRENT with TWSS_NONE

• If the current frame is set from ICAP_FRAMES

• DAT_IMAGELAYOUT shall respond with the dimensions of the current frame set in
ICAP_FRAMES

• ICAP_SUPPORTEDSIZES shall respond to MSG_GETCURRENT with TWSS_NONE

• If the current fixed frame is set from ICAP_SUPPORTEDSIZES

• DAT_IMAGELAYOUT shall respond to MSG_GET with the dimensions of the fixed frame
specified in ICAP_SUPPORTEDSIZES combined with ICAP_ORIENTATION.

• ICAP_FRAMES shall respond to MSG_GETCURRENT with the dimensions of the fixed
frame specified in ICAP_SUPPORTEDSIZES combined with ICAP_ORIENTATION.

YResolution ICAP_YRESOLUTION

ImageWidth TW_IMAGELAYOUT.TW_FRAME.Right - TW_FRAME.Left
**

ImageLength TW_IMAGELAYOUT.TW_FRAME.Bottom - TW_FRAME.Top
**

SamplesPerPixel ICAP_PIXELTYPE (i.e. TWPT_BW has 1, TWPT_RGB has 3)

BitsPerSample Calculated by BitsPerPixel divided by SamplesPerPixel

BitsPerPixel ICAP_BITDEPTH

Planar ICAP_PLANARCHUNKY

PixelType ICAP_PIXELTYPE

Compression ICAP_COMPRESSION

TW_IMAGEINFO fields Capability or data structure that impacts the attribute
TWAIN 2.3 Specification 4-25

Chapter 4
ICAP_ROTATION, ICAP_ORIENTATION Affect on ICAP_FRAMES, DAT_IMAGELAYOUT,
DAT_IMAGEINFO

Obviously a change in orientation will have an effect on the output image dimensions, so these
must be reflected in DAT_IMAGEINFO during State 6. The resulting image dimensions shall be
reported by the data source after considering the effect of the rotation on the current frame.

ICAP_ORIENTATION shall be reflected in returned ICAP_FRAMES and DAT_IMAGELAYOUT
when set using ICAP_SUPPORTEDSIZES other than TWSS_NONE or TWSS_MAXSIZE.

ICAP_ROTATION shall only be reflected in the returned image data of DAT_IMAGEINFO.

ICAP_ORIENTATION and ICAP_ROTATION are additive. The original SupportedSize is modified
by ICAP_ORIENTATION as it is downloaded to the device by the Source, and represents the
orientation of the paper being scanned. ICAP_ROTATION is then applied to the captured image to
yield the final framing information that is reported to the Application in State 6 or 7. One possible
reason for combining these two values is to use them to cancel each other out. For instance, some
scanners with automatic document feeders may receive a performance benefit from describing an
ICAP_ORIENTATION of TWOR_LANDSCAPE in combination with an ICAP_ROTATION of 90
degrees. This would allow the user to feed images in a landscape orientation (which lets them feed
faster), while rotating the captured images back to portrait (which is the way the user wants to
view them).

Transfer of Multiple Images
Chapter 3, "Application Implementation" discussed the transfer of a single image. Transferring
multiple images simply requires looping through the single-image transfer process repeatedly
whenever more images are available. Two classes of issues arise when considering multiple
image transfer under TWAIN:

• What state transitions are allowable when a session is at an inter-image boundary?

• What facilities are available to support the operation of a document feeder? This includes
issues related to high-performance scanning.

This section starts with a review of the single-image transfer process. This is followed by a
discussion of options available to an application once the transfer of a single image is complete.
Finally, document feeder issues are presented.

To briefly review the single-image transfer process:

• The application enables the Source and the session moves from State 4 to State 5.

• The Source sends the application a MSG_XFERREADY when an image is ready for transfer.

• The application uses DG_IMAGE / DAT_IMAGEINFO / MSG_GET and DG_IMAGE /
DAT_IMAGELAYOUT / MSG_GET to get information about the image about to be transferred.

• The application initiates the transfer using a DG_CONTROL / DAT_IMAGExxxxFER / MSG_GET
operation. The transfer occurs.

• Following a successful transfer, the Source returns TWRC_XFERDONE.
4-26 TWAIN 2.3 Specification

• The application sends the DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER operation to
acknowledge the end of the transfer and learn the number of pending transfers.

If the intent behind transferring a single image is to simply flush it from the Source (for example,
an application may want to scan only every other page from a stack placed in a scanner with a
document feeder), the following operation suffices:

• Issue a CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER operation. As with normal
image transfer, this operation tells the Source that the application has completed acquisition of
the current image, and the Source responds by reporting the number of pending transfers.

Preparing for Multiple Image Transfer

The DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER operation issued by the application at
the end of every image transfer performs two important functions:

• It returns a count of pending transfers (in TW_PENDINGXFERS.Count)

• It transitions the session to State 6 (Transfer Ready) if the count of pending transfers is
nonzero, or to State 5 (Source Enabled) if the count is zero. Recall that the count returned is a
positive value if the Source knows the number of images available for acquisition. If the
Source does not know the number of images available, the count returned is -1. The latter
situation can occur if, for example, a document feeder is in use. Note that not knowing the
number of images available includes the possibility that no further images are available; see
the description of DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER for more on this.

We have just seen that after the MSG_ENDXFER operation is issued following an image transfer,
the session is either in State 6 or State 5; that is, the session is still very much in an active state. If
the session is in State 6 (i.e. “an image is available”), the application takes one of two actions so as
to eventually transition the session to State 5 (i.e. “Source is ready to acquire an image, though
none is available”):

• It continues to perform the single-image transfer process outlined earlier until no more images
are available, or

• It issues a DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET to flush all pending transfers
from the Source.

Once the session is back in State 5, the application has to decide whether to stay in State 5 or
transition down to State 4 (“Source is open, and ready for capability negotiation”.) Two scenarios
are possible here.

In one scenario, the application lets the Source control further state transitions. If the Source sends
it a MSG_XFERREADY, the application restarts the multiple image transfer loop described above. If
the Source sends it a MSG_CLOSEDSREQ (e.g. because the user activated the “Done” trigger on the
UI displayed by the Source), the application sends back a DG_CONTROL / DAT_USERINTERFACE
/ MSG_DISABLEDS, thereby putting the session in State 4.

In the other scenario, the application directly controls session state transitions. For example, the
application may want to shut down the current session as soon as the current batch of images
have been transferred. In this case, the application issues a DG_CONTROL /
DAT_USERINTERFACE / MSG_DISABLEDS as soon as the pending transfers count reaches zero.

It should be noted that there is no “right”, “wrong” or “preferred” scenario for an application to
follow when deciding what to do once all images in the current set have been transferred. If an
TWAIN 2.3 Specification 4-27

Chapter 4
application wants to let the user control the termination of a session explicitly, it may well wait for
the Source to send it a MSG_CLOSEDSREQ. On the other hand, the application may have a strong
sense of what constitutes a session; for example, it may want to terminate a scan session as soon as
a blank page is transferred. In such a case, the application will want to control the condition under
which the MSG_DISABLEDS is sent.

Use of a Document Feeder

The term document feeder can refer to a physical device’s automatic document feeder, such as
might be available with a scanner, or to the logical feeding ability of an image database. Both
input mechanisms apply although the following text uses the physical feeder for its discussion.
The topics covered in this section are:

• Controlling whether to scan pages from the document feeder or the platen

• Detecting whether or not paper is ready for scanning

• Controlling scan lookahead

Note that these concepts are applicable to scanners that do not have feeders; see the discussion
below for details.

Selecting the Document Feeder

Sometimes the use of a document feeder actually alters how the image is acquired. For instance, a
scanner may move its light bar over a piece of paper if the paper is placed on a platen. When a
document feeder is used, however, the same scanner might hold the light bar stable and scan the
moving paper. To prepare for such variations the application and Source can explicitly agree to
use the document feeder. The negotiation for this action must occur during State 4 before the
Source is enabled using the following capability.

CAP_FEEDERENABLED

Determine if a Source has a document feeder available and, if so, select that option.

• To determine if this capability is supported, use a DG_CONTROL / DAT_CAPABILITY /
MSG_GET operation. TWRC_FAILURE / TWCC_CAPUNSUPPORTED indicates this Source
does not have the ability to select the document feeder.

• If supported, use the DG_CONTROL / DAT_CAPABILITY / MSG_SET operation during
State 4.

• Set TW_CAPABILITY.Cap to CAP_FEEDERENABLED.

• Create a container of type TW_ONEVALUE and set it to TRUE. Reference
TW_CAPABILITY.hContainer to the container.

• Execute the MSG_SET operation and check the Return Code.

If TWRC_SUCCESS then the feeder is available and your request to use it was accepted. The
application can now set other document feeder capabilities.

If TWRC_FAILURE and TWCC_CAPUNSUPPORTED, TWCC_CAPBADOPERATION, or
TWCC_BADVALUE then this Source does not have a document feeder capability or does not allow it
to be selected explicitly.

Note: If an application wanted to prevent the user from using a feeder, the application should
use a MSG_SET operation to set the CAP_FEEDERENABLED capability to FALSE.
4-28 TWAIN 2.3 Specification

Detecting Whether an Image is Ready for Acquisition

Having an image ready for acquisition in the Source device is independent of having a selectable
document feeder. There are three possibilities here:

• The Source cannot tell whether an image is available,

• An image is available for acquisition, or

• No image is available for acquisition

These cases can be detected by first determining whether a Source can tell that image data is
available for acquisition (case 1. vs. cases 2. and 3.) and then determining whether image data is
available (case 2. vs. case 3.)The capabilities used to do so are as follows:

CAP_PAPERDETECTABLE

First, determine if the Source can tell that documents are loaded.

• To check if a Source can detect documents, use the DG_CONTROL / DAT_CAPABILITY /
MSG_GET operation.

• Set the TW_CAPABILITY.Cap field to CAP_PAPERDETECTABLE.

• The Source returns TWRC_SUCCESS with the hContainer structure’s value set to TRUE if
it can detect a loaded document that is ready for acquisition. If the result code is
TWRC_FAILURE with TWCC_CAPUNSUPPORTED or TWCC_BADVALUE, then the Source
cannot detect that paper is loaded.

Note: CAP_PAPERDETECTABLE can be used independently of CAP_FEEDERENABLED. Also, an
automatic document feeder need not be present for a Source to support this capability;
e.g. a scanner that can detect paper on its platen should return TRUE.

The application cannot set this capability. The Source is simply reporting on a condition.

CAP_FEEDERLOADED

Next, determine if there are documents loaded in the feeder.

• To check if pages are present, use the DG_CONTROL / DAT_CAPABILITY / MSG_GET
operation.

• Set the TW_CAPABILITY.Cap field to CAP_FEEDERLOADED.

• The Source returns TRUE if there are documents loaded. The information is in the
container structure pointed to by the hContainer field of the TW_CAPABILITY structure.

Note: Neither CAP_FEEDERENABLED nor CAP_PAPERDETECTABLE need be TRUE to use this
capability. A FALSE indication from this capability simply indicates that the feeder is not
loaded or that the Source’s feeder cannot tell. For a definitive answer, be sure to check
CAP_PAPERDETECTABLE.

Controlling Scan Lookahead

With low-end scanners there is usually ample time for the CPU handling the image acquisition to
process incoming image data on-the-fly or in the scan delay between pages. However, with
higher performance scanners the CPU image processing time for a given page can become a
significant fraction of the scan time. This problem can be alleviated if the scanner can scan ahead
TWAIN 2.3 Specification 4-29

Chapter 4
image data that the CPU has yet to acquire. This data can be buffered in scanner-local memory, or
stored in main memory by the Source via a DMA operation while the CPU processes the current
image.

Scan look-ahead is not always desirable, however. This is because the decision to continue a scan
may be determined by the results of previously scanned images. For example, a scanning
application may decide to stop a scan whenever it sees a blank page. If scan look-ahead were
always enabled, one or more pages past the blank page may be scanned and transferred to the
scanner’s output bin. Such behavior may be incorrect from the point of view of the application’s
design.

We have argued that the ability to control scan look-ahead is highly desirable. However, a single
“enable scan look-ahead” command is insufficient to capture the richness of function provided by
some scanners. In particular, TWAIN’s model of document feeding has each image (e.g., sheet of
paper) transition through a three stage process.

1. Image is in input bin. This action is taken by the user (for example, by placing a stack of
paper into an auto-feeder.)

2. Image is ready for scan. This action causes the next available image to be placed at the
start of the scan area. Set the CAP_AUTOFEED capability(described below)to automatically
feed images to the start of the scan area.

3. Image is scanned. This action actually causes the image to be scanned. For example, the
DG_IMAGE/DAT_IMAGEMEMXFER/MSG_GET operation initiates image transfer to an
application via buffered memory. TWAIN allows a Source to pre-fetch images into
Source-local memory (even before the application requests them) by setting the
CAP_AUTOSCAN capability.

CAP_AUTOFEED

Enable the Source’s automatic document feeding process.

• Use DG_CONTROL / DAT_CAPABILITY / MSG_SET.

• Set the TW_CAPABILITY.Cap field to CAP_AUTOFEED and set the capability to TRUE.

• When set to TRUE, the behavior of the Source is to eject one page and feed the next page
after all frames on the first page are acquired. This automatic feeding process will
continue whenever there is image data ready for acquisition (and the Source is in an
enabled state). CAP_FEEDERLOADED is TRUE showing that pages are in the document
feeder.

Note: CAP_FEEDERENABLED must be set to TRUE to use this capability. If not, the Source
should return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

CAP_AUTOSCAN

Enable the Source’s automatic document scanning process.

• Use DG_CONTROL / DAT_CAPABILITY / MSG_SET.

• Set the TW_CAPABILITY.Cap field to CAP_AUTOSCAN and set the capability to TRUE.

• When set to TRUE, the behavior of the Source is to eject one page and scan the next page
after all frames on the first page are acquired. This automatic scanning process will
4-30 TWAIN 2.3 Specification

continue whenever there is image data ready for acquisition (and the Source is in an
enabled state.

Note: Setting CAP_AUTOSCAN to TRUE implicitly sets CAP_AUTOFEED to TRUE also.

When your application uses automatic document feeding:

• Set CAP_XFERCOUNT to -1 indicating your application can accept multiple images.

• Expect the Source to return the TW_PENDINGXFERS.Count as -1. It indicates the Source
has more images to transfer but it is not sure how many.

• Using automatic document feeding does not change the process of transferring multiple
documents described earlier and in Chapter 3, "Application Implementation".

Control of the Document Feeding by the Application

In addition to automatic document feeding, TWAIN provides an option for an application to
manually control the feeding of documents. This is only possible if the Source agrees to negotiate
the following capabilities during States 5, 6 and 7, as indicated by CAP_EXTENDEDCAPS. If
CAP_AUTOFEED is set to TRUE, it can impact the way the Source responds to the following
capabilities as indicated below.

CAP_FEEDPAGE

• If the application sets this capability to TRUE, the Source will eject the current page (if any)
and feed the next page.

• To work as described requires that CAP_FEEDERENABLED and CAP_FEEDERLOADED be
TRUE.

• If CAP_AUTOFEED is TRUE, the action is the still the same.

• The page ejected corresponds to the image that the application is acquiring (or is about to
acquire). Therefore, if CAP_AUTOSCAN is TRUE and one or more pages have been scanned
speculatively, the page ejected may correspond to a page that has already been scanned
into Source-local buffers.

CAP_CLEARPAGE

• If the application sets this capability to TRUE, the Source will eject the current page and
leave the feeder acquire area empty (that is, with no image ready to acquire).

• To work as described, this requires that CAP_FEEDERENABLED be TRUE and there be a
paper in the feeder acquire area to begin with.

• If CAP_AUTOFEED is TRUE, the next page will advance to the acquire area.

• If CAP_AUTOSCAN is TRUE, setting this capability returns TWRC_FAILURE with
TWCC_BADVALUE.

CAP_REWINDPAGE

• If the application sets this capability to TRUE, the Source will return the current page to
the input area and return the last page from the output area into the acquisition area.

• To work as described requires that CAP_FEEDERENABLED be TRUE.

• If CAP_AUTOFEED is TRUE, the normal automatic feeding will continue after all frames of
this page are acquired.
TWAIN 2.3 Specification 4-31

Chapter 4
• The page rewound corresponds to the image that the application is acquiring. Therefore,
if CAP_AUTOSCAN is TRUE and one or more pages have been scanned speculatively, the
page rewound may correspond to a page that has already been scanned into Source-local
buffers.

Transfer of Compressed Data
When using the Buffered Memory mode for transferring images, some Sources may support the
transfer of data in a compressed format.

To determine if a Source supports transfer of compressed data and to set the capability

1. Use the DG_CONTROL / DAT_CAPABILITY / MSG_GET operation.

2. Set the TW_CAPABILITY.Cap field to ICAP_COMPRESSION.

3. The Source returns information about the compression schemes they support in the
container structure pointed to by the hContainer field of TW_CAPABILITY. The
identifiers for the compression alternatives all begin with TWCP_, such as
TWCP_PACKBITS, and can be seen in the Constants section of Chapter 8, "Data Types and
Data Structures" and in the TWAIN.H file.

4. If you wish to negotiate for the transfer to use one of the compression schemes shown, use
the DG_CONTROL / DAT_CAPABILITY / MSG_SET operation.

The TW_IMAGEMEMXFER structure is used with the DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET
operation. The structure looks like this:

typedef struct {

 TW_UINT16 Compression; /* A TWCP_xxxx constant */

 TW_UINT32 BytesPerRow;

 TW_UINT32 Columns;

 TW_UINT32 Rows;

 TW_UINT32 XOffset;

 TW_UINT32 YOffset;

 TW_UINT32 BytesWritten;

 TW_MEMORY Memory;

} TW_IMAGEMEMXFER, FAR *pTW_IMAGEMEMXFER;

When compressed strips of data are transferred:

• The BytesPerRow field will be set to 0. The Columns, Rows, XOffset, and YOffset fields
will contain TWON_DONTCARE32 indicating the fields hold invalid values. (The original image
height and width are available by using the DG_IMAGE / DAT_IMAGEINFO / MSG_GET
operation during State 6 prior to the transfer.)

• Transfer buffers are always completely filled by the Source. For compressed data, it is very
likely that at least one partial line will be written into the buffer.

• The application is responsible for deallocating the buffers.
4-32 TWAIN 2.3 Specification

When compressed, tiled data are transferred:

• All fields in the structure contain valid data. BytesPerRow, Columns, Rows, XOffset, and
YOffset all describe the uncompressed tile. Compression and BytesWritten describe
the compressed tile.

• In this case, unlike with compressed, strip data transfer, the Source allocates the transfer
buffers. This allows the Source to create buffers of differing sizes so that complete,
compressed tiles can be transferred to the application intact (not split between sequential
buffers). Under these conditions, the application should set the fields of the TW_MEMORY
structure so Flags is TWMF_DSOWNS, Length is TWON_DONTCARE32 and TheMem is NULL. The
Source must assume that the application will keep the previous buffer rather than releasing it.
Therefore, the Source must allocate a new buffer for each transfer.

• The application is responsible for deallocating the buffers.

• Finally, the application cannot assume that the tiles will be transferred in any particular,
logical order.

JPEG Compression

TWAIN supports transfer of several forms of compressed data. JPEG compression is one of them.
The JPEG compression algorithm provides compression ratios in the range of 10:1 to 25:1 for
grayscale and full-color images, often without causing visible loss of image quality. This
compression, which is created by the application of a series of “perceptual” filters, is achieved in
three stages:

Color Space Transformation and Component Subsampling
(Color Images Only, Not for Grayscale)

The human eye is far more sensitive to light intensity (luminance) than it is to light frequency
(chrominance, or “color”) since it has, on average, 100 million detectors for brightness (the “rods”)
but only about 6 million detectors for color (the “cones”). Substantial image compression can be
achieved simply by converting a color image into a more efficient luminance/chrominance color
space and then subsampling the chrominance components.

This conversion is provided for by the TW_JPEGCOMPRESSION structure. By specifying the
TW_JPEGCOMPRESSION.ColorSpace = TWPT_YUV, Source RGB data is converted into more
space-efficient YUV data (better known as CCIR 601-1 or YCbCr).
TW_JPEGCOMPRESSION.SubSampling specifies the ratio of luminance to chrominance samples
in the resulting YUV data stream, and a typical choice calls for two luminance samples for every
chrominance sample. This type of subsampling is specified by entering 0x21102110 into the
TW_JPEGCOMPRESSION.SubSampling field. A larger ratio of four luminance samples for every
chrominance sample is represented by 0x41104110. To sample two luminance values for every
chrominance sample in both the horizontal and vertical axes, use a value of 0x21102110.

Application of the Discrete Cosine Transform (DCT) and Quantization

The original components (with or without color space conversion) are next mathematically
converted into a spatial frequency representation using the DCT and then filtered with
quantization matrices (each frequency component is divided by its corresponding member in a
quantization matrix). The quantization matrices are specified by
TW_JPEGCOMPRESSION.QuantTable[] and up to four quantization matrices may be defined for
up to four different original components. TW_JPEGCOMPRESSION.QuantMap[] maps the
particular original component to its respective quantization matrix.
TWAIN 2.3 Specification 4-33

Chapter 4
Note: Suggested defaults for the quantization map and tables are in Section K of the JPEG Draft
International Standard, version 10918-1. These defaults are used in the tables for
QuantTable, HuffmanDC, and HuffmanAC by TWAIN. The default tables are selected by
putting NULL into each of the TW_JPEGCOMPRESSION.QuantTable[] entries.

Huffman encoding

The resulting coefficients from the DCT and quantization steps are further compressed in one final
stage using a loss-less compression algorithm called Huffman encoding. Application developers
can provide Huffman tables, though typically the default tables—selected by writing NULL into
TW_JPEGCOMPRESSION.HuffmanDC[] and TW_JPEGCOMPRESSION.HuffmanAC[]— yield
very good results.

The algorithm optionally supports the use of restart marker codes. The purpose of these markers
is to allow random access to strips of compressed data in a JPEG data stream. They are more fully
described in the JPEG specification.

See Chapter 8, "Data Types and Data Structures" for the definition of the TW_JPEGCOMPRESSION
data structure. Example data structures are shown below for RGB image compression and
grayscale image compression:

/* RGB image compression - YUV conversion and 2:1:1 chrominance */
/* subsampling */
typedef struct TW_JPEGCOMPRESSION myJPEG;
myJPEG.ColorSpace = TWPT_YUV; // convert RGB to YUV
myJPEG.SubSampling = 0x21102110; // 2 Y for each U, V
myJPEG.NumComponents = 3; // Y, U, V
myJPEG.RestartFrequency = 0; // No restart markers
myJPEG.QuantMap[0] = 0; // Y component uses table0
myJPEG.QuantMap[1] = 1; // U component uses table 1
myJPEG.QuantMap[2] = 1; // V component uses table 1
myJPEG.QuantTable[0] = NULL; // select defaults for quant
 // tables
myJPEG.QuantTable[1] = NULL; //
myJPEG.QuantTable[2] = NULL; //
myJPEG.HuffmanMap[0] = 0; // Y component uses DC & AC
 // table 0
myJPEG.HuffmanMap[1] = 1; // U component uses DC & AC
 // table 1
myJPEG.HuffmanMap[2] = 1; // V component uses DC & AC
 // table 1
myJPEG.HuffmanDC[0] = NULL; // select default for Huffman
 // tables
myJPEG.HuffmanDC[1] = NULL; //
myJPEG.HuffmanAC[0] = NULL; //
myJPEG.HuffmanAC[1] = NULL; //
/* Grayscale image compression - no color space conversion or */
/* subsampling */
typedef struct TW_JPEGCOMPRESSION myJPEG;
myJPEG.ColorSpace = TWPT_GRAY; // Grayscale data
myJPEG.SubSampling = 0x10001000; // no chrominance components
myJPEG.NumComponents = 1; // Grayscale
myJPEG.RestartFrequency = 0; // No restart markers
4-34 TWAIN 2.3 Specification

myJPEG.QuantMap[0] = 0; // select default for quant
 // map
myJPEG.QuantTable[0] = NULL; //
myJPEG.HuffmanMap[0] = 0; // select default for Huffman
 // tables
myJPEG.HuffmanDC[0] = NULL; //
myJPEG.HuffmanAC[0] = NULL; //

The resulting compressed images from these examples will be compatible with the JPEG File
Interchange Format (JFIF version 1.1) and will therefore be usable by a variety of applications that
are JFIF-aware.

Alternative User Interfaces
Alternatives to Using the Source Manager’s Select Source Dialog

TWAIN ships its Source Manager code to act as the communication vehicle between application
and Source. One of the services the Source Manager provides is locating all available Sources that
meet the application’s requirements and presenting those to the user for selection.

It is recommended that the application use this approach. However, the application is not
required to use this service. Two alternatives exist:

• The application can develop and present its own custom selection interface to the user. This is
presented in response to the user choosing Select Source... from its menu.

• Or, if the application is dedicated to control of a specific Source, the application can
transparently select the Source. In this case, the application does not functionally need to have
a Select Source... option in the menu but a grayed-out one should be displayed for consistency
with all other TWAIN-compliant applications.

Displaying a custom selection interface:

1. Use the DG_CONTROL / DAT_IDENTITY / MSG_GETFIRST operation to have the Source
Manager locate the first Source available. The name of the Source is contained in the
TW_IDENTITY.ProductName field. Save the TW_IDENTITY structure.

2. Use the DG_CONTROL / DAT_IDENTITY / MSG_GETNEXT to have the Source Manager
locate the next Source. Repeatedly use this operation until it returns TWRC_ENDOFLIST
indicating no more Sources are available. Save the TW_IDENTITY structure.

3. Use the ProductName information to display the choices to the user. Once they have
made their selection, use the saved TW_IDENTITY structure and the DG_CONTROL /
DAT_IDENTITY / MSG_OPENDS operation to have the Source Manager open the desired
Source. (Note, using this approach, as opposed to the MSG_USERSELECT operation, the
Source Manager does not update the system default Source information to reflect your
choice.)

4. Use the DG_CONTROL / DAT_IDENTITY / MSG_SET to set the system default source.
TWAIN 2.3 Specification 4-35

Chapter 4
Transparently selecting a Source:

If the application wants to open the system default Source , use the DG_CONTROL /
DAT_IDENTITY / MSG_GETDEFAULT operation to have the Source Manager locate the default
Source and fill the TW_IDENTITY structure with information about it. The name of the Source
is contained in the TW_IDENTITY.ProductName field. Save the TW_IDENTITY structure.

OR

If you know the ProductName of the Source you wish to use and it is not the system default
Source, use the DG_CONTROL / DAT_IDENTITY / MSG_GETFIRST and DG_CONTROL /
DAT_IDENTITY / MSG_GETNEXT operations to have the Source Manager locate each Source.
You must continue looking at Sources until you verify that the desired Source is available.
Save the TW_IDENTITY structure when you locate the Source you want. If the Return Code
TWRC_ENDOFLIST appears before the desired Source is located, it is not available.

Use the saved TW_IDENTITY structure and the DG_CONTROL / DAT_IDENTITY /
MSG_OPENDS operation to have the Source Manager open the desired Source. (Note, using
this approach, rather than MSG_USERSELECT, the Source Manager does not update the
system default Source information to reflect your choice.)

Alternatives to Using the Source’s User Interface

Just as with the Source Manager’s Select Source dialog, the application may ask to not use the
Source’s user interface. Certain types of applications may not want to have the Source’s user
interface displayed. An example of this can be seen in some text recognition packages that wish to
negotiate a few capabilities (i.e. pixel type, resolution, page size) and then proceed directly to
acquiring and transferring the data.

Some Sources may display the UI even when ShowUI is set to FALSE. An application can
determine whether ShowUI can be set by interrogating the CAP_UICONTROLLABLE capability. If
CAP_UICONTROLLABLE returns FALSE but the ShowUI input value is set to FALSE in an
activation of DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS, the enable DS
operation returns TWRC_CHECKSTATUS but displays the UI regardless. Therefore, an application
that requires that the UI be disabled should interrogate CAP_UICONTROLLABLE before issuing
MSG_ENABLEDS.

To enable the Source without displaying its user interface:

• Use the DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS operation.

• Set the ShowUI field of the TW_USERINTERFACE structure to FALSE.

• When the command is received and accepted (TWRC_SUCCESS), the Source does not display a
user interface but is armed to begin capturing data. For example, in a flatbed scanner, the
light bar will light and begin to move. A handheld scanner will be armed and ready to
acquire data when the “go” button is pressed on the scanner. Other devices may respond
differently but they all will either begin acquisition immediately or be armed to begin
acquiring data as soon as the user interacts with the device.

Capability negotiation is essential when the Source’s user interface is not displayed:

• Since the Source’s user interface is not displayed, the Source will not be giving the user the
opportunity to select the information to be acquired, etc. Unless default values are acceptable,
current values for all image acquisition and control parameters must be negotiated before the
Source is enabled, i.e. while the session is in State 4.
4-36 TWAIN 2.3 Specification

When TW_USERINTERFACE.ShowUI is set to FALSE:

• A Source that does not support ShowUI set to FALSE will return TWRC_CHECKSTATUS and
display the UI regardless.

• The application is still required to pass all events to the Source (via the DG_CONTROL /
DAT_EVENT / MSG_PROCESSEVENT operation) while the Source is enabled.

• The Source must display the minimum possible user interface containing only those controls
required to make the device useful in context. In general, this means that no user interface is
displayed, however certain devices may still require a trigger to initiate the scan.

• If the Source user interface is not displayed, and the Application sets CAP_INDICATORS to
TRUE, then the Source displays a progress indicator during acquisition and transfer, and an
error can result in the Source showing a dialog to the user.

• If the Source user interface is not displayed, and the Application sets CAP_INDICATORS to
FALSE, then the Source is not allowed to display any kind of user interface, progress indicator
or error dialog. All UI activity must be suppressed.

• If the Source user interface is displayed then the Source will ignore the setting for
CAP_INDICATORS. A progress indicator is displayed during acquisition and transfer, and
errors can result in the Source showing a dialog to the user.

• The Source still sends the application a MSG_XFERREADY notice when the data is ready to be
transferred.

• The Source may or may not send a MSG_CLOSEDSREQ to the application asking to be closed
since this is often user-initiated. Therefore, after the Source has returned to State 5 (following
the DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER operation and the
TW_PENDINGXFERS.Count = 0), the application can send the DG_CONTROL /
DAT_USERINTERFACE / MSG_DISABLEDS operation.

Modal Versus Modeless User Interfaces

The Source Manager’s user interface is a modal interface but the Source may provide a modeless
or modal interface. Here are the differences:

Modeless

When a Source uses a modeless user interface, although the Source’s interface is displayed,
the user is still able to access the application by clicking on the application’s window and
making it active.

The user is expected to click on a Close button on the Source’s user interface when they are
ready for that display to go away. The application must NOT automatically close a modeless
Source after the first (or any subsequent) transfer, even if the application is only interested in
receiving a single transfer. If the application closes the Source before the user requests it, the
user is likely to become confused about why the window disappeared. Wait until the user
indicates the desire to close the Source’s window and the Source sends this request
(MSG_CLOSEDSREQ) to the application before closing the Source.

Modal

A Source using a modal user interface prevents the user from accessing other windows.

For Windows only, if the interface is application modal, the user cannot access other
applications but can still access system utilities. If the interface is system modal (which is
rare), the user cannot access anything else at an application or system level. A system modal
TWAIN 2.3 Specification 4-37

Chapter 4
dialog might be used to display a serious error message, like a UAE (Unrecoverable
Application Error).

If using a modal interface, the Source can perform only one acquire during a session although
there may be multiple frames per acquisition. The Source will send a close request to the
application following the completion of the data transfer. Again, the application waits to
receive this request.

The Source indicates if it is using a modeless or modal interface after the application enables it
using the DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS operation. The data structure
used in the operation (TW_USERINTERFACE) contains a field, ShowUI, which is set by the
application to indicate whether the Source should display its user interface. If the application
requests the user interface be shown, it may also set the ModalUI field to indicate if it wishes the
Source’s GUI to run modal (TRUE) or modeless (FALSE).

When requested by the Source, the application uses the DG_CONTROL / DAT_USERINTERFACE /
MSG_DISABLEDS operation to remove the Source’s user interface.

Grayscale and Color Information for an Image
There are operation triplets in TWAIN that allow the application developer to interact with and
influence the grayscale or color aspect of the images that a Source transfers to the application. The
following operations provide these abilities:

• CIE Color Descriptors

DG_IMAGE / DAT_CIECOLOR / MSG_GET

• Grayscale Changes

DG_IMAGE / DAT_GRAYRESPONSE / MSG_RESET

DG_IMAGE / DAT_GRAYRESPONSE / MSG_SET

• Palette Color Data

DG_IMAGE / DAT_PALETTE8 / MSG_GET

DG_IMAGE / DAT_PALETTE8 / MSG_GETDEFAULT

DG_IMAGE / DAT_PALETTE8 / MSG_RESET

DG_IMAGE / DAT_PALETTE8 / MSG_SET

• RGB Response Curve Data

DG_IMAGE / DAT_RGBRESPONSE / MSG_RESET

DG_IMAGE / DAT_RGBRESPONSE / MSG_RESET

CIE Color Descriptors

The CIE XYZ approach is a method for storing color data which simplifies doing mathematical
manipulations on the data. Go to http://www.cie.co.at/ for more information about CIE XYZ
Color Space.

If your application wishes to receive the image data in this format:
4-38 TWAIN 2.3 Specification

1. You must ensure that the Source is able to provide data in CIE XYZ format. To check this, use
the DG_CONTROL / DAT_CAPABILITY / MSG_GET operation and get information on the
ICAP_PIXELTYPE. If TWPT_CIEXYZ is returned as one of the supported types, the Source
can provide data in CIE XYZ format.

2. After verifying that the Source supports it, the application can specify that data transfers
should use the CIE XYZ format by invoking a DG_CONTROL / DAT_CAPABILITY / MSG_SET
operation on the ICAP_PIXELTYPE. Use a TW_ONEVALUE container whose value is
TWPT_CIEXYZ.

To determine the parameters that were used by the Source in converting the color data into the
CIE XYZ format, use the DG_IMAGE / DAT_CIECOLOR / MSG_GET operation following the
transfer of the image.

Grayscale Changes

(The grayscale operations assume that the application has instructed the Source to provide
grayscale data by setting its ICAP_PIXELTYPE to TWPT_GRAY and the Source is capable of this.)

The application can request that the Source apply a transfer curve to its grayscale data prior to
transferring the data to the application. To do this, the application uses the DG_IMAGE /
DAT_GRAYRESPONSE / MSG_SET operation. The desired transfer curve information is placed by
the application within the TW_GRAYRESPONSE structure (the actual array is of type
TW_ELEMENT8). The application must be certain to check the Return Code following this request.
If the Return Code is TWRC_FAILURE and the Condition Code shows TWCC_BADPROTOCOL, this
indicates the Source does not support grayscale response curves (despite supporting grayscale
data).

If the Source allows the application to set the grayscale transfer curve, there must be a way to reset
the curve to its original non-altered value. Therefore, the Source must have an “identity response
curve” which does not alter grayscale data but transfers it exactly as acquired. When the
application sends the DG_IMAGE / DAT_GRAYRESPONSE / MSG_RESET operation, the Source
resets the grayscale response curve to its identity response curve.

Palette Color Data

(The palette8 operations assume that the application has instructed the Source to use the
TWPT_PALETTE type for its ICAP_PIXELTYPE and that the Source has accepted this.)

The DAT_PALETTE8 operations allow the application to inquire about a Source’s support for
palette color data and to set up a palette color transfer. The operations are specialized for 8-bit
data, whether grayscale or color (8-bit or 24-bit). The MSG_GET operation allows the application to
learn what palette was used by the Source during the image acquisition. The application should
always execute this operation immediately after an image transfer rather than before because the
Source may optimize the palette during the acquisition process. Some Sources may allow an
application to define the palette to be used during image acquisition via the MSG_SET operation.
Be sure to check the Return Code to verify that it is TWRC_SUCCESS following a MSG_SET
operation. That is the only way to be certain that your requested palette will actually be used
during subsequent palette transfers.
TWAIN 2.3 Specification 4-39

Chapter 4
RGB Response Curve Data

(The RGB Response curve operations assume that the application has instructed the Source to
provide RGB data by setting its ICAP_PIXELTYPE to TWPT_RGB and the Source is capable of
this.)

The application can request that the Source apply a transfer curve to its RGB data prior to
transferring the data to the application. To do this, the application uses the DG_IMAGE /
DAT_RGBRESPONSE / MSG_SET operation. The desired transfer curve information is placed by
the application within the TW_RGBRESPONSE structure (the actual array is of type TW_ELEMENT8).
The application must be certain to check the Return Code following this request. If the Return
Code is TWRC_FAILURE and the Condition Code shows TWCC_BADPROTOCOL, this indicates the
Source does not support RGB response curves (despite supporting RGB data).

If the Source allows the application to set the RGB response curve, there must be a way to reset the
curve to its original non-altered value. Therefore, the Source must have an “identity response
curve” which does not alter RGB data but transfers it exactly as acquired. When the application
sends the DG_IMAGE / DAT_RGBRESPONSE / MSG_RESET operation, the Source resets the RGB
response curve to its identity response curve.
4-40 TWAIN 2.3 Specification

5
Source Implementation

Chapter Contents

The Structure of a Source . 5-1

Operation Triplets . 5-2

Sources and the Event Loop. 5-3

User Interface Guidelines . 5-4

Capability Negotiation . 5-6

Data Transfers . 5-8

Error Handling. 5-11

Memory Management. 5-12

Requirements for a Source to be TWAIN-Compliant . 5-13

Other Topics . 5-21

Companies that produce image-acquisition devices, and wish to gain the benefits of being
TWAIN-compliant, must develop TWAIN-compliant Source software to drive their device. The
Source software is the interface between TWAIN’s Source Manager and the company’s physical
(or logical) device. To write effective Source software, the developer must be familiar with the
application’s expectations as discussed in the other chapters of this document.

The Structure of a Source
The following sections describe the structure of a source. Also see Chapter 12, "Operating System
Dependencies".

Implementation

The Source is implemented as a Shared Library (DLL on Windows). The Source will not run
stand-alone.

Naming and Location

TWAIN data sources’ file name must end with a .DS extension. The Source Manager recursively
searches for all Sources in the TWAIN sub-directory. To reduce the chance for naming collisions,
TWAIN 2.3 Specification 5-1

Chapter 5
each Source should create a sub-directory beneath TWAIN, giving it a name relevant to their
product.

Entry Points

• Every Source is required to have a single entry point called DS_Entry (see Chapter 6, "Entry
Points and Triplet Components"). The source should be able to quickly respond to the
DG_CONTROL / DAT_IDENTITY / MSG_GET operation.

Resources

• Icon Id - All future versions of the TWAIN Source Manager may display the list of available
Sources using a combination of the ProductName (in the Source’s TW_IDENTITY structure)
and an Icon (as the Macintosh version currently does). Therefore, it is recommended that you
add this icon into your Source resource file today. This will allow your Source to be
immediately compatible with any upcoming changes. The icon should be identified using
TWON_ICONID from the TWAIN.H file.

Operation Triplets
In Chapter 3, "Application Implementation", we introduced all of the triplets that an application
can send to the Source Manager or ultimately to a Source. There are several other triplet
operations which do not originate from the application. Instead, they originate from the Source
Manager or Source and are introduced in this chapter. All defined operation triplets are listed in
detail in Chapter 7, "Operation Triplets".

Triplets from the Source Manager to the Source

There are three operation triplets that are originated by the Source Manager. They are:

DG_CONTROL / DAT_IDENTITY

MSG_GET Returns the Source’s identity structure

MSG_OPENDS Opens and initializes the Source

MSG_CLOSEDS Closes and unloads the Source

The DG_CONTROL / DAT_IDENTITY / MSG_GET operation is used by the Source Manager to
identify available Sources. It may send this operation to the Source at any time and the Source
must be prepared to respond informatively to it. That means, the Source must be able to return its
identity structure before being opened by the Source Manager (with the MSG_OPENDS command).
The Source’s initially loaded code segment must be able to perform this function without loading
any additional code segments. This allows quick identification of all available Sources and is the
only operation a Source must support before it is formally opened.

The TW_IDENTITY structure looks like this:

typedef struct {

 TW_UINT32 Id;

 TW_VERSION Version;
5-2 TWAIN 2.3 Specification

 TW_UINT16 ProtocolMajor;

 TW_UINT16 ProtocolMinor;

 TW_UINT32 SupportedGroups;

 TW_STR32 Manufacturer;

 TW_STR32 ProductFamily;

 TW_STR32 ProductName;

} TW_IDENTITY, FAR *pTW_IDENTITY;

The ProductName field in the Source’s TW_IDENTITY structure should uniquely identify the
Source. This string will be placed in the Source Manager’s Select Source... dialog for the user.
(The file name of the Source should also approximate the ProductName, if possible, to add clarity
for the user at installation time.) Fill in all fields except the Id field which will be assigned by the
Source Manager. The unique Id number that identifies your Source during its current session will
be passed to your Source when it is opened by the MSG_OPENDS operation. Sources on Windows
must save this TW_IDENTITY.Id information for use when sending notifications from the Source
to the application.

Sources and the Event Loop

Handling Events

See Chapter 12, "Operating System Dependencies" on how to implement the Event Loop.

Communicating to the Application

As explained in Chapter 3, "Application Implementation", there are four instances where the
Source must originate and transmit a notice to the application:

• When it has data ready to transfer (MSG_XFERREADY)

The Source must send this message when the user clicks the “GO” button on the Source’s user
interface or when the application sends a DG_CONTROL / DAT_USERINTERFACE /
MSG_ENABLEDS operation with ShowUI = FALSE. The Source will transition from State 5 to
State 6. The application should now perform their inquiries regarding TW_IMAGEINFO and
capabilities. Then, the application issues a DG_IMAGE / DAT_IMAGExxxxXFER / MSG_GET
operation to begin the transfer process. Typically, though it is not required, it is at this time
that a flatbed scanner (for example) will begin simultaneously to acquire and transfer the data
using the specified transfer mode.

• When it needs to have its user interface disabled (MSG_CLOSEDSREQ)

Typically, the Source will send this only when the user clicks on the CLOSE button on the
Source’s user interface or when an error occurs which is serious enough to require terminating
the session with the application. The Source should be in (or transition to) State 5. The
application should respond by sending a DG_CONTROL / DAT_USERINTERFACE /
MSG_DISABLEDS operation to transition the session back to State 4.
TWAIN 2.3 Specification 5-3

Chapter 5
• When the user has pressed the OK button

When the user has pressed the OK button in a Source’s dialog that was brought up with
DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDSUIONLY (MSG_CLOSEDSOK).

Applications should use this event as the indicator that the user has set all the desired
attributes from the Source’s GUI.

• When the Source needs to report a Device Event.

Note that the application must explicitly request the Source to supply Device Events
(MSG_DEVICEEVENT). Sources must only provide those Device Events requested by a Source
through the CAP_DEVICEEVENT capability. The default for this capability when the Source
starts up is an empty TW_ARRAY, indicating that no Device Events are being reported.
Applications that turn on Device Events must issue a DG_CONTROL / DAT_DEVICEEVENT /
MSG_GET command as soon as possible after receiving a Device Event.

The Source creates a call to DSM_Entry (the entry point in the Source Manager) and fills the
destination with the TW_IDENTITY structure of the application. The Source uses one of the
following triplets:

DG_CONTROL / DAT_NULL / MSG_XFERREADY

DG_CONTROL / DAT_NULL / MSG_CLOSEDSREQ

DG_CONTROL / DAT_NULL / MSG_CLOSEDSOK

The Source Manager recognizes the notice and makes sure the message is received correctly
by the application.

On Macintosh legacy 1.x sources refer to the TWAIN 1.9 Specification.

User Interface Guidelines
Each TWAIN-compliant Source provides a user interface to assist the user in acquiring data from
their device. Although each device has its own unique needs, the following guidelines are
provided to increase consistency among TWAIN-compliant devices.

Displaying the User Interface

The application issues DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS to transition
the session from State 4 to 5.

The TW_USERINTERFACE data structure contains these fields:

• ShowUI - If set to TRUE, the Source displays its user interface.
If FALSE, the application will be providing its own.

• hParent - Used by Sources on Windows only. It indicates the application’s window handle.
This is to be designated as the Source’s parent for the dialog so it is a proper child of its parent
application.

• ModalUI - To be set by the Application to TRUE or FALSE.

Sources are not required to allow themselves to be enabled without showing their user interface
(ShowUI = FALSE) but it is strongly recommended that they allow this. If your Source cannot be
5-4 TWAIN 2.3 Specification

used without its user interface, it should enable showing the user interface (just as if
ShowUI = TRUE) and return TWRC_CHECKSTATUS. All Sources, however, must report whether or
not they honor ShowUI set to FALSE via the CAP_UICONTROLLABLE capability. This allows
applications to know whether the Source-supplied user interface can be suppressed before it is
displayed.

User Interface

Sources that report TRUE for CAP_UICONTROLLABLE must allow acquisition with the UI disabled,
and they must support TRUE and FALSE for CAP_INDICATORS.

If the Application sets ShowUI to TRUE when calling MSG_ENABLEDS, then the Source displays its
user interface. CAP_INDICATORS is ignored. A progress indicator is displayed during
acquisition and transfer, and errors can result in the Source showing a dialog to the user.

If the Application sets ShowUI to FALSE, but CAP_INDICATORS to TRUE when calling
MSG_ENABLEDS, then the Source does not display its user interface. But a progress indicator is
still displayed during acquisition and transfer, and an error can result in the Source showing a
dialog to the user.

If the Application sets ShowUI to FALSE and CAP_INDICATORS to FALSE when calling
MSG_ENABLEDS, then the Source is not allowed to display any kind of user interface, progress
indicator or error dialog. All UI activity must be suppressed.

When the user interface is disabled (by DG_CONTROL / DAT_USERINTERFACE /
MSG_DISABLEDS), a pointer to a TW_USERINTERFACE is included in the pData parameter.

Modal versus Modeless Interfaces

As stated in Chapter 4, "Advanced Application Implementation", the Source’s user interface may
be modal or modeless. The modeless approach gives the user more control and is recommended
whenever practical. Refer to Chapter 12, "Operating System Dependencies" about
implementation.

Error and Device Control Indicators

The Source knows what is happening with the device it controls. Therefore, the Source is
responsible for determining when and what information regarding errors and device controls (ex.
"place paper in document feeder") should be presented to the user. Error information should be
placed by the Source on top of either the application's or Source's user interface. Do not present
error messages regarding capability negotiation to the user since this should be transparent.

Error messages are suppressed when the UI is not displayed and CAP_INDICATORS is set to
FALSE.

Progress Indicators

• If the Source user interface is not displayed, and the Application sets CAP_INDICATORS to
TRUE, then the Source displays a progress indicator during acquisition and transfer, and an
error can result in the Source showing a dialog to the user.

• If the Source user interface is not displayed, and the Application sets CAP_INDICATORS to
FALSE, then the Source is not allowed to display any kind of user interface, progress indicator
or error dialog. All UI activity must be suppressed.
TWAIN 2.3 Specification 5-5

Chapter 5
• If the Source user interface is displayed then the Source will ignore the setting for
CAP_INDICATORS. A progress indicator is displayed during acquisition and transfer, and
errors can result in the Source showing a dialog to the user.

Impact of Capability Negotiation

If the Source has agreed to limit the Available Values and/or to set the Current Value, the
interface should reflect the negotiation. However, if a capability has not been negotiated by the
application, the interface should not be modified (don’t gray out a control because it wasn’t
negotiated.)

Advanced Topics

If a Source can acquire from more than one device, the Source should allow the user to choose
which device they wish to acquire from. Provide the user with a selection dialog that is similar to
the one presented by the Source Manager’s Select Source... dialog.

Capability Negotiation
Capability negotiation is a critical area for a Source because it allows the application to understand
and influence the images that it receives from your Source.

Inquiries From the Application

While the Source is open but not yet enabled (from DG_CONTROL / DAT_IDENTITY /
MSG_OPENDS until DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS), the application
can inquire the values of all supported capabilities, and request to set those values.

Once the Source is enabled, the application may only inquire about capabilities. An attempt to set
a capability fails with TWRC_FAILURE / TWCC_SEQERROR, unless allowed by the
CAP_EXTENDEDCAPS capability.

Responding to Inquiries

Sources must be able to respond to capability inquiries with current values at any time the Source
is open (i.e. from MSG_OPENDS until MSG_CLOSEDS or before posting a MSG_CLOSEDSREQ).

A Source should respond with information to any capability that applies to your device. Only if a
capability has no match with your device’s features should you respond with TWRC_FAILURE /
TWCC_BADCAP.

Refer to Chapter 10, "Capabilities" for the complete list of TWAIN-defined capabilities.

Responding to Requests to Set Capabilities

If the requested value is invalid or the Source does not support the capability, then return
TWRC_FAILURE / TWCC_CAPUNSUPPORTED. If the requested operation (MSG_SET, MSG_RESET,
etc.) is not supported, then return TWRC_FAILURE / TWCC_CAPBADOPERATION. If the capability
is unavailable because of a dependency on another capability (i.e., ICAP_CCITTKFACTOR is not
5-6 TWAIN 2.3 Specification

available unless ICAP_COMPRESSION is TWCP_GROUP32D), then return TWCC_CAPSEQERROR.
Returning these condition codes makes it possible for an application using its own UI to
intelligently make dependent capabilities available or unavailable for user access.

If the request was fulfilled, return TWRC_SUCCESS.

If the requested value is close to an acceptable value but doesn’t match exactly, set it as closely as
possible and then return TWRC_CHECKSTATUS.

A Source supports MSG_SET operations using the same containers it returns through MSG_GET,
MSG_GETCURRENT and MSG_GETDEFAULT operations.

• Example #1, a call to DG_CONTROL / DAT_CAPABILITY / MSG_GET returns a
TW_ENUMERATION container. The application changes the CurrentIndex and uses
DG_CONTROL / DAT_CAPABILITY / MSG_SET to update the capability.

• Example #2, a call to DG_CONTROL / DAT_CAPABILITY / MSG_GET returns a TW_RANGE
container. The application changes the CurrentValue and uses DG_CONTROL /
DAT_CAPABILITY / MSG_SET to update the capability.

This does not imply or require support for constraining capabilities, the Source is only obligated to
update the current value of the capability. If the Source does not support constraints for a
capability, and the constraining values have been changed by the application, then the Source
should apply the current value according to its own constraints, and if that value is valid, return
TWRC_CHECKSTATUS to alert that application that it needs to do a MSG_GET to validate its
changes.

• Example #3, if a Source supports the following range for ICAP_BRIGHTNESS: -1000.0 to -
1000.0 in steps of 20.0, and if the current value is 0.0, then a call to DG_CONTROL /
DAT_CAPABILITY / MSG_SET results in the following:
twrange.ItemType = TWTY_FIX32
twrange.MinValue = -1000.0
twrange.MaxValue = 1000.0
twrange.StepSize = 20.0
twrange.DefaultValue = 0.0
twrange.CurrentValue = 0.0

If the application sets twrange.CurrentValue to 900.0 and sends this structure to the
Source using DG_CONTROL / DAT_CAPABILITY / MSG_SET, the call succeeds and returns
TWRC_SUCCESS.

If the application sets both twrange.CurrentValue and twrange.MaxValue to 900.0,
then the status return depends on the Source. A Source that supports constraints accepts the
new value and limits MaxValue to 900.0. A Source that does not support constraints accepts
the value 900.0, because it falls in the range of -1000 to 1000, step 20; but it returns
TWRC_CHECKSTATUS because it was unable to accept the request to limit MaxValue to
900.0.

Memory Allocation

The TW_CAPABILITY structure used in capability negotiation is both allocated and deallocated by
the application. The Container structure pointed to by the hContainer field in TW_CAPABILITY
is allocated by the Source for “get” operations (MSG_GET, MSG_GETCURRENT, MSG_GETDEFAULT,
MSG_RESET) and by the application for the MSG_SET operation. Regardless of which one
allocates the container, the application is responsible for deallocating it when it is done with it.
TWAIN 2.3 Specification 5-7

Chapter 5
Limitations Imposed by the Negotiation

If a Source agrees to allow an application to restrict a capability, it is critical that the Source abide
by that agreement. If at all possible, the Source’s user interface should reflect the agreement and
not offer invalid options. The Source should never transfer data that violates the agreement
reached during capability negotiation. In that situation, the Source can decide to fail the transfer or
somehow adjust the values.

Data Transfers

Transfer Modes

All Sources must support Native and Buffered Memory data transfers. It is strongly suggested
that they support Disk File mode, too. The default mode is Native. To select one of the other
modes, the application must negotiate the ICAP_XFERMECH capability (whose default is
TWSX_NATIVE). Sources must support negotiation of this capability. Refer to Chapter 12,
"Operating System Dependencies" for information on each Operating System.

Initiating a Transfer

Transfers are initiated by the application (using the DG_IMAGE / DAT_IMAGExxxxFER /
MSG_GET operations). A successful transfer transitions the session to State 7. If the transfer fails,
the Source returns TWRC_FAILURE with the appropriate Condition Code and remains in State 6.

Concluding a Successful Transfer

To signal that the transfer is complete (i.e. the file is completed or the last buffer filled), the Source
should return TWRC_XFERDONE. In response, the application must send a DG_CONTROL /
DAT_PENDINGXFERS / MSG_ENDXFER operation. Only then may the Source transition from
State 7 back to State 6 or to State 5 if no more images are ready to be transferred.

If more images are pending transfer, the Source must wait in State 6 until the application either
requests the transfer or aborts the transfers. The Source may not “time-out” on any TWAIN
transaction.

Aborting a Transfer

Either the application or Source can originate the termination of a transfer (although the
application cannot do this in the middle of a Native or Disk File mode transfer). The Source
generally terminates the transfer if the user cancels the transfer or a device error occurs which the
Source determines is fatal to the transfer or the connection with the application. If the user
canceled the transfer, the Source should return TWRC_CANCEL to signal the premature
termination. The session remains in State 7 until the application sends the DG_CONTROL /
DAT_PENDINGXFERS / MSG_ENDXFER operation. If the Source aborts the transfer, it returns
TWRC_FAILURE and the session typically remains in State 6. (If the failure occurs during the
second buffer, or a later buffer, of a Buffered Memory transfer, the session remains in State 7.)
5-8 TWAIN 2.3 Specification

Native Mode Transfers

On Native mode transfers, the data parameter in the DSM_Entry call is a pointer to the image
handle. Refer to Chapter 12, "Operating System Dependencies" about each OS native file format.

On Windows

Data points to a handle to a DIB (Device Independent Bitmap) located in memory.

On Macintosh

Data points to a handle to a Picture (a PicHandle). It is a Quick Draw picture located in
memory.

On Linux

Data points to a handle to a TIFF image. It is a TIFF file located in memory.

Native transfers require the data to be transferred to a single large block of RAM. Therefore, they
always face the risk of having an inadequate amount of RAM available to perform the transfer
successfully.

If inadequate memory prevents the transfer, the Source has these options:

• Fail the transfer operation- Return TWRC_FAILURE / TWCC_LOWMEMORY

• Allow the user to clip the data to fit into available memory - Return TWRC_XFERDONE

• Allow the user to cancel the operation - Return TWRC_CANCEL

If the operation fails, the session remains in State 6. If the operation is canceled, the session
remains in State 7 awaiting the DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER or
MSG_RESET from the application. The application can return the session to State 4 and attempt to
renegotiate the transfer mechanism (ICAP_XFERMECH) to Disk File or Buffered Memory mode.

The Source cannot be interrupted by the application when it is acquiring an image through Native
Mode Transfer. The Source’s user interface may allow the user to abort the transfer, but the
application will not be able to do so even if the application presents its own acquisition user
interface.

Disk File Mode Transfers

The Source selects a default file format and file name (typically, TWAIN.TMP in the current
directory). It reports this information to the application in response to the DG_CONTROL /
DAT_SETUPFILEXFER / MSG_GET.

The application may determine all of the Source’s supported file formats by using the
ICAP_IMAGEFILEFORMAT capability. Based on this information, the application can request a
particular file format and define its own choice of file name for the transfer. The desired file
format and file name will be communicated to the Source in a DG_CONTROL /
DAT_SETUPFILEXFER / MSG_SET.

When the Source receives the DG_IMAGE / DAT_IMAGEFILEXFER / MSG_SET operation, it
should transfer the data into the designated file. The following conditions may exist:
TWAIN 2.3 Specification 5-9

Chapter 5
The Source cannot be interrupted by the application when it is acquiring a file. The Source’s user
interface may allow the user to abort the transfer, but the application will not be able to do so even
if the application presents its own acquisition user interface.

Buffered Memory Mode Transfers

When the Source transfers strips of data, the application allocates and deallocates buffers used for
a Buffered Memory mode transfer. However, the Source must recommend appropriate sizes for
those buffers and should check that the application has followed its recommendations.

When the Source transfers tiles of data, the Source allocates the buffers. The application is
responsible for deallocating the memory.

To determine the Source’s recommendations for buffer sizes, the application performs a
DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET operation. The Source fills in the
MinBufSize, MaxBufSize, and Preferred fields to communicate its buffer recommendations.
Buffers must be double-word aligned and padded with zeros per raster line.

When an application issues a DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET operation, check
the TW_IMAGEMEMXFER.Memory.Length field to determine the size of the buffer being
presented to you. If it does not fit the recommendations, fail the operation with TWRC_FAILURE
/ TWCC_BADVALUE.

If the buffer is an appropriate size, fill in the required information.

• Sources must write one or more complete lines of image data (the full width of a strip or tile)
into the buffer. Partial lines of image data are not allowed. If some of the buffer is unused, fill
it in with zeros. Additionally, each line must be aligned to a 32-bit boundary. Return
TWRC_SUCCESS after each successful buffer except for the last one (return TWRC_XFERDONE
after that one).

• If the Source is transferring data whose bit depth is not 8 bits, it should fill the buffer without
padding the data. If a 5-bit device wants the application to interpret its data as 8-bit data, it
should report that it is supplying 8-bit data, make the valid data bits the most significant bits
in the data byte, and pad the least significant bits with bits of whichever sense is “lightest”.
Otherwise, the Source should pack the data bits together. For a 5-bit R-G-B device, that means
the data for the green channel should immediately follow the last bit of the red channel. The
application is responsible for “unpacking” the data. The Source reports how many bits it is
providing per pixel in the BitsPerPixel field of the TW_IMAGEINFO data structure.

Condition How to Handle

No file name and/or file format was
specified by the application during setup

Use either the Source’s default file name or
the last file information given to the Source
by the application. Create the file.

The application specified a file but failed to
create it

Create the application’s defined file.

The application’s specified file exists but
has data in it

Overwrite the existing data.
5-10 TWAIN 2.3 Specification

Error Handling

Operation Triplet and State Verification

• Sources support all defined TWAIN triplets. A Source must verify every operation triplet
they receive. If the operation is not recognized, the Source should return TWRC_FAILURE and
TWCC_BADPROTOCOL.

• Sources must also maintain an awareness of what state their session is in. If an application
invokes an operation that is invalid in the current state, the Source should fail the operation
and return TWRC_FAILURE and TWCC_SEQERROR. Valid states for each operation are listed
in Chapter 7, "Operation Triplets".

• Anytime a Source fails an operation that would normally cause the session to transition to
another state, the session should not transition but should remain in the original state.

• Each triplet operation has its own set of valid Return and Condition Codes as listed in Chapter
7, "Operation Triplets". The Source must return a valid Return Code and set a valid Condition
Code, if applicable, following every operation.

• All Return Codes and Condition Codes in the Source should be cleared upon the next call to
DS_Entry(). Clearing is delayed when a DG_CONTROL / DAT_STATUS / MSG_GET
operation is received. In this case, the Source will fill the TW_STATUS structure with the
current condition information and then clear that information.

• If an application attempts to connect to a Source that only supports a single connection when
the source is already opened, the Source should respond with TWRC_FAILURE and
TWCC_MAXCONNECTIONS.

• For Windows Sources only, the DLL implementation makes it possible to be connected to
more than one application. Unless the operation request is to open the Source, the Source
must verify the application originating an operation is currently connected to the Source. To
do this:

The Source must maintain a list containing the Id value for each connected application.
(The Id value comes from the application’s TW_IDENTITY structure which is
referenced by the pOrigin parameter in the DS_Entry() call.)

The Source should check the TW_IDENTITY.Id information of the application sending
the operation and verify that it appears in the Source’s list of connected applications.

• For Windows only, if connected to multiple applications, the Source is responsible for
maintaining a separate, current Condition Code for each application it is connected to. The
Source writer should also maintain a temporary, and separate, Condition Code for any
application that is attempting to establish a connection with the Source. This is true both for
Sources that support only a single connection or have reached the maximum connections.

Unrecoverable Error Situations

The Source is solely responsible for determining whether an error condition within the Source is
recoverable or not. The Source must determine when, and what, error condition information to
present to the user. The application relies on the Source to specify when a failure occurs. If a
Source is in an unrecoverable error situation, it may send a MSG_CLOSEDSREQ to the application
to request to have its user interface disabled and have an opportunity to begin again.
TWAIN 2.3 Specification 5-11

Chapter 5
Memory Management
The Source does not have unlimited memory available, so it should be conservative in its use. It is
valid for an application to open a Source and leave it open between several acquires. Therefore,
Sources should minimize the time and resources required to load and remain open (in State 4). It
is important for the Source writer to recognize that their Source will be using the memory heap of
the host application, not its own heap. Therefore, the Source should be conscientious with
allocation and de-allocation of memory.

General Guidelines

The following are some general guidelines:

• Check, when the Source is launched, to assure that enough memory space is available for
adequate execution.

• Always verify that allocations were successful.

• Work with relocatable objects whenever possible - the heap you fragment is not your own.

• Deallocate temporary memory objects as soon as they are no longer needed.

• Maintain as small a non-operating memory footprint as can prudently be done - the Source
will be “compatible” with more applications on more machines.

• Clean up after yourself. When about to be closed, deallocate all locally allocated RAM,
eliminate any other objects on the heap, and prepare as appropriate to terminate.

Local Variables

• The Source may allocate and maintain local variables and buffers. Remember that you are
borrowing RAM from the application so be efficient about how much RAM is allocated
simultaneously.

Instances Where the Source Allocates Memory

In general, the application allocates all necessary structures and passes them to the Source. There
are a few exceptions to this rule:

• The Source must create the container, pointed to by the hContainer field, needed to hold
capability information on DG_CONTROL / DAT_CAPABILITY / MSG_GET,
MSG_GETCURRENT, MSG_GETDEFAULT, or MSG_RESET operations. The application
deallocates the container.

• The Source allocates the buffer for Native mode data transfers. The application deallocates
the buffer.

• Normally, the application creates the buffers used in a Buffered Memory transfer (DG_IMAGE
/ DAT_IMAGEMEMXFER / MSG_GET). However, if the Source is transferring tiled data,
rather than strips of data, it is responsible for allocating the buffers. The application
deallocates the buffers.

See the DG_IMAGE / DAT_JPEGCOMPRESSION operations.
5-12 TWAIN 2.3 Specification

Requirements for a Source to be TWAIN-Compliant
The following lists of triplets and capabilities map out the minimum required set of features that a
Source must offer programmatically to be TWAIN compliant. Sources, though, are strongly
encouraged to go beyond this list and implement as many of their capabilities as possible for
programmatic access.

Initially, this list is organized by versions of TWAIN to help Source writers decide which version
they wish to support. It is also intended for Applications writers, who can use this information to
identify the real level of TWAIN support provided by a Source if its reported version is not
matched by the items in this list. Further in this section, additional mandatory capabilities are
listed based on the value set for a Capability that has been implemented, or when a Source with a
specific feature is being used.

Operations
Version

Required

DG_CONTROL / DAT_CAPABILITY / MSG_GET 1.5

DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT 1.5

DG_CONTROL / DAT_CAPABILITY / MSG_GETDEFAULT 1.5

DG_CONTROL / DAT_CAPABILITY / MSG_RESET 1.5

DG_CONTROL / DAT_CAPABILITY / MSG_SET 1.5

DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT 1.5

DG_CONTROL / DAT_IDENTITY / MSG_GET 1.5

DG_CONTROL / DAT_IDENTITY / MSG_OPENDS 1.5

DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS 1.5

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER 1.5

DG_CONTROL / DAT_PENDINGXFERS / MSG_GET 1.5

DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET 1.5

DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET 1.5

DG_CONTROL / DAT_STATUS / MSG_GET 1.5

DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS 1.5

DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS 1.5

DG_CONTROL / DAT_XFERGROUP / MSG_GET 1.5

DG_IMAGE / DAT_IMAGEINFO / MSG_GET 1.5

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET 1.5

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GETDEFAULT 1.5

DG_IMAGE / DAT_IMAGELAYOUT / MSG_RESET 1.5

DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET 1.5

DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET 1.5

DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET 1.5

DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT 1.9
TWAIN 2.3 Specification 5-13

Chapter 5
DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS *

* Support both UI and Programmatic Control Through:

(Show UI == TRUE) [UI Control]

(Show UI == FALSE) [Programmatic Control]

1.9

DG_CONTROL / DAT_CAPABILITY / MSG_RESETALL 1.91

DG_CONTROL / DAT_CAPABILITY / MSG_GET *

*For TW_BOOL capabilities return enumerations when the Application is 2.0 or
greater. Return one value when the application less than 2.0

2.0

Capabilities Requirements
Version

Required

CAP_SUPPORTEDCAPS MSG_GET required 1.5

CAP_UICONTROLLABLE MSG_GET required 1.5

CAP_XFERCOUNT All MSG_* operations required 1.5

ICAP_COMPRESSION All MSG_GET* operations required 1.5

ICAP_BITDEPTH All MSG_* operations required 1.5

ICAP_BITORDER All MSG_* operations required 1.5

ICAP_PLANARCHUNKY All MSG_GET* operations required 1.5

ICAP_PHYSICALHEIGHT All MSG_GET* operations required 1.5

ICAP_PHYSICALWIDTH All MSG_GET* operations required 1.5

ICAP_PIXELFLAVOR All MSG_GET* operations required 1.5

ICAP_PIXELTYPE All MSG_* operations required 1.5

ICAP_UNITS All MSG_* operations required 1.5

ICAP_XFERMECH All MSG_* operations required 1.5

ICAP_XRESOLUTION All MSG_* operations required 1.5

ICAP_YRESOLUTION All MSG_* operations required 1.5

CAP_DEVICEONLINE MSG_GET required 1.6

CAP_UICONTROLLABLE MSG_GET required 1.6

CAP_UICONTROLLABLE (Value = TRUE) 1.9

CAP_SUPPORTEDDATS All MSG_GET* operations required 2.2

ICAP_XNATIVERESOLUTION All MSG_GET* operations required for scanners 2.2

ICAP_YNATIVERESOLUTION All MSG_GET* operations required for scanners 2.2

Operations
Version

Required
5-14 TWAIN 2.3 Specification

Mandatory Features Dependencies

SUPPORTED GROUPS

CUSTOM CONTENT

CAP_SEGMENTED

ICAP_PIXELTYPE

ICAP_BITDEPTHREDUCTION

ICAP_XFERMECH

When source
supports: Must support:

Version
intro

DF_DS2 DG_CONTROL / DAT_ENTRYPOINT / MSG_SET 2.0

When source
supports: Must respond to: Mandatory capability:

Version
intro

Custom Content DG_CONTROL / DAT_CAPABILITY

MSG_GET

MSG_GETLABEL

MSG_GETLABELENUM

CAP_CUSTOMINTERFACEGUID 2.1

When value is: Must respond to: Mandatory capability:
Version

intro

TWSG_MANUAL DG_CONTROL /
DAT_CAPABILITY

All MSG_*

CAP_SUPPORTEDCAPSSEGMENTUNIQUE 2.2

When value is: Must respond to: Mandatory capability:
Version

intro

TWPT_BW DG_CONTROL / DAT_CAPABILITY

All MSG_*

ICAP_BITDEPTHREDUCTION 1.5

When value is: Must respond to: Mandatory capability:
Version

intro

TWBR_HALFTONE DG_CONTROL / DAT_CAPABILITY

All MSG_*

ICAP_HALFTONES 1.0

TWBR_CUSTHALFTONE DG_CONTROL / DAT_CAPABILITY

All MSG_*

ICAP_CUSTHALFTONE 1.0

TWBR_THRESHOLD DG_CONTROL / DAT_CAPABILITY

All MSG_*

ICAP_THRESHOLD 1.5

When value is: Must support:
Version

intro

TWSX_FILE ICAP_IMAGEFILEFORMAT 1.0

DG_CONTROL / DAT_SETUPFILEXFER / MSG_GET, MSG_SET

DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET
TWAIN 2.3 Specification 5-15

Chapter 5
ICAP_SUPPORTEDSIZES

Document Feeders

Basic document feeder devices are those that have paper trays to hold one or more documents for
transfer. Unique aspects of a document feeder include the ability to transfer more than one image,
the typical inability to re-scan the same page twice, and the fact that if there is no paper loaded, it
is usually impossible to scan.

ALL DOCUMENT FEEDERS

CAP_PAPERDETECTABLE

CAP_AUTOFEED

Special Case

ADF/FLATBED COMBO SCANNER

When source
supports: Must respond to: Mandatory capability:

Version
intro

Document
Scanning using
Fixed Frame Sizes

DG_CONTROL / DAT_CAPABILITY

All MSG_*

ICAP_SUPPORTEDSIZES 1.0

When source is a: Must respond to: Mandatory capability:
Version

intro

Document Feeder DG_CONTROL / DAT_CAPABILITY

All MSG_*

CAP_FEEDERENABLED

CAP_PAPERDETECTABLE

CAP_AUTOFEED

1.0
1.6
1.0

When value is: Must respond to: Mandatory capability:
Version

intro

TRUE DG_CONTROL / DAT_CAPABILITY

All MSG_*

CAP_FEEDERLOADED 1.0

When value is: Must provide advanced paper handling through:
Version

intro

FALSE CAP_EXTENDEDCAPS

CAP_FEEDPAGE

CAP_CLEARPAGE

CAP_REWINDPAGE

1.0
1.0
1.0
1.0

When source
supports: Must respond to: Mandatory capability:

Version
intro

Flatbed / ADF
combo scanner

DG_CONTROL / DAT_CAPABILITY

All MSG_*

CAP_AUTOMATICSENSEMEDIUM 2.1
5-16 TWAIN 2.3 Specification

DUPLEX

PRINTERS

ICAP_PRINTERMODE

ENDORSER

Production Quality High Speed/Volume Scanners

Production Quality High Speed/Volume scanners have greater demands on TWAIN. With
diverse features like bar code reading, imprinting and compressions, they require much more
attention to detail. Production drivers should be prepared to serve applications that wish to
achieve complete programmatic control of all typical and custom features and this requires a
VERY robust TWAIN implementation.

Mid- and High-volume scanners must support the following operational triplets:

DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDSUIONLY

When source
supports: Must respond to: Mandatory capability:

Version
intro

Duplex scanning DG_CONTROL / DAT_CAPABILITY

All MSG_*

CAP_DUPLEX

CAP_DUPLEXENABLED

1.7
1.7

When source
controls: Must respond to: Mandatory capabilities:

Version
intro

Any printer type
device

DG_CONTROL /
DAT_CAPABILITY

All MSG_*

CAP_PRINTERENABLED

CAP_PRINTER

CAP_PRINTERINDEX

CAP_PRINTERSTRING

CAP_PRINTERSUFFIX

1.8
1.8
2.2
2.2
2.2

When source
controls: Must respond to: Mandatory capability:

Printer vertical
position

DG_CONTROL /
DAT_CAPABILITY

MSG_GET, MSG_GETCURRENT,
MSG_GETDEFAULT, MSG_RESET
and MSG_SET

CAP_PRINTERVERTICALOFFSET 2.2

When source supports: Must respond to: Mandatory capability:
Version

intro

CAP_PRINTERSTRING DG_CONTROL / DAT_CAPABILITY

All MSG_*

CAP_PRINTERMODE 1.8

CAP_PRINTERSUFFIX DG_CONTROL / DAT_CAPABILITY

All MSG_*

CAP_PRINTERMODE 1.8

When source
controls: Must respond to: Mandatory capabilities:

Version
intro

Endorser DG_CONTROL / DAT_CAPABILITY

All MSG_*

ICAP_SUPPORTEDEXTIMAGEINFO

CAP_ENDORSER

2.1
1.7
TWAIN 2.3 Specification 5-17

Chapter 5
DG_CONTROL / DAT_CUSTOMDSDATA / MSG_GET & MSG_SET

INTERNAL IMAGE BUFFER

ICAP_UNDEFINEDIMAGESIZE

ICAP_COMPRESSION

EXTENDED IMAGE INFO

When source supports: Must respond to: Mandatory capabilities:
Version

intro

Transfer of multiple
images ahead of
retrieval

DG_CONTROL / DAT_CAPABILITY

All MSG_*

CAP_AUTOSCAN

CAP_MAXBATCHBUFFERS

CAP_CLEARBUFFERS

1.6
1.8
1.8

When source supports: Must respond to: Mandatory capability:
Version

intro

ICAP_AUTOSIZE DG_CONTROL /
DAT_CAPABILITY

All MSG_*

ICAP_UNDEFINEDIMAGESIZE 2.0

ICAP_AUTOMATICBORDERDETECTION DG_CONTROL /
DAT_CAPABILITY

All MSG_*

ICAP_UNDEFINEDIMAGESIZE 1.8

ICAP_AUTOMATICLENGTHDETECTION DG_CONTROL /
DAT_CAPABILITY

All MSG_*

ICAP_UNDEFINEDIMAGESIZE 2.1

ICAP_AUTOMATICROTATE DG_CONTROL /
DAT_CAPABILITY

All MSG_*

ICAP_UNDEFINEDIMAGESIZE 1.8

ICAP_FLIPROTATION DG_CONTROL /
DAT_CAPABILITY

All MSG_*

ICAP_UNDEFINEDIMAGESIZE 1.8

When value is: Must respond to: Mandatory capabilities:
Version

intro

TWCP_JPEG DG_CONTROL / DAT_CAPABILITY

All MSG_*

ICAP_JPEGPIXELTYPE

ICAP_JPEGQUALITY

ICAP_JPEGSUBSAMPLING

1.5
1.9
2.2

TWCP_GROUP32D DG_CONTROL / DAT_CAPABILITY

All MSG_*

ICAP_CCITTKFACTOR 1.0

When source supports:: Must respond to: Mandatory capabilities:
Version

intro

Extended image info DG_CONTROL /
DAT_CAPABILITY

MSG_GET

ICAP_EXTIMAGEINFO

ICAP_SUPPORTEDEXTIMAGEINFO

1.7
2.1

Mandatory values:
5-18 TWAIN 2.3 Specification

PATCH CODE DETECTION *

* Note: Source must also fill in the extended EOJ field of the TW_PENDINGXFERS structure
when CAP_JOBCONTROL is enabled. See DG_CONTROL / DAT_PENDINGXFERS /
MSG_ENDXFER

BARCODE DETECTION

ALARMS

MICR DETECTION

Extended image info DG_CONTROL /
DAT_EXTIMAGEINFO

TWEI_DOCUMENTNUMBER

TWEI_PAGENUMBER

TWEI_CAMERA

TWEI_FRAMENUMBER

TWEI_FRAME

TWEI_PIXELFLAVOR

TWEI_PAPERCOUNT

1.9
1.9
1.9
1.9
1.9
1.9
2.2

Mandatory value:

Extended image info
and duplex

DG_CONTROL /
DAT_EXTIMAGEINFO

TWEI_PAGESIDE 2.1

When source
controls: Must respond to: Mandatory capabilities:

Version
intro

Patch Code
Detection

DG_CONTROL /
DAT_CAPABILITY

All MSG_*

ICAP_PATCHCODEDETECTIONENABLED

ICAP_SUPPORTEDPATCHCODETYPES

CAP_JOBCONTROL

1.8
1.8
1.7

When source
controls: Must respond to: Mandatory capabilities:

Version
intro

Bar Code
Detection

DG_CONTROL /
DAT_CAPABILITY

All MSG_*

ICAP_EXTIMAGEINFO

ICAP_BARCODEDETECTIONENABLED

ICAP_SUPPORTEDBARCODETYPES

1.7
1.8
1.8

When source
controls: Must respond to: Mandatory capability:

Version
intro

Audible alarms DG_CONTROL / DAT_CAPABILITY

All MSG_*

CAP_ALARMS 1.8

Alarm volume DG_CONTROL / DAT_CAPABILITY

All MSG_*

CAP_ALARMVOLUME 1.8

When source
supports: Must respond to: Mandatory capabilities:

Version
intro

Reading Micr
data

DG_CONTROL /
DAT_CAPABILITY

All MSG_*

ICAP_EXTIMAGEINFO

ICAP_SUPPORTEDEXTIMAGEINFO

CAP_MICRENABLED

1.7
2.1
2.0

When source supports:: Must respond to: Mandatory capabilities:
Version

intro
TWAIN 2.3 Specification 5-19

Chapter 5
Permanent Storage/Retrieval Devices

Permanent storage/retrieval devices are unique in that more than one image is stored and the
dimensions and bit depth may vary from image to image. These devices could be just a database
of images, or a PCMCIA card from a Digital Camera. Such devices need features for browsing the
available images, retrieving properties and selecting sets of images for transfer.

PERMANENT STORAGE/RETRIEVAL

ANNOTATION

FLASH

AUDIO DEVICES

When source supports: Required operations:
Version

intro

Permanent Storage
Retrieval

DG_CONTROL / DAT_FILESYSTEM / MSG_COPY,
MSG_DELETE, MSG_CREATEDIRECTORY,
MSG_AUTOMATICCAPTURED, MSG_FORMATMEDIA,
MSG_GETFIRSTFILE, MSG_GETINFO, MSG_GETNEXTFILE,
MSG_RENAME

Must respond to:: Mandatory capability:

DG_CONTROL / DAT_CAPABILITY

All MSG_*

ICAP_IMAGEDATASET 1.7

When source supports: Must respond to: Mandatory capabilities:
Version

intro

Annotation DG_CONTROL / DAT_CAPABILITY

All MSG_*

CAP_AUTHOR

CAP_CAPTION

CAP_TIMEDATE

1.0
1.0
1.0

When source supports: Must respond to: Mandatory capability:
Version

intro

Flash DG_CONTROL / DAT_CAPABILITY

All MSG_*

ICAP_FLASHUSED2 1.8

When source
supports: Must respond to: Mandatory capability:

Version
intro

Audio snippets
to be associated
with an image

DG_CONTROL /
DAT_CAPABILITY

All MSG_*

ACAP_XFERMECH 1.8

When source
supports: Must respond to:

Transfer of
Audio snippets

DG_CONTROL / DAT_XFERGROUP / MSG_SET with a value of DG_AUDIO

And support these operations:

DG_AUDIO/DAT_AUDIOFILEXFER/MSG_GET

DG_AUDIO/DAT_AUDIONATIVEXFER/MSG_GET
5-20 TWAIN 2.3 Specification

Portable Capture Devices

Portable capture devices are very similar to permanent storage and retrieval devices in that they
typically store a number of images, however they differ in that they often have real time capture
opportunities and limitations related to battery life and lenses. Examples of such devices would be
Digital Camera’s and Camcorders.

ASYNCHRONOUS DEVICE EVENTS

STREAM IMAGES

AUTOMATIC CAPTURE

Other Topics

Custom Operations

Manufacturers may add custom operations to their Sources. These can also be made known to
application manufacturers. This mechanism allows an application to access functionality not
normally available from a generic TWAIN Source.

One use of this mechanism might be to implement device-specific diagnostics for a hardware
diagnostic program. These custom operations should be used sparingly and never in place of pre-
defined TWAIN operations.

Custom operations are defined by specifying special values for Data Groups (DGs), Data
Argument Types (DATs), Messages (MSGs), and Capabilities (CAPs). The following areas have
been reserved for custom definitions:

When source supports: Must respond to: Mandatory capability:
Version

intro

Asynchronous Device
Events

DG_CONTROL / DAT_CAPABILITY

All MSG_*

CAP_DEVICEEVENT 1.8

When source supports: Must respond to: Mandatory capability:
Version

intro

Stream of images for
Live Preview

DG_CONTROL / DAT_CAPABILITY

All MSG_*

CAP_CAMERAPREVIEWUI 1.8

When source
supports: Must respond to: Mandatory capabilities:

Version
intro

Automatic
capture

DG_CONTROL / DAT_CAPABILITY

All MSG_*

CAP_AUTOMATICCAPTURE

CAP_TIMEBEFOREFIRSTCAPTURE

CAP_TIMEBETWEENCAPTURES

1.8
1.8
1.8
TWAIN 2.3 Specification 5-21

Chapter 5
The responsibility for naming and managing the use of custom designators lies wholly upon the
TWAIN element originating the designator and the element consuming it. Prior to interpreting a
custom designator, the consuming element must check the originating element’s ProductName
string from its TW_IDENTITY structure. Since custom operation numbers may overlap, this is the
only way to insure against confusion.

Data Groups Top 8 bit flags (bits 24 - 31) in the DG identifiers reserved for
custom use.

DATs Designators with values greater than 8000 hex.

Messages Designators with values greater than 8000 hex.

Capabilities Designators with values greater than 8000 hex.
5-22 TWAIN 2.3 Specification

6
Entry Points and Triplet Components

Chapter Contents

Entry Points . 6-1

Data Groups . 6-4

Data Argument Types. 6-4

Messages . 6-6

Custom Components of Triplets . 6-7

Entry Points
TWAIN has the following possible entry points:

• DSM_Entry() - located in the Source Manager and typically called by applications, with the
following exceptions where a Source calls the Source Manager to communicate with an
Application:

DG_CONTROL / DAT_NULL / MSG_XFERREADY
DG_CONTROL / DAT_NULL / MSG_CLOSEDSREQ
DG_CONTROL / DAT_NULL / MSG_CLOSEDSOK
DG_CONTROL / DAT_NULL / MSG_DEVICEEVENT

• DS_Entry() - located in the Source and called only by the Source Manager.

Programming Basics

• Upon entry, the parameters must be ordered on the stack in Pascal form. Be sure that your
code expects this ordering rather than the reverse order that C uses.

• Refer to Chapter 12, "Operating System Dependencies" about each OS Programming Basics.

Data Flags and Data Groups

Versions of the TWAIN Specification up to and including TWAIN 2.0 indicate that the high 8-bits
(24 – 31) in the TW_IDENTITY.SupportedGroups are reserved for custom use.
TWAIN 2.3 Specification 6-1

Chapter 6
TWAIN 2x has taken these bits for use by the Data Flags (DF_APP2, DF_DSM2 and DF_DS2).
This breaks backwards capability with previous versions of the Specification. The risk is
considered to be very low, since very few Sources or Applications work with these bits. However,
the conflict can be managed in the following ways.

• Avoid the use of 0x10000000, 0x20000000 and 0x40000000, these correspond to
DF_DSM2, DF_APP2 and DF_DS2. The remaining bits: 0x01000000, 0x02000000,
0x04000000, 0x08000000 and 0x80000000 are still in the custom space for Applications
and Sources, and they will remain free for that use in all subsequent versions of TWAIN.

• Applications can modify their code to recognize when these bits are in use by a particular
Source, which has always been a necessary pre-requisite for custom features, since the bits are
guaranteed to have different meaning for different vendors.

• These flags are of most interest to the Data Source Manager, which is now open source (they
dictate when DAT_ENTRYPOINT is called). If a legacy driver is using one of the custom bits,
then propose a possible work-around to the TWAIN Working Group.

Declaration of DSM_Entry()

Written in C code form, the declaration looks like this:

TW_UINT16 TW_CALLINGSTYLE DSM_Entry
 (pTW_IDENTITY pOrigin, // source of message
 pTW_IDENTITY pDest, // destination of message
 TW_UINT32 DG, // data group ID: DG_xxxx
 TW_UINT16 DAT, // data argument type: DAT_xxxx
 TW_UINT16 MSG, // message ID: MSG_xxxx
 TW_MEMREF pData // pointer to data
);

Parameters of DSM_Entry()

pOrigin

This points to a TW_IDENTITY structure, allocated by the application, that describes the
application making the call. One of the fields in this structure, called Id, is an arbitrary and
unique identifier assigned by the Source Manager to tag the application as a unique TWAIN
entity. The Source Manager maintains a copy of the application’s identity structure, so the
application must not modify that structure unless it first breaks its connection with the Source
Manager, then reconnects to cause the Source Manager to store the new, modified identity.

pDest

This is set either to NULL if the application is aiming the operation at the Source Manager or
to the TW_IDENTITY structure of the Source that the application is attempting to reach. The
application allocated the space for the Source’s identity structure when it decided which
Source was to be connected. The Source’s TW_IDENTITY.Id is also uniquely set by the
Source Manager when the Source is opened and should not be modified by the Source. The
application should not count on the value of this field being consistent from one session to the
next because the Source Manager reallocates these numbers every time it is opened. The
Source Manager keeps a copy of the Source’s identity structure as should the application
and the Source.
6-2 TWAIN 2.3 Specification

DG

The Data Group of the operation triplet. Currently, only DG_CONTROL, DG_IMAGE, and
DG_AUDIO are defined.

DAT

The Data Argument Type of the operation triplet. A complete list appears later in this
chapter.

MSG

The Message of the operation triplet. A complete list appears later in this chapter.

pData

The pData parameter is of type TW_MEMREF and is a pointer to the data (a variable or, more
typically, a structure) that will be used according to the action specified by the operation
triplet.

Declaration of DS_Entry()

DS_Entry is only called by the Source Manager. Written in C code form, the declaration looks
like this:

TW_UINT16 TW_CALLINGSTYLE DS_Entry

 (pTW_IDENTITY pOrigin, // source of message

 TW_UINT32 DG, // data group ID: DG_xxxx

 TW_UINT16 DAT, // data argument type: DAT_xxxx

 TW_UINT16 MSG, // message ID: MSG_xxxx

 TW_MEMREF pData // pointer to data

);

Declaration of TWAIN_Callback()

This function is registered by the Application and is only called by the Source Manager. The actual
name of the function is up to the application. Written in C code form, the declaration looks like
this:

TW_UINT16 TW_CALLINGSTYLE TWAIN_Callback

 (pTW_IDENTITY pOrigin, // source of message

 TW_UINT32 DG, // data group ID: DG_xxxx

 TW_UINT16 DAT, // data argument type: DAT_xxxx

 TW_UINT16 MSG, // message ID: MSG_xxxx

 TW_MEMREF pData // pointer to data

);
TWAIN 2.3 Specification 6-3

Chapter 6
Data Groups

TWAIN operations can be broadly classified into three data groups:

Control Oriented (DG_CONTROL)

Controls the TWAIN session. Consumed by both Source Manager and Source. It is always
available, no matter what the current setting of DG_CONTROL / DAT_XFERGROUP.

Image Data Oriented (DG_IMAGE)

Indicates the kind of data to be transferred. Change between DG_AUDIO and DG_IMAGE as
needed using DG_CONTROL / DAT_XFERGROUP / MSG_SET. The default at startup is for a
Source to be ready to transfer DG_IMAGE data.

Audio Data Oriented (DG_AUDIO)

Indicates the kind of data to be transferred. Change between DG_AUDIO and DG_IMAGE as
needed using DG_CONTROL / DAT_XFERGROUP / MSG_SET.

Currently, only image and audio data are supported but this could be expanded to include text,
etc. This has several future implications. If more than one data type exists, an application and a
Source will need to decide what type(s) of data the Source can, and will be allowed to, produce
before a transfer can occur. Further, if multiple transfers are being generated from a single
acquisition—such as when image and text are intermixed and captured from the same page—it
must be unambiguous which type of data is being returned from each data transfer.

Programming Basics

Note the following:

• Data Group designators are 32-bit, unsigned values. The actual values that are assigned are
powers of two (bit flags) so that the DGs can be easily masked.

• There are 24 DGs designated as reserved for pre-defined DGs . Four are currently in use. The
top 8 bits are reserved for custom DGs.

Data Argument Types
Data Argument Types, or DATs, are used to allow programmatic identification of the TWAIN
type for the structure of status variable referenced by the entry point parameter pData. pData
will always point to a variable or data structure defined by TWAIN. If the consuming application
or Source switches (cases, etc.) on the DAT specified in the formal parameter list of the entry point
call, it can handle the form of the referenced data correctly.

Data Type Used by Associated structure or type

DAT_NULL ANY DG Null structure. No data required for the
operation
6-4 TWAIN 2.3 Specification

DAT_CUSTOMBASE n/a Not a DAT in itself, but the baseline a Source
must use when creating a custom DAT.

DAT_AUDIOFILEXFER DG_AUDIO Operates on null data. Filename / Format
already negotiated.

DAT_AUDIONATIVEXFER DG_AUDIO TW_HANDLE

On Windows - WAV handle

On Macintosh - audio handle

On Linux - WAV handle

DAT_CAPABILITY DG_CONTROL TW_CAPABILITY structure

DAT_ENTRYPOINT DG_CONTROL TW_ENTRYPOINT structure

DAT_EVENT DG_CONTROL TW_EVENT structure

DAT_FILESYSTEM DG_CONTROL TW_FILESYSTEM structure

DAT_IDENTITY DG_CONTROL TW_IDENTITY structure

DAT_PARENT DG_CONTROL TW_HANDLE

On Windows - Window handle

On Macintosh - Not used. Set to NULL

On Linux - Not used. Set to NULL

DAT_PASSTHRU DG_CONTROL TW_PASSTHRU structure

DAT_PENDINGXFERS DG_CONTROL TW_PENDINGXFERS structure

DAT_SETUPFILEXFER DG_CONTROL TW_SETUPFILEXFER structure

DAT_SETUPMEMXFER DG_CONTROL TW_SETUPMEMXFER structure

DAT_STATUS DG_CONTROL TW_STATUS structure

DAT_USERINTERFACE DG_CONTROL TW_USERINTERFACE structure

DAT_XFERGROUP DG_CONTROL TW_UINT32

A DG designator describing data to be
transferred (currently only image data is
supported)

DAT_CIECOLOR DG_IMAGE TW_CIECOLOR structure

DAT_GRAYRESPONSE DG_IMAGE TW_GRAYRESPONSE structure

DAT_IMAGEFILEXFER DG_IMAGE Operates on NULL data. Filename/Format
already negotiated

DAT_IMAGEINFO DG_IMAGE TW_IMAGEINFO structure

DAT_IMAGELAYOUT DG_IMAGE TW_IMAGELAYOUT structure

DAT_IMAGEMEMXFER DG_IMAGE TW_IMAGEMEMXFER structure

DAT_IMAGEMEMFILEXFER DG_IMAGE TW_IMAGEMEMXFER structure

Data Type Used by Associated structure or type
TWAIN 2.3 Specification 6-5

Chapter 6
Messages
A Message, or MSG, is used to communicate between TWAIN elements what action is to be taken
upon a particular piece of data, or for a data-less operation, what action to perform. If an
application wants to make anything happen in, or inquire any information from, a Source or the
Source Manager, it must make a call to DSM_Entry() with the proper MSG as one parameter of
the operation triplet. The data to be acted upon is also specified in the parameter list of this call.

A MSG is always associated with a Data Group (DG) identifier and a Data Argument Type (DAT)
identifier in an operation triplet. This operation unambiguously specifies what action is to be
taken on what data. Refer to Chapter 7, "Operation Triplets" for the list of defined operation
triplets.

DAT_IMAGENATIVEXFER DG_IMAGE TW_HANDLE;

On Windows - DIB handle

On Macintosh - PicHandle

On Linux - handle to TIFF image

DAT_JPEGCOMPRESSION DG_IMAGE TW_JPEGCOMPRESSION structure

DAT_PALETTE8 DG_IMAGE TW_PALETTE8 structure

DAT_RGBRESPONSE DG_IMAGE TW_RGBRESPONSE structure

Message ID Valid DAT(s) Description of Specified Action

MSG_AUTOMATICCAPTURE
DIRECTORY

DAT_FILESYSTEM Place to store images acquired during automatic
capture

MSG_CHANGEDIRECTORY DAT_FILESYSTEM Change device, domain, host, or image directory

MSG_CLOSEDS DAT_IDENTITY Close the specified Source

MSG_CLOSEDSM DAT_PARENT Close the Source Manager

MSG_CLOSEDSREQ DAT_NULL Source requests for application to close Source

MSG_COPY DAT_FILESYSTEM Copy images across storage devices

MSG_CREATEDIRECTORY DAT_FILESYSTEM Create an image directory

MSG_CUSTOMBASE n/a Not a message in itself, but the baseline a
Source must use when creating a custom
message

MSG_DELETE DAT_FILESYSTEM Delete an image or an image directory

MSG_DEVICEEVENT DAT_NULL Report an event from the Source to the Source
Manager

MSG_DISABLEDS DAT_USERINTERFACE Disable data transfer in the Source

MSG_ENABLEDS DAT_USERINTERFACE Enable data transfer in the Source

Data Type Used by Associated structure or type
6-6 TWAIN 2.3 Specification

Custom Components of Triplets

Custom Data Groups

A manufacturer may choose to implement custom data descriptors that require a new Data
Group. This would be needed if someone decides to extend TWAIN to, say, satellite telemetry.

• The top 8 bits of every DG_xxxx identifier are reserved for use as custom DGs. Custom DG
identifiers must use one of the upper 8 bits of the DG_xxxx identifier. Remember, DGs are bit
flags.

MSG_ENDXFER DAT_PENDINGXFERS Application tells Source that transfer is over

MSG_FORMATMEDIA DAT_FILESYSTEM Format a storage device

MSG_GET various DATs Get all Available Values including Current &
Default

MSG_GETCLOSE DAT_FILESYSTEM Close a file context created by
MSG_GETFIRSTFILE

MSG_GETCURRENT various DATs Get Current value

MSG_GETDEFAULT various DATs Get Source’s preferred default value

MSG_GETFIRST DAT_IDENTITY Get first element from a “list”

MSG_GETFIRSTFILE DAT_FILESYSTEM Get the first file in a directory

MSG_GETINFO DAT_FILESYSTEM Get information about the current file

MSG_GETNEXT DAT_IDENTITY Get next element from a “list”

MSG_GETNEXTFILE DAT_FILESYSTEM Get the next file in a directory

MSG_NULL None No action to be taken

MSG_OPENDS DAT_IDENTITY Open and Initialize the specified Source

MSG_OPENDSM DAT_PARENT Open the Source Manager

MSG_PASSTHRU DAT_PASSTHRU For use by Source Vendors only

MSG_PROCESSEVENT DAT_EVENT Tells Source to check if event/message belongs
to it

MSG_RENAME DAT_FILESYSTEM Rename an image or an image directory

MSG_RESET various DATs Return specified item to power-on (TWAIN
default) condition

MSG_SET various DATs Set one or more values

MSG_USERSELECT DAT_IDENTITY Presents dialog of all Sources to select from

MSG_XFERREADY DAT_NULL The Source has data ready for transfer to the
application

Message ID Valid DAT(s) Description of Specified Action
TWAIN 2.3 Specification 6-7

Chapter 6
• The originator of the custom DG must fill the ProductName field in the application or
Source’s TW_IDENTITY structure with a uniquely descriptive name. The consumer will look
at this field to determine whose custom DG is being used.

• TWAIN provides no formal allocation (or vendor-specific “identifier blocks”) for custom data
group identifiers nor does it do any coordination to avoid collisions.

• The DG_CUSTOMBASE value resides in the TWAIN.H file. All custom IDs must be numerically
greater than this base. A similar custom base “address” is defined for Data Argument Types,
Messages, Capabilities, Return Codes, and Condition Codes. The only difference in concept is
that DGs are the only designators defined as bit flags. All other custom values can be any
integer value larger than the xxxx_CUSTOMBASE defined for that type of designator.

Custom Data Argument Types

DAT_CUSTOMBASE is defined in the TWAIN.H file to allow a Source vendor to define “custom”
DATs for their particular device(s). The application can recognize the Source by checking the
TW_IDENTITY.ProductName and the TW_IDENTITY.TW_VERSION structure. If an application is
aware that this particular Source offers custom DATs, it can use them. No changes to TWAIN or
the Source Manager are required to support such identifiers (or the data structures which they
imply).

Refer to the TWAIN.H file for the value of DAT_CUSTOMBASE for custom DATs. All custom values
must be numerically greater than this constant.

Custom Messages

As with the DATs, MSG_CUSTOMBASE is included in TWAIN.H so that the Source writer can create
custom messages specific to their Source. If the applications understand these custom messages,
actions beyond those defined in this specification can be performed through the normal TWAIN
mechanism. No modifications to TWAIN or the Source Manager are required.

Remember that the consumer of these custom values will look in your
TW_IDENTITY.ProductName field to clarify what the identifier’s value means—there is no other
protection for overlapping custom definitions. Refer to the TWAIN.H file for the value of
MSG_CUSTOMBASE for custom Messages. All custom values must be numerically greater than this
value.
6-8 TWAIN 2.3 Specification

7
Operation Triplets

Chapter Contents

Triplet Overview . 7-1

Format of the Operation Triplet Descriptions. 7-5

Operation Triplets . 7-7

Triplet Overview

From Application to Source Manager (Control Information)

Data Group Data Argument Type Message Page

DG_CONTROL DAT_IDENTITY MSG_CLOSEDS 7-58

MSG_GETDEFAULT 7-61

MSG_GETFIRST 7-62

MSG_GETNEXT 7-64

MSG_OPENDS 7-66

MSG_SET 7-69

MSG_USERSELECT 7-70

DG_CONTROL DAT_PARENT MSG_CLOSEDSM 7-76

MSG_OPENDSM 7-77

DG_CONTROL DAT_STATUS MSG_GET 7-96
TWAIN 2.3 Specification 7-1

Chapter 7
From Application to Source (Control Information)

Data Group Data Argument Type Message Page

DG_CONTROL DAT_CAPABILITY MSG_GET 7-13

MSG_GETCURRENT 7-16

MSG_GETDEFAULT 7-19

MSG_GETHELP 7-21

MSG_GETLABEL 7-22

MSG_GETLABELENUM 7-23

MSG_QUERYSUPPORT 7-25

MSG_RESET 7-27

MSG_RESETALL 7-30

MSG_SET 7-32

MSG_SETCONSTRAINT 7-35

DG_CONTROL DAT_CUSTOMDSDATA MSG_GET

MSG_SET

7-38

7-39

DG_CONTROL DAT_DEVICEEVENT MSG_GET 7-40

DG_CONTROL DAT_FILESYSTEM MSG_AUTOMATICCAPTURE
 DIRECTORY

7-45

MSG_CHANGEDIRECTORY 7-46

MSG_COPY 7-48

MSG_CREATEDIRECTORY 7-49

MSG_DELETE 7-50

MSG_FORMATMEDIA 7-51

MSG_GETCLOSE 7-52

MSG_GETFIRSTFILE 7-53

MSG_GETINFO 7-55

MSG_GETNEXTFILE 7-56

MSG_RENAME 7-57

DG_CONTROL DAT_EVENT MSG_PROCESSEVENT 7-43

DG_CONTROL DAT_PASSTHRU MSG_PASSTHRU 7-78

DG_CONTROL DAT_PENDINGXFERS MSG_ENDXFER 7-79

MSG_GET 7-81

MSG_RESET 7-83

MSG_STOPFEEDER 7-85
7-2 TWAIN 2.3 Specification

From Application to Source (Image Information)

DG_CONTROL DAT_SETUPFILEXFER MSG_GET 7-86

MSG_GETDEFAULT 7-88

MSG_RESET 7-90

MSG_SET 7-92

DG_CONTROL DAT_SETUPMEMXFER MSG_GET 7-94

DG_CONTROL DAT_STATUS MSG_GET 7-96

DG_CONTROL DAT_STATUSUTF8 MSG_GET 7-98

DG_CONTROL DAT_USERINTERFACE MSG_DISABLEDS 7-99

MSG_ENABLEDS 7-100

MSG_ENABLEDSUIONLY 7-103

DG_CONTROL DAT_XFERGROUP MSG_GET 7-104

MSG_SET 7-105

Data Group Data Argument Type Message Page #

DG_IMAGE DAT_CIECOLOR MSG_GET 7-106

DG_IMAGE DAT_EXTIMAGEINFO MSG_GET 7-107

DG_IMAGE DAT_GRAYRESPONSE MSG_RESET 7-114

MSG_SET 7-115

DG_IMAGE DAT_ICCPROFILE MSG_GET 7-116

DG_IMAGE DAT_IMAGEFILEXFER MSG_GET 7-118

DG_IMAGE DAT_IMAGEINFO MSG_GET 7-120

DG_IMAGE DAT_IMAGELAYOUT MSG_GET 7-122

MSG_GETDEFAULT 7-124

MSG_RESET 7-125

MSG_SET 7-126

DG_IMAGE DAT_IMAGEMEMFILEXFER MSG_GET 7-128

DG_IMAGE DAT_IMAGEMEMXFER MSG_GET 7-131

DG_IMAGE DAT_IMAGENATIVEXFER MSG_GET 7-134

DG_IMAGE DAT_JPEGCOMPRESSION MSG_GET 7-136

MSG_GETDEFAULT 7-137

MSG_RESET 7-138

MSG_SET 7-139

Data Group Data Argument Type Message Page
TWAIN 2.3 Specification 7-3

Chapter 7
From Application to Source (Audio Information)

From Source Manager to Source (Control Information)

From Source to Application (Control Information via the Source Manager)
(Used by Windows Sources only

)

TWAIN 2.0 (Entry Points)

DG_IMAGE DAT_PALETTE8 MSG_GET 7-140

MSG_GETDEFAULT 7-141

MSG_RESET 7-142

MSG_SET 7-143

DG_IMAGE DAT_RGBRESPONSE MSG_RESET 7-144

MSG_SET 7-145

Data Group Data Argument Type Message Page #

DG_AUDIO DAT_AUDIOFILEXFER MSG_GET 7-7

DG_AUDIO DAT_AUDIOINFO MSG_GET 7-8

DG_AUDIO DAT_AUDIONATIVEXFER MSG_GET 7-9

Data Group Data Argument Type Message Page #

DG_CONTROL DAT_IDENTITY MSG_CLOSEDS 7-59

MSG_GET 7-60

MSG_OPENDS 7-68

Data Group Data Argument Type Message Page #

DG_CONTROL DAT_NULL MSG_CLOSEDSOK 7-72

MSG_CLOSEDSREQ 7-73

MSG_DEVICEEVENT 7-74

MSG_XFERREADY 7-75

Data Group Data Argument Type Message Page #

DG_CONTROL DAT_ENTRYPOINT MSG_GET 7-41

MSG_SET 7-42

Data Group Data Argument Type Message Page #
7-4 TWAIN 2.3 Specification

Format of the Operation Triplet Descriptions
The following pages describe the operation triplets. They are all included and are arranged in
alphabetical order using the Data Group, Data Argument Type, and Message identifier list.

There are three operations that are duplicated because that have a different originator and/or
destination in each case. They are:

• DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS

✔ from Application to Source Manager

✔ from Source Manager to Source

• DG_CONTROL / DAT_IDENTITY / MSG_OPENDS

✔ from Application to Source Manager

✔ from Source Manager to Source

• DG_CONTROL / DAT_STATUS / MSG_GET

✔ from Application to Source Manager

✔ from Application to Source

The format of each page is:
TWAIN 2.3 Specification 7-5

Chapter 7
Triplet - The Concise DG / DAT / MSG Information

Call

Actual format of the routine call (parameter list) for the operation. Identification of the data
structure used for the pData parameter is included.

Valid States

The states in which the application, Source Manager, or Source may legally invoke the operation.

Description

General description of the operation.

Origin of the Operation (Application, Source Manager or, Source)

The action(s) the application, Source Manager, or Source should take before invoking the
operation.

Destination of the Operation (Source Manager or Source)

The action that the destination element (Source Manager or Source) of the operation will take.

Return Codes

The Return Codes and Condition Codes that are defined and valid for this operation.

See Also

Lists other related operation triplets, capabilities, constants, etc.
7-6 TWAIN 2.3 Specification

Operation Triplets

DG_AUDIO / DAT_AUDIOFILEXFER / MSG_GET

Call

DSM_Entry (pOrigin, pDest, DG_AUDIO, DAT_AUDIOFILEXFER, MSG_GET, NULL);

Valid States

6 (transitions to state 7)

Description

(Similar operation to DAT_IMAGEFILEXFER).

This operation is used to initiate the transfer of audio from the Source to the application via the
disk-file transfer mechanism. It causes the transfer to begin.

No special set up or action required. Application should have already invoked the DG_CONTROL
/ DAT_SETUPFILEXFER / MSG_SET operation, unless the Source’s default transfer format and
file name (typically, TWAINAUD.TMP) are acceptable to the application. The application need only
invoke this operation once per image transferred.

Source should acquire the audio data, format it, create any appropriate header information, and
write everything into the file specified by the previous DG_CONTROL / DAT_SETUPFILEXFER /
MSG_SET operation, and close the file.

Audio transfers are optional. If an application transfers only the images and never changes to
DG_AUDIO, then the audio snippets will be automatically discarded or skipped by the Source.

Return Codes

TWRC_CANCEL

TWRC_XFERDONE

TWRC_FAILURE

 TWCC_BADPROTOCOL.

 TWCC_OPERATIONERROR

 TWCC_SEQERROR - not state 6.

 /* The following introduced for 2.0 or higher */

 TWCC_FILEWRITEERROR

See Also

ACAP_XFERMECH
TWAIN 2.3 Specification 7-7

Chapter 7
DG_AUDIO / DAT_AUDIOINFO / MSG_GET

Call

DSM_Entry (pOrigin, pDest, DG_AUDIO, DAT_AUDIOINFO, MSG_GET,
 pSourceAudioInfo);

pSourceAudioInfo = A pointer to a TW_AUDIOINFO structure

Valid States

6 and 7

Description

Used to get the information of the current audio data ready to transfer. (Similar operation to
DAT_IMAGEINFO)

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL

 TWCC_SEQERROR

See Also

None
7-8 TWAIN 2.3 Specification

DG_AUDIO / DAT_AUDIONATIVEXFER / MSG_GET

Call

DSM_Entry (pOrigin, pDest, DG_AUDIO, DAT_AUDIONATIVEXFER, MSG_GET,
pHandle);

pHandle = A pointer to a variable of type Handle

On Windows - This is a handle variable to WAV data located in memory.

On Macintosh - This is a handle to AIFF data.

On Linux - This is a handle to WAV data.

Valid States

6 (transitions to state 7)

Description

(Similar operation to DAT_IMAGENATIVEXFER).

Causes the transfer of an audioÆs data from the Source to the application, via the Native transfer
mechanism, to begin. The resulting data is stored in main memory in a single block. The data is
stored in AIFF format on the Macintosh and as a WAV format under Microsoft Windows. The
size of the audio snippet that can be transferred is limited to the size of the memory block that can
be allocated by the Source.

Note: This is the default transfer mechanism. All Sources support this mechanism if DG_AUDIO
is supported. The Source will use this mechanism unless the application explicitly
negotiates a different transfer mechanism with ACAP_XFERMECH.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL.

 TWCC_SEQERROR - not state 6.

See Also

ACAP_XFERMECH
TWAIN 2.3 Specification 7-9

Chapter 7
DG_CONTROL / DAT_CALLBACK / MSG_INVOKE_CALLBACK

MSG_INVOKE_CALLBACK is deprecated. It was added for Mac OS X, TWAIN 2.0 DS should use
DAT_NULL. Refer to the TWAIN 1.9 spec for implementation.

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_CALLBACK,
MSG_INVOKE_CALLBACK, (TW_MEMREF)&callback);

Valid States

4, 5, 7 (depending on the message)

Description

This triplet is sent by the DS to the DSM, which in turn calls the application’s registered callback
function. The last argument is a pointer to an initialized TW_CALLBACK structure, which
contains the message to be processed.

The TW_CALLBACK structure should be initialized as follows:

Msg Initialized to any valid DG_CONTROL / DAT_NULL message.

The message specified will be processed in the same manner as the DAT_NULL mechanism
employed by the Windows version. These are:

MSG_XFERREADY

MSG_CLOSEDSREQ

MSG_CLOSEDSOK

MSG_DEVICEEVENT

MSG_INVOKE_CALLBACK is the only way for a Mac OS X TWAIN 1.9 DS to inform the application
of these events.

Return Codes

TWRC_FAILURE

See Also

DG_CONTROL / DAT_CALLBACK / MSG_REGISTER_CALLBACK
DG_CONTROL / DAT_CALLBACK2 / MSG_REGISTER_CALLBACK
7-10 TWAIN 2.3 Specification

DG_CONTROL / DAT_CALLBACK / MSG_REGISTER_CALLBACK

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_CALLBACK,
MSG_REGISTER_CALLBACK, (TW_MEMREF)&callback);

Valid States

4

Description

This triplet is sent to the DSM by the Application to register the application’s entry point with the
DSM, so that the DSM can use callbacks to inform the application of events generated by the DS.

The last argument is a pointer to an initialized TW_CALLBACK structure. The TW_CALLBACK
structure should be initialized as follows:

CallBackProc The callback function’s entry point, used by DSM to send
DAT_NULL/MSG_xxx

RefCon An application defined reference constant. Returned as
_pData in callback.

Note: Application should refrain from assigning a pointer to RefCon if they want the same
behavior in 32bit and 64bit. RefCon is not large enough to hold a pointer as 64bit.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

TWCC_BADVALUE

See Also

DG_CONTROL / DAT_CALLBACK / MSG_INVOKE_CALLBACK
DG_CONTROL / DAT_CALLBACK2 / MSG_REGISTER_CALLBACK
TWAIN 2.3 Specification 7-11

Chapter 7
DG_CONTROL / DAT_CALLBACK2 / MSG_REGISTER_CALLBACK

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_CALLBACK2,
MSG_REGISTER_CALLBACK, (TW_MEMREF)&callback);

callback = A pointer to a TW_CALLBACK2 structure

Valid States

4

Description

This triplet is sent to the DSM by the Application to register the application’s entry point with the
DSM, so that the DSM can use callbacks to inform the application of events generated by the DS.

The last argument is a pointer to an initialized TW_CALLBACK2 structure. The TW_CALLBACK2
structure should be initialized as follows:

CallBackProc The callback function’s entry point, used by
MSG_REGISTER_CALLBACK.

RefCon An application defined reference constant.

Return Codes

TWRC_FAILURE

See Also

DG_CONTROL / DAT_CALLBACK / MSG_INVOKE_CALLBACK
7-12 TWAIN 2.3 Specification

DG_CONTROL / DAT_CAPABILITY / MSG_GET

Call

DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_CAPABILITY, MSG_GET,
pCapability);

pCapability = A pointer to a TW_CAPABILITY structure.

Valid States

4 through 7

Description

Returns the Source’s Current, Default and Available Values for a specified capability.

These values reflect previous MSG_SET or MSG_SETCONSTRAINT operations on the capability, or
Source’s automatic changes. (See MSG_SET).

Note: This operation does not change the Current or Available Values of the capability.

Application

Set the pCapability fields as follows:

pCapability->Cap = the CAP_xxxx or ACAP_xxxx or ICAP_xxxx identifier

pCapability->ConType = TWON_DONTCARE16

pCapability->hContainer = NULL

The Source will allocate the memory for the necessary container structure but the application must
free it when the operation is complete and the application no longer needs to maintain the
information.

Use MSG_GET:

• As the first step in negotiation of a capability’s Available Values.

• To check the results if a MSG_SET returns TWRC_CHECKSTATUS.

• To check the Available, Current and Default Values with one command.

This operation may fail for a low memory condition. Either recover from a TWCC_LOWMEMORY
failure by freeing memory for the Source to use so it can continue, or terminating the acquisition
and notifying the user of the low memory problem.

Source

If the application requests this operation on a capability your Source does not recognize (and
you’re sure you’ve implemented all the capabilities that you’re required to), disregard the
operation, but return TWRC_FAILURE with TWCC_BADCAP.
TWAIN 2.3 Specification 7-13

Chapter 7
If you support the capability, fill in the fields listed below and allocate the container structure and
place its handle into pCapability->hContainer. The container should be referenced by a
“handle” of type TW_HANDLE.

Fill the fields in pCapability as follows:

pCapability->ConType = TWON_ARRAY,
TWON_ONEVALUE,
TWON_ENUMERATION, or
TWON_RANGE

pCapability->hContainer = TW_HANDLE referencing a container of ConType

Set ConType to the container type your Source uses for this capability. For the container type of
TWON_ONEVALUE provide the Current Value. For the container type of TWON_ARRAY provide the
Available Values. For container types TWON_ENUMERATION and TWON_RANGE provide the
Current, Default and Available Values.

This is a memory allocation operation. It is possible for this operation to fail due to a low memory
condition. Be sure to verify that the allocation is successful. If it is not, attempt to reduce the
amount of memory occupied by the Source. If the allocation cannot be made, return
TWRC_FAILURE with TWCC_LOWMEMORY to the application and set the
pCapability->hContainer handle to NULL.

Note: The Source must be able to respond to an inquiry about any of its capabilities at any time
that the Source is open.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADCAP /* Unknown capability--Source does not recognize */
 /* this capability. This code should not be used */
 /* by sources after 1.6. Applications still need */
 /* to test for it for backward compatibility. */

 TWCC_CAPUNSUPPORTED /* Capability not supported by source. Sources*/
 /* 1.6 and newer must use this instead of */
 /* using TWCC_BADCAP. */

 TWCC_CAPBADOPERATION /* Operation not supported by capability.*/
 /* Sources 1.6 and newer must use this */
 /* instead of using TWCC_BADCAP.

 TWCC_CAPSEQERROR /* Capability has a dependency on another */
 /* capability. Sources 1.6 and newer must */
 /* use this instead of using TWCC_BADCAP. */

 TWCC_BADDEST /* No such Source in session with application */
 TWCC_LOWMEMORY /* Not enough memory to complete the operation*/
 TWCC_SEQERROR /* Operation invoked in invalid state */
7-14 TWAIN 2.3 Specification

See Also

DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT
DG_CONTROL / DAT_CAPABILITY / MSG_GETDEFAULT
DG_CONTROL / DAT_CAPABILITY / MSG_RESET
DG_CONTROL / DAT_CAPABILITY / MSG_SET
DG_CONTROL / DAT_CAPABILITY / MSG_SETCONSTRAINT

“Capability Containers” on page 2-15 and TW_ONEVALUE, TW_ENUMERATION, TW_RANGE,
TW_ARRAY.

“Capability Constants” on page 8-73 (in Chapter 8, "Data Types and Data Structures")

Capability Containers: TW_ONEVALUE, TW_ENUMERATION, TW_RANGE, TW_ARRAY (in Chapter 8,
"Data Types and Data Structures")

Listing of all capabilities “The Capability Listings” on page 10-12 (in Chapter 10, "Capabilities")
TWAIN 2.3 Specification 7-15

Chapter 7
DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT

Call

DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_CAPABILITY, MSG_GETCURRENT,
pCapability);

pCapability = A pointer to a TW_CAPABILITY structure.

Valid States

4 through 7

Description

Returns the Source’s Current Value for the specified capability.

The Current Value reflects previous MSG_SET operations on the capability, or Source’s automatic
changes. (See MSG_SET).

Note: This operation does not change the Current Values of the capability.

Application

Set the pCapability fields as follows:

pCapability->Cap = the CAP_xxxx or ACAP_xxxx or ICAP_xxxx identifier
pCapability->ConType = TWON_DONTCARE16
pCapability->hContainer = NULL

The Source will allocate the memory for the necessary container structure but the application must
free it when the operation is complete and the application no longer needs to maintain the
information.

Use MSG_GETCURRENT:

• To check the Source’s power-on Current Values (see Chapter 10, "Capabilities" for TWAIN-
defined defaults for each capability).

• To check just the Current Value (in place of using MSG_GET).

• In State 6 to determine the settings. They could have been set by the user (if
TW_USERINTERFACE.ShowUI = TRUE) or be the results of automatic processes used by the
Source.

This operation may fail for a low memory condition. Either recover from a TWCC_LOWMEMORY
failure by freeing memory for the Source to use so it can continue, or terminating the acquisition
and notifying the user of the low memory problem.
7-16 TWAIN 2.3 Specification

Source

If the application requests this operation on a capability your Source does not recognize (and
you’re sure you’ve implemented all the capabilities that you’re required to), disregard the
operation, but return TWRC_FAILURE with TWCC_BADCAP.

If you support the capability, fill in the fields listed below and allocate the container structure and
place its handle into pCapability->hContainer. The container should be referenced by a
“handle” of type TW_HANDLE.

Fill the fields in pCapability as follows:

pCapability->ConType = TWON_ARRAY or TWON_ONEVALUE

pCapability->hContainer = TW_HANDLE referencing a container of ConType

Set ConType to the container type that matches the type for this capability. Fill the fields in the
container structure with the Current Value of the capability.

This is a memory allocation operation. It is possible for this operation to fail due to a low memory
condition. Be sure to verify that the allocation is successful. If it is not, attempt to reduce the
amount of memory occupied by the Source. If the allocation cannot be made, return
TWRC_FAILURE with TWCC_LOWMEMORY to the application and set the
pCapability->hContainer handle to NULL.

Note that the Source must be able to respond to an inquiry about any of its capabilities at any time
that the Source is open.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADCAP /* Unknown capability--Source does not recognize */
 /* this capability. This code should not be used */
 /* by sources after 1.6. Applications still need */
 /* to test for it for backward compatibility. */

 TWCC_CAPUNSUPPORTED /* Capability not supported by source. Sources*/
 /* 1.6 and newer must use this instead of */
 /* using TWCC_BADCAP. */

 TWCC_CAPBADOPERATION /* Operation not supported by capability. */
 /* Sources 1.6 and newer must use this instead*/
 /* of using TWCC_BADCAP. */

 TWCC_CAPSEQERROR /* Capability has a dependency on another */
 /* capability. Sources 1.6 and newer must use */
 /* this instead of using TWCC_BADCAP. */

 TWCC_BADDEST /* No such Source in-session with */
 /* application */

 TWCC_LOWMEMORY /* Not enough memory to complete the */
 /* operation */

 TWCC_SEQERROR /* Operation invoked in invalid state. */
TWAIN 2.3 Specification 7-17

Chapter 7
See Also

DG_CONTROL / DAT_CAPABILITY / MSG_GET
DG_CONTROL / DAT_CAPABILITY / MSG_GETDEFAULT
DG_CONTROL / DAT_CAPABILITY / MSG_RESET
DG_CONTROL / DAT_CAPABILITY / MSG_SET
DG_CONTROL / DAT_CAPABILITY / MSG_SETCONSTRAINT

Capability Constants (in Chapter 8, "Data Types and Data Structures")

Capability Containers: TW_ONEVALUE, TW_ENUMERATION, TW_RANGE, TW_ARRAY (in Chapter 8,
"Data Types and Data Structures")

Listing of all capabilities (in Chapter 10, "Capabilities").
7-18 TWAIN 2.3 Specification

DG_CONTROL / DAT_CAPABILITY / MSG_GETDEFAULT

Call

DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_CAPABILITY, MSG_GETDEFAULT,
pCapability);

pCapability = A pointer to a TW_CAPABILITY structure.

Valid States

4 through 7

Description

Returns the Source’s Default Value. This is the Source’s preferred default value.

The Source’s Default Value cannot be changed.

Application

Set the pCapability fields as follows:

pCapability->Cap = the CAP_xxxx or ACAP_xxxx or ICAP_xxxx identifier
pCapability->ConType = TWON_DONTCARE16
pCapability->hContainer = NULL

The Source will allocate the memory for the necessary container structure but the application must
free it when the operation is complete and the application no longer needs to maintain the
information.

Use MSG_GETDEFAULT:

• To check the Source’s preferred Values. Using the Source’s preferred default as the Current
Value may increase performance in some Sources.

This operation may fail for a low memory condition. Either recover from a TWCC_LOWMEMORY
failure by freeing memory for the Source to use so it can continue, or terminating the acquisition
and notifying the user of the low memory problem.

Source

If the application requests this operation on a capability your Source does not recognize (and you
are sure you have implemented all the capabilities that you’re required to), disregard the
operation, but return TWRC_FAILURE with TWCC_BADCAP.

If you support the capability, fill in the fields listed below and allocate the container structure and
place its handle into pCapability->hContainer. The container should be referenced by a
“handle” of type TW_HANDLE.

• Fill the fields in pCapability as follows:

pCapability->ConType = TWON_ARRAY or TWON_ONEVALUE

pCapability->hContainer = TW_HANDLE referencing a container of ConType

Set ConType to the container type that matches for this capability. Fill the fields in the container
with the Default Value of this capability.
TWAIN 2.3 Specification 7-19

Chapter 7
The Default Value is the preferred value for the Source. This value is used as the power-on value
for capabilities if TWAIN does not specify a default.

This is a memory allocation operation. It is possible for this operation to fail due to a low memory
condition. Be sure to verify that the allocation is successful. If it is not, attempt to reduce the
amount of memory occupied by the Source. If the allocation cannot be made return
TWRC_FAILURE with TWCC_LOWMEMORY to the application and set the
pCapability->hContainer handle to NULL.

Note that the Source must be able to respond to an inquiry about any of its capabilities at any time
that the Source is open.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADCAP /* Unknown capability--Source does not recognize */
 /* this capability. This code should not be used */
 /* by sources after 1.6. Applications still need */
 /* to test for it for backward compatibility. */

 TWCC_CAPUNSUPPORTED /* Capability not supported by source. Sources*/
 /* 1.6 and newer must use this instead of */
 /* using TWCC_BADCAP. */

 TWCC_CAPBADOPERATION /* Operation not supported by capability. */
 /* Sources 1.6 and newer must use this instead*/
 /* of using TWCC_BADCAP.

 TWCC_CAPSEQERROR /* Capability has a dependency on another */
 /* capability. Sources 1.6 and newer must use */
 /* this instead of using TWCC_BADCAP. */

 TWCC_BADDEST /* No such Source in-session with */
 /* application */

 TWCC_LOWMEMORY /* Not enough memory to complete the */
 /* operation */

 TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_CONTROL / DAT_CAPABILITY / MSG_GET
DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT
DG_CONTROL / DAT_CAPABILITY / MSG_RESET
DG_CONTROL / DAT_CAPABILITY / MSG_SET
DG_CONTROL / DAT_CAPABILITY / MSG_SETCONSTRAINT

Capability Constants (in Chapter 10, "Capabilities")

Capability Containers: TW_ONEVALUE, TW_ENUMERATION, TW_RANGE, TW_ARRAY (in Chapter 8,
"Data Types and Data Structures")

Listing of all capabilities (in Chapter 10, "Capabilities")
7-20 TWAIN 2.3 Specification

DG_CONTROL / DAT_CAPABILITY / MSG_GETHELP

Call

DSM_Entry(pOrigin, NULL, DG_CONTROL, DAT_CAPABILITY, MSG_GETHELP,
pTwCapability);

pTwCapability = A pointer to a TW_CAPABILITY structure.

Valid States

4

Description

Returns help text suitable for use in a GUI; for instance: “Specify the amount of detail in an image.
Higher values result in more detail.” for ICAP_XRESOLUTION.

Application

The Application frees the handle.

Source

The Source returns a TW_ONEVALUE container with a TWTY_HANDLE item type. The handle points
to a string. The encoding of the string is determined by the
TW_IDENTITY.TW_VERSION.Language reported back by the Source, unless overridden by
CAP_LANGUAGE.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL

 TWCC_CAPUNSUPPORTED

See Also

DG_CONTROL / DAT_CAPABILITY / MSG_GETLABEL
TWAIN 2.3 Specification 7-21

Chapter 7
DG_CONTROL / DAT_CAPABILITY / MSG_GETLABEL

Call

DSM_Entry(pOrigin, NULL, DG_CONTROL, DAT_CAPABILITY, MSG_GETLABEL,
pTwCapability);

pTwCapability = A pointer to a TW_CAPABILITY structure.

Valid States

4

Description

Returns a label suitable for use in a GUI, for instance “Resolution:” for
ICAP_XRESOLUTION.

Application

The Application frees the handle.

Source

The Source returns a TW_ONEVALUE container with a TWTY_HANDLE item type. The handle points
to a string. The encoding of the string is determined by the
TW_IDENTITY.TW_VERSION.Language reported back by the Source, unless overridden by
CAP_LANGUAGE.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL

 TWCC_CAPUNSUPPORTED

See Also

DG_CONTROL / DAT_CAPABILITY / MSG_GETHELP
7-22 TWAIN 2.3 Specification

DG_CONTROL / DAT_CAPABILITY / MSG_GETLABELENUM

Call

DSM_Entry(pOrigin, NULL, DG_CONTROL, DAT_CAPABILITY, MSG_GETLABELENUM,
pTwCapability);

pTwCapability = A pointer to a TW_CAPABILITY structure.

Valid States

4

Description

Return all of the labels for a capability of type TW_ARRAY or TW_ENUMERATION, for example “US
Letter” for ICAP_SUPPORTEDSIZES’ TWSS_USLETTER.

Application

The Application receives a TW_ARRAY with a TW_STR255 type. Each index in the array
corresponds to the same index of a TW_ARRAY or a TW_ENUMERATION returned by a MSG_GET for
that same capability.

For example, if ICAP_SUPPORTEDSIZES returns the following for MSG_GET:

ptwenumeration->ItemType = TWTY_UINT16
ptwenumeration->NumItems = 3
ptwenumeration->CurrentIndex = 0
ptwenumeration->DefaultIndex = 0
((TW_UINT16*)&ptwenumeration->ItemList)[0] = TWSS_USLETTER
((TW_UINT16*)&ptwenumeration->ItemList)[1] = TWSS_A4LEDGER
((TW_UINT16*)&ptwenumeration->ItemList)[2] = TWSS_USEXECUTIVE

It should return something like the following for MSG_GETLABELENUM:

ptwarray->ItemType = TWTY_STR255
ptwarray ->NumItems = 3
((char*)&ptwarray->ItemList)[0*sizeof(TW_STR255)] is “US Letter”
((char*)&ptwarray->ItemList)[1*sizeof(TW_STR255)] is “A4 Letter”
((char*)&ptwarray->ItemList)[2*sizeof(TW_STR255)] is “US Executive”

Source

The Source returns a TW_ARRAY container with a TW_STR255 item type. The string data is UTF-8
encoded. The language is determined by the TW_IDENTITY.TW_VERSION.Language reported
back by the Source, unless overridden by CAP_LANGUAGE.

This feature is only supported for capabilities that return TW_ARRAY or TW_ENUMERATION for
MSG_GET. Other capabilities (like TW_RANGE or TW_ONEVALUE) return TWRC_FAILURE /
TWCC_BADPROTOCOL.
TWAIN 2.3 Specification 7-23

Chapter 7
Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_CAPUNSUPPORTED
 TWCC_BADPROTOCOL

See Also

DG_CONTROL / DAT_CAPABILITY / MSG_GETLABEL
7-24 TWAIN 2.3 Specification

DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT

Call

DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_CAPABILITY, MSG_QUERYSUPPORT,
pCapability);

pCapability = A pointer to a TW_CAPABILITY structure.

Valid States

4 through 7

Description

Returns the Source’s support status of this capability.

Application

Set the pCapability fields as follows:

pCapability->Cap = the CAP_xxxx or ACAP_xxxx or ICAP_xxxx identifier
pCapability->ConType = TWON_ONEVALUE
pCapability->hContainer = NULL

The Source will allocate the memory for the necessary container structure but the application must
free it when the operation is complete and the application no longer needs to maintain the
information.

Use MSG_QUERYSUPPORT:

• To check the whether the Source supports a particular operation on the capability.

This operation may fail for a low memory condition. Either recover from a TWCC_LOWMEMORY
failure by freeing memory for the Source to use so it can continue, or terminating the acquisition
and notifying the user of the low memory problem.

Source

Fill the fields in pCapability as follows:

pCapability->ConType = TWON_ONEVALUE

pCapability->hContainer = TW_HANDLE referencing a container of type
TW_ONEVALUE.

Fill the fields in TW_ONEVALUE as follows:

1. ItemType = TWTY_INT32;

2. Item = Bit pattern representing the set of operations that are supported by the Data Source on
this capability (TWQC_GET, TWQC_SET, TWQC_GETCURRENT, TWQC_GETDEFAULT,
TWQC_RESET, TWQC_SETCONSTRAINT);
TWAIN 2.3 Specification 7-25

Chapter 7
If the application requests this operation on a capability your Source does not recognize (and
you’re sure you’ve implemented all the capabilities that you’re required to), do not disregard the
operation, but fill out the TWON_ONEVALUE container with a value of zero(0) for the Item field,
indicating no support for any of the DAT CAPABILITY operations, and return a status of
TWRC_SUCCESS.

If the capability will currently return TWRC_FAILURE / TWCC_CAPSEQERROR, because its
availability depends on that of other capabilities, then fill out the TWON_ONEVALUE container with
a value of zero (0) for the Item field, indicating no support for any of the DAT CAPABILITY
operations, and return a status of TWRC_SUCCESS.

This is a memory allocation operation. It is possible for this operation to fail due to a low memory
condition. Be sure to verify that the allocation is successful. If it is not, attempt to reduce the
amount of memory occupied by the Source. If the allocation cannot be made return
TWRC_FAILURE with TWCC_LOWMEMORY to the application and set the
pCapability->hContainer handle to NULL.

Note that the Source must be able to respond to an inquiry about any of its capabilities at any time
that the Source is open.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session with */
 /* application */

TWCC_LOWMEMORY /* Not enough memory to complete the */
 /* operation */

See Also

DG_CONTROL / DAT_CAPABILITY / MSG_GET
DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT
DG_CONTROL / DAT_CAPABILITY / MSG_RESET
DG_CONTROL / DAT_CAPABILITY / MSG_SET

Capability Constants (in Chapter 8, "Data Types and Data Structures")

Capability Container: TW_ONEVALUE (in Chapter 8, "Data Types and Data Structures").

Listing of all capabilities (in Chapter 10, "Capabilities")
7-26 TWAIN 2.3 Specification

DG_CONTROL / DAT_CAPABILITY / MSG_RESET

Call

DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_CAPABILITY, MSG_RESET,
pCapability);

pCapability = A pointer to a TW_CAPABILITY structure.

Valid States

4 (when indicated by MSG_QUERYSUPPORT)

5, 6, 7 (when the capability appears in the CAP_EXTENDEDCAPS array, and when indicated by
MSG_QUERYSUPPORT)

Description

Change the Current Value of the specified capability back to its power-on value and return the
new Current Value.

The power-on value is the Current Value the Source started with when it entered State 4 after a
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS. These values are listed as TWAIN defaults (in
Chapter 10, "Capabilities"). If “no default” is specified, the Source uses it preferred default value
(returned from MSG_GETDEFAULT).

Application

Set the pCapability fields as follows:

pCapability->Cap = the CAP_xxxx or ACAP_xxxx or ICAP_xxxx identifier
pCapability->ConType = TWON_DONTCARE16
pCapability->hContainer = NULL

The Source will allocate the memory for the necessary container structure but the application must
free it when the operation is complete and the application no longer needs to maintain the
information.

Use MSG_RESET:

• To set the Current Value of the specified capability to the Source’s mandatory or preferred
value, and to remove any constraints from the allowed values supported by the Source.

This operation may fail for a low memory condition. Either recover from a TWCC_LOWMEMORY
failure by freeing memory for the Source to use so it can continue, or terminating the acquisition
and notifying the user of the low memory problem.

Source

If the application requests this operation on a capability your Source does not recognize (and
you’re sure you’ve implemented all the capabilities that you’re required to), disregard the
operation, but return TWRC_FAILURE with TWCC_BADCAP.
TWAIN 2.3 Specification 7-27

Chapter 7
If you support the capability, reset the Current Value of the capability back to its power-on value.
This value must also match the TWAIN default listed in Chapter 10, "Capabilities".

Also return the new Current Value (just like in a MSG_GETCURRENT). Fill in the fields listed below
and allocate the container structure and place its handle into pCapability->hContainer. The
container should be referenced by a “handle” of type TW_HANDLE.

Fill the fields in pCapability as follows:

pCapability->ConType = TWON_ARRAY or TWON_ONEVALUE

pCapability->hContainer = TW_HANDLE referencing a container of ConType

Set ConType to the container type that matches the type for this capability. Fill the fields in the
container structure with the Current Value of the capability (after resetting it as stated above).

This is a memory allocation operation. It is possible for this operation to fail due to a low memory
condition. Be sure to verify that the allocation is successful. If it is not, attempt to reduce the
amount of memory occupied by the Source. If the allocation cannot be made return
TWRC_FAILURE with TWCC_LOWMEMORY to the application and set the
pCapability->hContainer handle to NULL.

Note that this operation is only valid in State 4, unless permitted by the presence of the capability
in the CAP_EXTENDEDCAPS array. Any attempt to invoke it in any other state should be
disregarded, though the Source should return TWRC_FAILURE with TWCC_SEQERROR.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADCAP /* Unknown capability--Source does not recognize */
 /* this capability. This code should not be used */
 /* by sources after 1.6. Applications still need */
 /* to test for it for backward compatibility. */

 TWCC_CAPUNSUPPORTED /* Capability not supported by source Sources*/
 /* 1.6 and newer must use this instead of */
 /* using TWCC_BADCAP. */

 TWCC_CAPBADOPERATION /* Operation not supported by capability. */
 /* Sources 1.6 and newer must use this instead*/
 /* of using TWCC_BADCAP.

 TWCC_CAPSEQERROR /* Capability has a dependency on another */
 /* capability. Sources 1.6 and newer must use */
 /* this instead of using TWCC_BADCAP. */

 TWCC_BADDEST /* No such Source in-session with */
 /* application */

 TWCC_LOWMEMORY /* Not enough memory to complete the */
 /* operation */

 TWCC_SEQERROR /* Operation invoked in invalid state */
7-28 TWAIN 2.3 Specification

See Also

DG_CONTROL / DAT_CAPABILITY / MSG_GET
DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT
DG_CONTROL / DAT_CAPABILITY / MSG_GETDEFAULT
DG_CONTROL / DAT_CAPABILITY / MSG_SET
DG_CONTROL / DAT_CAPABILITY / MSG_SETCONSTRAINT

“Capability Constants” on page 8-73.

Capability Containers: TW_ONEVALUE, TW_ENUMERATION, TW_RANGE, TW_ARRAY (in Chapter 8,
"Data Types and Data Structures")

Listing of all capabilities (in Chapter 10, "Capabilities".)
TWAIN 2.3 Specification 7-29

Chapter 7
DG_CONTROL / DAT_CAPABILITY / MSG_RESETALL

Call

DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_CAPABILITY, MSG_RESETALL,
pCapability);

pCapability = A pointer to a TW_CAPABILITY structure.

Valid States

4 only

Description

This command resets all current values back to original power-on defaults. All current values are
set to their default value except where mandatory values are required. All constraints are
removed for all of the negotiable capabilities supported by the driver.

Application

Set the pCapability fields as follows:

pCapability->Cap = CAP_SUPPORTEDCAPS

pCapability->ConType = TWON_DONTCARE16

pCapability->hContainer = NULL

The Source will not allocate any memory as a part of this call. It will only return a status to
indicate success or failure. If this call succeeds then the application must assume that all
capabilities have been reset, as well as any DAT structures that are associated with capabilities
(such as DAT_IMAGELAYOUT or DAT_JPEGCOMPRESSION).

Source

The TW_CAPABILITY structure has no special meaning for this call. It is not required that the
application set the Cap field to CAP_SUPPORTEDCAPS, so do not test for it. Do not change the
structure in any way. Do not allocate any memory for this call.

When this call is complete the driver should be restored to factory defaults, matching the settings
it had when first installed on the user’s machine.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADCAP /* Unknown capability--Source does not */
 /* recognize this capability. This code */
 /* should not be used by sources after */
 /* 1.6. Applications still need to test */

/* for it for backward compatibility. */
7-30 TWAIN 2.3 Specification

 TWCC_CAPUNSUPPORTED /* Capability not supported by */
 /* source. Sources 1.6 and newer */
 /* must use this instead of */
 /* using TWCC_BADCAP. */

 TWCC_CAPBADOPERATION /* Operation not supported by */
 /* capability. Sources 1.6 and newer */
 /* must use this instead of using */
 /* TWCC_BADCAP. */

 TWCC_CAPSEQERROR /* Capability has a dependency on another */
 /* capability. Sources 1.6 and newer */
 /* must use this instead of using */
 /* TWCC_BADCAP. */

 TWCC_BADDEST /* No such Source in-session with */
 /* application */

 TWCC_LOWMEMORY /* Not enough memory to complete the */
 /* operation */

 TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_CONTROL / DAT_CAPABILITY / MSG_GET
DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT
DG_CONTROL / DAT_CAPABILITY / MSG_GETDEFAULT
DG_CONTROL / DAT_CAPABILITY / MSG_RESET
DG_CONTROL / DAT_CAPABILITY / MSG_SET
DG_CONTROL / DAT_CAPABILITY / MSG_SETCONSTRAINT

Capability Constants (in Chapter 10, "Capabilities")

Capability Containers: TW_ONEVALUE, TW_ENUMERATION, TW_RANGE, TW_ARRAY (in Chapter 8,
"Data Types and Data Structures")

Listing of all capabilities (in Chapter 10, "Capabilities")
TWAIN 2.3 Specification 7-31

Chapter 7
DG_CONTROL / DAT_CAPABILITY / MSG_SET

Call

DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_CAPAB ILITY, MSG_SET,
pCapability);

pCapability = A pointer to a TW_CAPABILITY structure.

Valid States

4 (when indicated by MSG_QUERYSUPPORT)

5, 6, 7 (when the capability appears in the CAP_EXTENDEDCAPS array, and when indicated by
MSG_QUERYSUPPORT)

Description

Changes the Current Value of the capability to that specified by the application. As of TWAIN 2.2
MSG_SET only modifies the Current Value of the specified capability, constraints cannot be
changed with MSG_SET. The original functionality of MSG_SET has been addressed in
MSG_SETCONSTRAINT for TWAIN 2.2 Sources and higher. (Please refer to DG_CONTROL /
DAT_CAPABILITY / MSG_SETCONSTRAINT.)

Application

An application will use the setting of a capability’s Current and Available Values differently
depending on how the Source was enabled (DG_CONTROL / DAT_USERINTERFACE /
MSG_ENABLEDS). As of TWAIN 2.2 MSG_SET can only change the Current Value, any attempt to
change Default or Constraint Values should return TWRC_CHECKSTATUS with only the Current
Value changed.

If TW_USERINTERFACE.ShowUI = TRUE

• In State 4, set the Current Value to be displayed to the user as the current value. This value will
be used for acquiring the image unless changed by the user or an automatic process (such as
ICAP_AUTOBRIGHT).

• In State 6, get the Current Value which was chosen by the user or automatic process. This is the
setting used in the upcoming transfer.

If TW_USERINTERFACE.ShowUI = FALSE

• In State 4, set the Current Value to the setting that will be used to acquire images (unless
automatic settings are set to TRUE, for example: ICAP_AUTOBRIGHT).

• In State 6, get the Current Value which was chosen by any automatic processes. This is the
setting used in the upcoming transfer.

If possible, use the same container type in a MSG_SET that the Source returned from a MSG_GET.
Allocate the container structure. This is where you will place the value(s) you wish to have the
Source set. Store the handle into pCapability->hContainer. The container must be
referenced by a “handle” of type TW_HANDLE.
7-32 TWAIN 2.3 Specification

Set the following:

pCapability->ConType = TWON_ARRAY, TWON_ONEVALUE, TWON_ENUMERATION, or
TWON_RANGE

pCapability->Cap = CAP_xxxx designator of capability of interest

pCapability->hContainer = TW_HANDLE referencing a container of ConType

Place the value(s) that you wish the Source to use in the container. If successful, these values will
supersede any previous negotiations for this capability.

The application must free the container it allocated when the operation is complete and the
application no longer needs to maintain the information.

Source

Return TWRC_FAILURE / TWCC_BADCAP:

• If the application requests this operation on a capability your Source does not recognize (and
you’re sure you’ve implemented all the capabilities that you’re required to). Disregard the
operation.

Return TWRC_FAILURE / TWCC_BADVALUE:

• If the application requests that a value be set that lies outside the supported range of values for
the capability (smaller than your minimum value or larger than your maximum value). Set the
value to that which most closely approximates the requested value.

• If the application sends a container that you do not support, or do not support in a MSG_SET.

Returns TRCC_CHECKSTATUS:

• If the application requests one or more values that lie within the supported range of values (but
that value does not exactly match one of the supported values), set the value to the nearest
supported value. The application should then do a MSG_GET to check these values.

Return TWRC_FAILURE / TWCC_SEQERROR:

• If the application sends MSG_SET in State 5, 6 or 7 and the capability is not allowed by
CAP_EXTENDEDCAPS.

If the request is acceptable, use the container structure referenced by
pCapability->hContainer to set the Current value for the capability.

Return Codes

TWRC_SUCCESS

TWRC_CHECKSTATUS /* Capability value(s) could not be matched exactly */

TWRC_FAILURE

 TWCC_BADCAP /* Source does not recognize this capability. This */
/* code should not be used by sources after 1.6. */
/* Applications still need to test it for backward */
/* compatibility. */
TWAIN 2.3 Specification 7-33

Chapter 7
 TWCC_CAPUNSUPPORTED /* Capability not supported by source. */
/* Sources 1.6 and newer must use this. */

 TWCC_CAPBADOPERATION /* Operation not supported by capability. */
/* Sources 1.6 and newer must use this. */

 TWCC_CAPSEQERROR /* Capability has a dependency on another */
/* capability Sources 1.6 and newer must use */
/* this. */

 TWCC_BADDEST /* No such Source in-session with application */

 TWCC_BADVALUE /* Value outside Source’s range for the capability */

 TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_CONTROL / DAT_CAPABILITY / MSG_GET
DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT
DG_CONTROL / DAT_CAPABILITY / MSG_GETDEFAULT
DG_CONTROL / DAT_CAPABILITY / MSG_RESET
DG_CONTROL / DAT_CAPABILITY / MSG_SETCONSTRAINT

Capability Constants (in Chapter 8, "Data Types and Data Structures")

Capability Containers: TW_ONEVALUE, TW_ENUMERATION, TW_RANGE, TW_ARRAY (in Chapter 8,
"Data Types and Data Structures")

Listing of all capabilities (in Chapter 10, "Capabilities")
7-34 TWAIN 2.3 Specification

DG_CONTROL / DAT_CAPABILITY / MSG_SETCONSTRAINT

Call

DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_CAPABILITY, MSG_SETCONSTRAINT,
pCapability);

pCapability = A pointer to a TW_CAPABILITY structure.

Valid States

4 (when indicated by MSG_QUERYSUPPORT)

5, 6, 7 (when the capability appears in the CAP_EXTENDEDCAPS array, and when indicated by
MSG_QUERYSUPPORT)

Description

Changes the Current Value(s) and Available Value(s) of the specified capability to those specified
by the application.

Current Values are set when the container is a TW_ONEVALUE or TW_ARRAY. Available and
Current Values are set when the container is a TW_ENUMERATION, TW_ARRAY or TW_RANGE.

Note: Sources are not required to allow restriction of their Available Values, however, this is
strongly recommended.

Application

An application will use the setting of a capability’s Available Values when the Source was enabled
(DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS) with TW_USERINTERFACE.ShowUI
= TRUE.

• In State 4, set the Current Value(s) to be displayed to the user as the current value. This value
will be used for acquiring the image unless changed by the user or an automatic process (such
as ICAP_AUTOBRIGHT).

• In State 4, set the Available Values to restrict the settings displayed to the user and available for
use by the Source.

• In State 6, get the Current Value(s) which was chosen by the user or automatic process. This is
the setting used in the upcoming transfer.

Store the handle into pCapability->hContainer. The container must be referenced by a
“handle” of type TW_HANDLE.

Set the following:

pCapability->ConType = TWON_ARRAY, TWON_ONEVALUE, TWON_ENUMERATION, or
TWON_RANGE

pCapability->Cap = CAP_xxxx designator of capability of interest

pCapability->hContainer = TW_HANDLE referencing a container of ConType
TWAIN 2.3 Specification 7-35

Chapter 7
Place the value(s) that you wish the Source to use in the container. If successful, these values will
supersede any previous negotiations for this capability.

The application must free the container it allocated when the operation is complete and the
application no longer needs to maintain the information.

Source

Return TWRC_FAILURE / TWCC_BADCAP:

• If the application requests this operation on a capability your Source does not recognize (and
you’re sure you’ve implemented all the capabilities that you’re required to). Disregard the
operation.

Return TWRC_FAILURE / TWCC_BADVALUE:

• If the application requests that all values be set which are outside the supported values for the
capability.

• If the application sends a container that you do not support, or do not support in a
MSG_SETCONSTRAINT.

• If the application attempts to set the Available Values and the Source does not support
restriction of the capability’s Available Values.

Returns TRCC_CHECKSTATUS:

• If the application requests one or more values that are supported (but all values do not exactly
match one of the supported values). The application should then do a MSG_GET to check these
values.

Return TWRC_FAILURE / TWCC_SEQERROR:

• If the application sends MSG_SETCONSTRAINT in State 5, 6 or 7 and the capability is not
allowed by CAP_EXTENDEDCAPS.

If the request is acceptable, use the container structure referenced by
pCapability->hContainer to set the Available Values for the capability. If the container type
is TWON_ONEVALUE set the Current Value for the capability to that value.

If the container type is TWON_RANGE, TWON_ARRAY or TWON_ENUMERATION, set the Current
Value for the capability to that value and optionally limit the Available Values for the capability to
match those provided by the application, masking all other internal values so that the user cannot
select them.

Important: Sources should accommodate requests to limit Available Values. In the interest of
adoptability for the breadth of Source manufacturers, such accommodation is not
required. It is recommended, however, that the Sources do so, and that the Source’s user
interface be modified (from its power-on state, and when the user interface is raised) to
reflect any limitation of choices implied by the newly negotiated settings.

Note: For example, if an application can only accept black and white image data, it tells the
Source of this limitation by doing a MSG_SET on ICAP_PIXELTYPE with a
TW_ENUMERATION or TW_RANGE container containing only TWPT_BW (black and white).
7-36 TWAIN 2.3 Specification

Note: If the Source disregards this negotiated value and fails to modify its user interface, the
user may select to acquire a color image. Either the user’s selection would fail (for reasons
unclear to the user) or the transfer would fail (also for unclear reasons for the user). The
Source should strive to prevent such situations.

Return Codes

TWRC_SUCCESS

TWRC_CHECKSTATUS /* Capability value(s) could not be matched exactly */

TWRC_FAILURE

TWCC_CAPUNSUPPORTED /* Capability not supported by source. */

TWCC_CAPBADOPERATION /* Operation not supported by capability. */

TWCC_CAPSEQERROR /* Capability has a dependency on another */
 /* capability. */

TWCC_BADDEST /* No such Source in-session with application */

TWCC_BADVALUE /* Value(s) outside Source's range for capability */

TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_CONTROL / DAT_CAPABILITY / MSG_GET
DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT
DG_CONTROL / DAT_CAPABILITY / MSG_GETDEFAULT
DG_CONTROL / DAT_CAPABILITY / MSG_RESET
DG_CONTROL / DAT_CAPABILITY / MSG_SET

Capability Constants (in Chapter 8, "Data Types and Data Structures")

Capability Containers: TW_ONEVALUE, TW_ENUMERATION, TW_RANGE, TW_ARRAY (in Chapter 8,
"Data Types and Data Structures")

Listing of all capabilities (in Chapter 10, "Capabilities")
TWAIN 2.3 Specification 7-37

Chapter 7
DG_CONTROL / DAT_CUSTOMDSDATA / MSG_GET

Call

DSM_Entry(
pOrigin, pDest, DG_CONTROL, DAT_CUSTOMDSDATA,
MSG_GET, pCustomData

);

pCustomData = A pointer to a TW_CUSTOMDSDATA structure.

Valid States

4 only

Description

This operation is used by the application to query the data source for its current settings, e.g. DPI,
paper size, color format. The sources settings will be returned in a TW_CUSTOMDSDATA structure.
The actual format of the data in this structure is data source dependent and not defined by
TWAIN.

Application

pDest references the sources identity structure. pCustomData points to a TW_CUSTOMDSDATA
structure.

Source

Fills the pCustomData pointer with source specific settings. If supported,
CAP_ENABLEDSUIONLY and CAP_CUSTOMDSDATA are required.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

TWCC_SEQERROR

See Also

Capability CAP_CUSTOMDSDATA
7-38 TWAIN 2.3 Specification

DG_CONTROL / DAT_CUSTOMDSDATA / MSG_SET

Call

DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_CUSTOMDSDATA,
MSG_SET, pCustomData);

pCustomData = A pointer to a TW_CUSTOMDSDATA structure.

Valid States

4 only

Description

This operation is used by the application to set the current settings for a data source to a previous
state as defined by the data contained in the pCustomData data structure. The actual format of
the data in this structure is data source dependent and not defined by TWAIN.

Application

pDest references the sources identity structure. pCustomData points to a TW_CUSTOMDSDATA
structure.

Source

Changes its current settings to the values specified in the pCustomData structure.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_SEQERROR

See Also

Capability CAP_CUSTOMDSDATA
TWAIN 2.3 Specification 7-39

Chapter 7
DG_CONTROL / DAT_DEVICEEVENT / MSG_GET

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_DEVICEEVENT, MSG_GET,
 pSourceDeviceEvent);

pSourceDeviceEvent = A pointer to a TW_DEVICEEVENT structure

Valid States

4 through 7

Description

Upon receiving a DG_CONTROL / DAT_NULL / MSG_DEVICEEVENT from the Source, the
Application must immediately make this call to obtain the event information.

Sources must queue the data for each event so that it is available for this call.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

TWCC_BADPROTOCOL Capability not supported.

TWCC_SEQERROR No events in the queue, or not in States 4 through 7.

See Also

DG_CONTROL / DAT_NULL / MSG_DEVICEEVENT (from Source to Application)
CAP_DEVICEEVENT
7-40 TWAIN 2.3 Specification

DG_CONTROL / DAT_ENTRYPOINT / MSG_GET

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_ENTRYPPINT, MSG_GET,
pEntryPoint);

pEntryPoint = A pointer to a TW_ENTRYPOINT structure

Valid States

3

Description

A TWAIN 2.0 Application examines the Source’s TW_IDENTITY .SupportedGroups. If
DF_DSM2 is set, then it must issue this call to get the entry points for the Source Manager. If the
conditions are not met then the Source Manager will return TWRC_FAILURE /
TWCC_BADPROTOCOL, and the Application must assume TWAIN 1.x behavior.

The Application gets five entry points in the TW_ENTRYPOINT structure:

* the DSM_Entry function, this may be ignored

* the DSM_MemAllocate function, used by the Application to allocate memory that will be
freed by the Source

* the DSM_MemFree function, used by the Application to free memory allocated by the Source

* the DSM_MemLock function, used by the Application to get a usable pointer from a handle it
got from the Source.

* the DSM_MemUnlock function, used when the Application is done with the memory it got
from the Source. This call is usually made just before DSM_MemFree.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

TWCC_BADPROTOCOL

TWCC_SEQERROR

See Also

Identifying TWAIN 2.0 Elements, in Chapter 2, "Technical Overview".
TWAIN 2.3 Specification 7-41

Chapter 7
DG_CONTROL / DAT_ENTRYPOINT / MSG_SET

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_ENTRYPOINT, MSG_SET,
pEntryPoint);

pEntryPoint = A pointer to a TW_ENTRYPOINT structure

Valid States

The TWAIN 2.0 Source Manager issues this command to Sources (that set DF_DS2) prior of any
other command sent by the Application. In most cases it will immediately precede the call to
DG_CONTROL / DAT_IDENTITY / MSG_OPEN.

The Source gets five entry points in the TW_ENTRYPOINT structure:

• the pointer to the DSM_Entry function, used for any DAT_NULL operations such as
DG_CONTROL / DAT_NULL / MSG_XFERREADY.

• the DSM_MemAllocate function, used by the Source to allocate memory that will be freed by
the Application

• the DSM_MemFree function, used by the Source to free memory allocated by the Application

• *the DSM_MemLock function, used by the Source to get a usable pointer from a handle it got
from the Application.

• the DSM_MemUnlock function, used when the Source is done with the memory it got from the
Application. This call is usually made just before DSM_MemFree.

Note: TWAIN 1.x Sources must continue to find and load the Source Manager DSM_Entry on
their own.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

TWCC_BADPROTOCOL

TWCC_SEQERROR

See Also

Identifying TWAIN 2.0 Elements, in Chapter 2, "Technical Overview".
7-42 TWAIN 2.3 Specification

DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT

Windows and Macintosh pre OS X using carbon only; MSG_PROCESSEVENT is not available on
Mac OS X nor Linux. Refer to Chapter 12, "Operating System Dependencies" for more
information.

Call

DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_EVENT, MSG_PROCESSEVENT,
pEvent);

pEvent = A pointer to a TW_EVENT structure.

Valid States

5 through 7

Description

This operation supports the distribution of events from the application to Sources so that the
Source can maintain its user interface and return messages to the application. Once the
application has enabled the Source, it must immediately begin sending to the Source all events
that enter the application’s main event loop. This allows the Source to update its user interface in
real-time and to return messages to the application which cause state transitions. Even if the
application overrides the Source’s user interface, it must forward all events once the Source has
been enabled. The Source will tell the application whether or not each event belongs to the Source.

Note: Events only need to be forwarded to the Source while it is enabled.

The Source should be structured such that identification of the event’s “owner” is handled before
doing anything else. Further, the Source should return immediately if the Source isn’t the owner.
This convention should minimize performance concerns for the application (remember, these
events are only sent while a Source is enabled—that is, just before and just after the transfer is
taking place).

Application

Windows: Make pEvent->pEvent point to the message structure.

Macintosh: Make pEvent->pEvent point to an EventRecord.

Note: On return, the application should check the Return Code from DSM_Entry() for
TWRC_DSEVENT or TWRC_NOTDSEVENT. If TWRC_DSEVENT is returned, the application
should not process the event—it was consumed by the Source. If TWRC_NOTDSEVENT is
returned, the application should process the event as it normally would.

With either of these Return Codes, the application should also check the pEvent->TWMessage
and switch on the result. This is the mechanism used by the Source to notify the application that a
data transfer is ready or that it should close the Source. The Source can return one of the following
messages:
TWAIN 2.3 Specification 7-43

Chapter 7
MSG_XFERREADY /* Source has one or more images */
 /* ready to transfer */

MSG_CLOSEDSREQ /* Source wants to be closed, */
 /* usually initiated by a */
 /* user-generated event */

MSG_NULL /* no message for application */

Source

Process this operation immediately and return to the application immediately if the event doesn’t
belong to you. Be aware that the application will be sending thousands of messages to you.
Consider in-line processing and global flags to speed implementation.

Return Codes

TWRC_DSEVENT /* Source consumed event--application */
 /* should not process it */

TWRC_NOTDSEVENT /* Event belongs to application - */
 /* process as usual */

TWRC_FAILURE

 TWCC_BADDEST /* No such Source in-session */
 /* with application */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */

See Also

DG_CONTROL / DAT_NULL / MSG_CLOSEDSREQ (from Source to Application)
DG_CONTROL / DAT_NULL / MSG_XFERREADY (from Source to Application)

Event loop information (in Chapter 7, "Operation Triplets".)
7-44 TWAIN 2.3 Specification

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_FILESYSTEM,
 MSG_AUTOMATICCAPTUREDIRECTORY, pSourceFileSystem);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States

4 only

Description

This operation selects the destination directory within the Source (camera, storage, etc), where
images captured using CAP_AUTOMATICCAPTURE will be stored. This command only selects the
destination directory (a file of type TWFT_DIRECTORY). The directory must exist and be
accessible to the Source. The creation of images within the directory is at the discretion of the
Source, and may result in the creation of additional sub-directories.

In all other regards the behavior of this operation is the same as DG_CONTROL /
DAT_FILESYSTEM / MSG_CHANGEDIRECTORY.

If the application does not specify a directory for automatic capture, then the destination of the
images is left to the discretion of the Source. A directory named /Images is recommended, but not
required.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL - operation not supported.

 TWCC_DENIED - operation denied (device not ready).

 TWCC_FILENOTFOUND - specified InputName does not exist.

 TWCC_SEQERROR - not state 4.

See Also

DG_CONTROL / DAT_FILESYSTEM / MSG_COPY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE
DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA
DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO
DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME
CAP_AUTOMATICCAPTURE
TWAIN 2.3 Specification 7-45

Chapter 7
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_FILESYSTEM,
 MSG_CHANGEDIRECTORY, pSourceFileSystem);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States

4 only

Description

This operation selects the current device within the Source (camera, storage, etc). If the device is a
TWFT_DOMAIN, then this command enters a directory that can contain TWFT_HOST files. If the
device is a TWFT_HOST, then this command enters a directory that can contain TWFT_DIRECTORY
files. If the device is a TWFT_DIRECTORY, then this command enters a directory that can contain
TWFT_DIRECTORY or TWFT_IMAGE files.

Sources can support part or all of the storage hierarchy that is one of the following:

/Domain/Host/Directory/

/Host/Directory/…

/Directory/…

(Storage not supported)

It is permitted to mix domain, host, and directory names in the root file system of the Source. To
help resolve any potential name conflict, Applications should set TW_FILESYSTEM->
FileType to the appropriate value for the topmost file. If this is not done and there is a name
conflict, the Source’s default behavior must be to use the file of type TWFT_DIRECTORY or
TWFT_HOST, in that order.

For example, consider two files named “abc” in the root of a Source:

/abc/123 (abc is a domain)

/abc/789 (abc is a directory)

Change directory to the first one by setting FileType to TWFT_DOMAIN, or to the second one by
setting FileType to TWFT_DIRECTORY. The FileType for each will be discovered while browsing
the directory using DAT_GETFILEFIRST and DAT_GETFILENEXT. If the FileType is not specified,
then the Source must change to the “/abc/789” directory.

Example:

A Source supports two devices: /Camera and /Disk. If an application changes directory to /
Camera, then it can negotiate imaging parameters and transfer images in a traditional fashion. If
an application changes directory to /Disk/abc/xyz, then it cannot negotiate imaging
7-46 TWAIN 2.3 Specification

parameters (the images have already been captured); all it can do is browse the directory tree and
transfer the images it finds.

The Application sets the new current working directory by placing in the InputName field an
absolute or relative path. The Source returns the absolute path and name of the new directory in
the OutputName field. The special filename dot “.” can be used to retrieve the name of the current
directory. The special filename dot-dot “..” can be used to change to the parent directory. Refer to
the section on File Systems for more information.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL - operation not supported.

 TWCC_DENIED - operation denied (device not ready).

 TWCC_FILENOTFOUND - specified InputName does not exist.

 TWCC_SEQERROR - not state 4.

See Also

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_COPY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE
DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA
DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO
DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME
TWAIN 2.3 Specification 7-47

Chapter 7
DG_CONTROL / DAT_FILESYSTEM / MSG_COPY

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_FILESYSTEM,
 MSG_COPY, pSourceFileSystem);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States

4 only

Description

This operation copies a file or directory. Absolute and relative pathnames are supported. A file
may not be overwritten with this command. If an Application wishes to do this, it must first delete
the unwanted file and then reissue the Copy command.

The Application specifies the path and name of the entry to be copied in InputName. The
Application specifies the new patch and name in OutputName.

It is not permitted to copy files into the root directory.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL - operation not supported.

 TWCC_DENIED - file cannot be deleted (root file, or protected
 by Source).

 TWCC_FILEEXISTS - specified OutputName already exists.

 TWCC_FILENOTFOUND - InputName not found or OutputName invalid.

 TWCC_SEQERROR - not state 4.

See Also

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE
DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA
DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO
DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME
7-48 TWAIN 2.3 Specification

DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_FILESYSTEM,
 MSG_CREATEDIRECTORY, pSourceFileSystem);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States

4 only

Description

This operation creates a new directory within the current directory. Pathnames are not allowed,
only the name of the new directory can be specified.

Example:

“abc” is valid.
“/Disk/abc” is not valid.

The Application specifies the name of the new directory in InputName.

On success, the Source returns the absolute path and name of the new directory in OutputName.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL - operation not supported.

 TWCC_DENIED - cannot create directory in current directory,
 directories may not be created in root, or the
 Source may opt to prevent the creation of new
 directories in some instances, for instance if
 the new directory would be too deep in the tree.

 TWCC_FILEEXISTS - the specified InputName already exists.

 TWCC_SEQERROR - not state 4.

See Also

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_COPY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE
DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA
DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO
DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME
TWAIN 2.3 Specification 7-49

Chapter 7
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_FILESYSTEM,
 MSG_DELETE, pSourceFileSystem);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States

4 only

Description

This operation deletes a file or directory on the device. Pathnames are not allowed, only the name
of the file or directory to be deleted can be specified. Recursive deletion can be specified by setting
the pSourceFileSystem->Recursive to TRUE.

Example:

“abc” is valid.
“/Disk/abc” is not valid.

The Application specifies the name of the entry to be deleted in InputName. There is no return in
OutputName on success.

The Application cannot delete entries in the root directory. The Application cannot delete
directories unless they are empty.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL - operation not supported.

 TWCC_DENIED - file cannot be deleted (root file, or protected
 by Source).

 TWCC_FILENOTFOUND - filename not found.

 TWCC_NOTEMPTY - directory is not empty, and cannot be deleted.

 TWCC_SEQERROR - not state 4.

See Also

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_COPY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA
DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO
DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME
7-50 TWAIN 2.3 Specification

DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_FILESYSTEM,
 MSG_FORMATMEDIA, pSourceFileSystem);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States

4 only

Description

This operation formats the specified storage. This operation destroys all images and sub-
directories under the selected device. Use with caution.

The Application specifies the name of the device to be deleted in InputName. There is no data
returned by this call.

The Application cannot format the root directory. Sources may opt to protect their media from
this command, so Applications must check return and condition codes.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL - operation not supported.

 TWCC_DENIED - format denied (root directory, or protected by Source).

 TWCC_FILENOTFOUND - filename not found.

 TWCC_SEQERROR - not state 4.

See Also

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_COPY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO
DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME
TWAIN 2.3 Specification 7-51

Chapter 7
DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_FILESYSTEM,
 MSG_GETCLOSE, pSourceFileSystem);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States

4 through 6

Description

The operation frees the Context field in pSourceFileSystem.

Every call to DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE must be matched by a
call to MSG_GETCLOSE to release the Context field in the pSourceFileSystem structure. Note
that the .Context value must be preserved between calls.

An Application may (erroneously) issue this operation at any time (even if a MSG_GETFIRSTFILE
has not been issued yet). Sources must protect themselves from such uses. See the section on File
Systems for more information on why and how this must be done.

Return Codes

TWRC_SUCCESS

 TWRC_FAILURE

 TWCC_BADPROTOCOL - operation not supported.

 TWCC_BADVALUE - .Context contains an invalid value.

 TWCC_SEQERROR - invalid context calling MSG_GETCLOSE without
 first calling MSG_GETFIRSTFILE.

See Also

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_COPY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE
DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA
DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO
DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME
7-52 TWAIN 2.3 Specification

DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_FILESYSTEM,
 MSG_GETFIRSTFILE, pSourceFileSystem);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States

4 through 6

Description

This operation gets the first filename in a directory, and returns information about that file (the
same information that can be retrieved with MSG_GETINFO).

The Source positions the Context to point to the first filename. InputName is ignored.
OutputName contains the absolute path and name of the file. Note that the .Context value must
be preserved between calls.

Applications must not assume any ordering of the files delivered by the Source, with one
exception: if MSG_GETFIRSTFILE is issued in the root directory, then the operation must return a
TWFT_CAMERA device.

NB: “.” and “..” are NEVER reported by this command.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL - operation not supported.

 TWCC_BADVALUE - .Context contains an invalid value.

 TWCC_DENIED - file exists, but information about it has not
 been returned.

 TWCC_FILENOTFOUND - directory is empty.

 TWCC_SEQERROR - called MSG_GETFIRSTFILE again without first calling
 MSG_GETCLOSE.

See Also

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_COPY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE
DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA
DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO
TWAIN 2.3 Specification 7-53

Chapter 7
DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME
7-54 TWAIN 2.3 Specification

DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_FILESYSTEM,
 MSG_GETINFO, pSourceFileSystem);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States

4 through 7

Description

This operation fills the information fields in pSourceFileSystem.

InputName contains the absolute or relative path and filename of the requested file. OutputName
returns the absolute path to the file.

Example InputName:

“abc” is valid.
“/Disk/abc” is valid.
The empty string ““ returns information about the current file (if any).
“.” returns information about the current directory.
“..” returns information about the parent directory.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL - operation not supported.

 TWCC_DENIED - - file exists, but information about it has not
 been returned.

 TWCC_FILENOTFOUND - specified file does not exist.

 TWCC_SEQERROR - not state 4 - 7, or no current file.

See Also

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_COPY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE
DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA
DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME
TWAIN 2.3 Specification 7-55

Chapter 7
DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_FILESYSTEM,
 MSG_GETNEXTFILE, pSourceFileSystem);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States

4 through 6

Description

This operation gets the next filename in a directory, and returns information about that file (the
same information that can be retrieved with MSG_GETINFO).

The Source positions the Context to point to the next filename. InputName is ignored.
OutputName contains the absolute path and name of the file. Note that the .Context value must be
preserved between calls.

A call to MSG_GETFIRSTFILE must be issued on a given directory before the first call to
MSG_GETNEXTFILE.

NB: The “.” and “..” entries are NEVER reported by this command

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL - operation not supported.

 TWCC_BADVALUE - .Context contains an invalid value.

 TWCC_DENIED - file exists, but information about it has not
 been returned.

 TWCC_FILENOTFOUND - directory is empty.

 TWCC_SEQERROR - invalid context calling MSG_GETNEXTFILE without
 first calling MSG_GETFIRSTFILE.

See Also

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_COPY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE
DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA
DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO
DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME
7-56 TWAIN 2.3 Specification

DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_FILESYSTEM,
 MSG_RENAME, pSourceFileSystem);

pSourceFileSystem = A pointer to a TW_FILESYSTEM structure

Valid States

4 only

Description

This operation renames (and optionally moves) a file or directory. Absolute and relative path
names are supported. A file may not be overwritten with this command. If an Application wishes
to do this it must first delete the unwanted file, then issue the rename command.

The Application specifies the path and name of the entry to be renamed in InputName. The
Application specifies the new path and name in OutputName.

Filenames in the root directory cannot be moved or renamed.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL - operation not supported.

 TWCC_DENIED - file cannot be deleted (root file, or protected
 by Source).

 TWCC_FILEEXISTS - specified OutputName already exists.

 TWCC_FILENOTFOUND - InputName not found or OutputName invalid.

 TWCC_SEQERROR - not state 4.

See Also

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_COPY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE
DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA
DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO
DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE
TWAIN 2.3 Specification 7-57

Chapter 7
DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS (from Application to Source Manager)

Call

DSM_Entry(pOrigin, NULL, DG_CONTROL, DAT_IDENTITY, MSG_CLOSEDS,
pSourceIdentity);

pSourceIdentity = A pointer to a TW_IDENTITY structure.

Valid States

4 only (Transitions to State 3, if successful)

Description

When an application is finished with a Source, it must formally close the session between them
using this operation. This is necessary in case the Source only supports connection with a single
application (many desktop scanners will behave this way). A Source such as this cannot be
accessed by other applications until its current session is terminated.

Application

Reference pSourceIdentity to the application’s copy of the TW_IDENTITY structure for the
Source whose session is to be ended. The application needs to unload the Source from memory
after it is closed. The process for unloading the Source is similar to that used to unload the Source
Manager.

Source Manager

Passes the message onto the Source as

DSM_Entry(pOrigin, DG_CONTROL, DAT_IDENTITY, MSG_CLOSEDS,
pSourceIdentity);

Following receipt of TWRC_SUCCESS from the Source, Closes the Source. If the Source has no
more connections removes it from memory.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_CONTROL / DAT_IDENTITY / MSG_OPENDS (from Application to Source
Manager)
7-58 TWAIN 2.3 Specification

DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS (from Source Manager to Source)

Call

DS_Entry(pOrigin, DG_CONTROL, DAT_IDENTITY, MSG_CLOSEDS,
pSourceIdentity);

pSourceIdentity = A pointer to a TW_IDENTITY structure.

Valid States

4 only (Transitions Source back to the “loaded but not open” State - approximately State 3.5)

Description

Closes the Source so it can be unloaded from memory. The Source responds by doing its
shutdown and clean-up activities needed to ensure the heap will be “clean” after the Source is
unloaded. Under Windows, the Source will only be unloaded if the connection with the last
application accessing it is about to be broken. The Source will know this by its internal “connect
count” that should be maintained by any Source that supports multiple application connects.

Source Manager

pSourceIdentity is filled from a previous MSG_OPENDS operation.

Source

Perform all necessary housekeeping in anticipation of being unloaded. Be sure to dispose of any
memory buffers that the Source has allocated locally, or that may have become the Source’s
responsibility during the course of the TWAIN session. The Source exists in a shared memory
environment. It is therefore critical that all remnants of the Source, except the entry point (initial)
code, be removed as the Source prepares to be unloaded.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_OPERATIONERROR /* Internal Source error; */
 /* handled by the Source */

See Also

DG_CONTROL / DAT_IDENTITY / MSG_OPENDS (from Source Manager to Source)
TWAIN 2.3 Specification 7-59

Chapter 7
DG_CONTROL / DAT_IDENTITY / MSG_GET (from Source Manager to Source)

Call

DS_Entry(pOrigin, DG_CONTROL, DAT_IDENTITY, MSG_GET, pSourceIdentity);

pSourceIdentity = A pointer to a TW_IDENTITY structure.

Valid States

3 through 7 (Yes, the Source must be able to return the identity before it is opened.)

Description

This operation triplet is generated only by the Source Manager and is sent to the Source. It returns
the identity structure for the Source.

Source Manager

No special set up or action required.

Source

Fills in all fields of pSourceIdentity except the Id field which is only modified by the Source
Manager. This structure was allocated by either the application or the Source Manager depending
on which one initiated the MSG_OPENDS operation for the Source.

Note: Sources should locate the code that handles initialization of the Source (responding to
MSG_OPENDS) and identification (DAT_IDENTITY / MSG_GET) in the segment first
loaded when the DLL/code resource is invoked. Responding to the identification
operation should not cause any other segments to be loaded. Code to handle all other
operations and to support the user interface should be located in code segments that will
be loaded upon demand. Remember, the Source is a “guest” of the application and needs
to be sensitive to use of available memory and other system resources. The Source
Manager’s perceived performance may be adversely affected unless the Source efficiently
handles identification requests.

Return Codes

TWRC_SUCCESS /* This operation must succeed. */
7-60 TWAIN 2.3 Specification

DG_CONTROL / DAT_IDENTITY / MSG_GETDEFAULT

Call

DSM_Entry(pOrigin, NULL, DG_CONTROL, DAT_IDENTITY, MSG_GETDEFAULT,
pSourceIdentity);

pSourceIdentity = A pointer to a TW_IDENTITY structure.

Valid States

3 through 7

Description

Gets the identification information of the system default Source.

Application

No special set up or action required.

Source Manager

Fills the structure pointed to by pSourceIdentity with identifying information about the
system default Source.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_NODS /* no Sources found matching */
 /* application's SupportedGroups */

 TWCC_LOWMEMORY /* not enough memory to perform */
 /* this operation */

See Also

DG_CONTROL / DAT_IDENTITY / MSG_GETFIRST
DG_CONTROL / DAT_IDENTITY / MSG_GETNEXT
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS (from Application to Source
Manager)
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS (from Source Manager to Source)
DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT
TWAIN 2.3 Specification 7-61

Chapter 7
DG_CONTROL / DAT_IDENTITY / MSG_GETFIRST

Call

DSM_Entry(pOrigin, NULL, DG_CONTROL, DAT_IDENTITY, MSG_GETFIRST,
pSourceIdentity);

pSourceIdentity = A pointer to a TW_IDENTITY structure.

Valid States

3 through 7

Description

The application may obtain a list of all Sources that are currently available on the system which
match the application’s supported groups (DGs, that the application specified in the
SupportedGroups field of its TW_IDENTITY structure). To obtain the complete list of all available
Sources requires invocation of a series of operations. The first operation uses MSG_GETFIRST to
find the first Source on “the list” (whichever Source the Source Manager finds first). All the
following operations use DG_CONTROL / DAT_IDENTITY / MSG_GETNEXT to get the identity
information, one at a time, of all remaining Sources.

Note: The application must invoke the MSG_GETFIRST operation before a MSG_GETNEXT
operation. If the MSG_GETNEXT is invoked first, the Source Manager will fail the
operation (TWRC_ENDOFLIST).

If the application wants to cause a specific Source to be opened, one whose ProductName the
application knows, it must first establish the existence of the Source using the MSG_GETFIRST/
MSG_GETNEXT operations. Once the application has verified that the Source is available, it can
request that the Source Manager open the Source using DG_CONTROL / DAT_IDENTITY /
MSG_OPENDS. The application must not execute this operation without first verifying the
existence of the Source because the results may be unpredictable.

Application

No special set up or action required.

Source Manager

Fills the TW_IDENTITY structure pointed to by pSourceIdentity with the identity information
of the first Source found by the Source Manager within the TWAIN directory/folder.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_NODS /* No Sources can be found */
7-62 TWAIN 2.3 Specification

 TWCC_LOWMEMORY /* Not enough memory to perform */
 /* this operation */

See Also

DG_CONTROL / DAT_IDENTITY / MSG_GETDEFAULT
DG_CONTROL / DAT_IDENTITY / MSG_GETNEXT
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS (from Application to Source
Manager)
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS (from Source Manager to Source)
DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT
TWAIN 2.3 Specification 7-63

Chapter 7
DG_CONTROL / DAT_IDENTITY / MSG_GETNEXT

Call

DSM_Entry(pOrigin, NULL, DG_CONTROL, DAT_IDENTITY, MSG_GETNEXT,
pSourceIdentity);

pSourceIdentity = A pointer to a TW_IDENTITY structure.

Valid States

3 through 7

Description

The application may obtain a list of all Sources that are currently available on the system which
match the application’s supported groups (DGs, that the application specified in the
SupportedGroups field of its TW_IDENTITY structure). To obtain the complete list of all available
Sources requires invocation of a series of operations. The first operation uses DG_CONTROL /
DAT_IDENTITY / MSG_GETFIRST to find the first Source on “the list” (whichever Source the
Source Manager finds first). All the following operations use MSG_GETNEXT to get the identity
information, one at a time, of all remaining Sources.

Note: The application must invoke the MSG_GETFIRST operation before a MSG_GETNEXT
operation. If the MSG_GETNEXT is invoked first, the Source Manager will fail the
operation (TWRC_ENDOFLIST).

If the application wants to cause a specific Source to be opened, one whose ProductName the
application knows, it must first establish the existence of the Source using the MSG_GETFIRST/
MSG_GETNEXT operations. Once the application has verified that the Source is available, it can
request that the Source Manager open the Source using DG_CONTROL / DAT_IDENTITY /
MSG_OPENDS. The application must not execute this operation without first verifying the
existence of the Source because the results may be unpredictable.

Application

No special set up or action required.

Source Manager

Fills the TW_IDENTITY structure pointed to by pSourceIdentity with the identity information of
the next Source found by the Source Manager within the TWAIN directory/folder.

Return Codes

TWRC_SUCCESS

TWRC_ENDOFLIST /* after MSG_GETNEXT if no more */
 /* Sources */

TWRC_FAILURE
7-64 TWAIN 2.3 Specification

 TWCC_LOWMEMORY /* not enough memory to perform */
 /* this operation */

See Also

DG_CONTROL / DAT_IDENTITY / MSG_GETDEFAULT
DG_CONTROL / DAT_IDENTITY / MSG_GETFIRST
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS (from Application to Source
Manager)
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS (from Source Manager to Source)
DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT
TWAIN 2.3 Specification 7-65

Chapter 7
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS (from Application to Source Manager)

Call

DSM_Entry(pOrigin, NULL, DG_CONTROL, DAT_IDENTITY, MSG_OPENDS,
pSourceIdentity);

pSourceIdentity = A pointer to a TW_IDENTITY structure.

Valid States

3 only (Transitions to State 4, if successful)

Description

Loads the specified Source into main memory and causes its initialization.

Application

The application may specify any available Source’s TW_IDENTITY structure in
pSourceIdentity. That structure may have been obtained using a MSG_GETFIRST,
MSG_GETNEXT, or MSG_USERSELECT operation. If the session with the Source Manager was
closed since the identity structure being used was obtained, the application must set the Id field to
0. This will cause the Source Manager to issue the Source a new Id. The application can have
the Source Manager open the default Source by setting the ProductName field to “\0” (Null
string) and the Id field to zero.

Source Manager

Opens the Source specified by pSourceIdentity and creates a unique Id value for this Source
(under Microsoft Windows, this assumes that the Source hadn’t already been opened by another
application). This value is recorded in pSourceIdentity->Id. The Source Manager passes the
triplet on to the Source to have the remaining fields in pSourceIdentity filled in.

Upon receiving the request from the Source Manager, the Source fills in all the fields in
pSourceIdentity except for Id. If an application tries to connect to a Source that is already
connected to its maximum number of applications, the Source returns TWRC_FAILURE/
TWCC_MAXCONNECTIONS.

Warning: The Source and application must not assume that the value written into
pSourceIdentity.Id will remain constant between sessions. This value is used internally
by the Source Manager to uniquely identify applications and Sources and to manage
the connections between them. During a different session, this value may still be valid
but might be assigned to a different application or Source! Don’t use this value directly.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE
7-66 TWAIN 2.3 Specification

 TWCC_LOWMEMORY /* not enough memory to */
 /* open the Source */

 TWCC_MAXCONNECTIONS /* Source cannot support*/
 /* another connection */

 TWCC_NODS /* specified Source was */
 /* not found */

 TWCC_OPERATIONERROR /* internal Source error;*/
 /* handled by the Source */

See Also

DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS (from Application to Source
Manager)
DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS (from Source Manager to Source)
DG_CONTROL / DAT_IDENTITY / MSG_GET (from Source Manager to Source)
DG_CONTROL / DAT_IDENTITY / MSG_GETDEFAULT
DG_CONTROL / DAT_IDENTITY / MSG_GETFIRST
DG_CONTROL / DAT_IDENTITY / MSG_GETNEXT
DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT
TWAIN 2.3 Specification 7-67

Chapter 7
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS (from Source Manager to Source)

Call

DS_Entry(pOrigin, DG_CONTROL, DAT_IDENTITY, MSG_OPENDS,
pSourceIdentity);

pSourceIdentity = A pointer to a TW_IDENTITY structure.

Valid States

Source is loaded but not yet open (approximately State 3.5, session transitions to State 4, if
successful).

Description

Opens the Source for operation.

Source Manager

pSourceIdentity is filled in from a previous DG_CONTROL / DAT_IDENTITY / MSG_GET and
the Id field should be filled in by the Source Manager.

Source

Initializes any needed internal structures, performs necessary checks, and loads all resources
needed for normal operation.

Refer to Chapter 12, "Operating System Dependencies" for more information on MSG_OPENDS.

Source should record a copy of *pOrigin, the application’s TW_IDENTITY structure, whose Id
field maintains a unique number identifying the application that is calling. Sources that support
only a single connection should examine pOrigin->Id for each operation to verify they are being
called by the application they acknowledge being connected with. All requests from other
applications should fail (TWRC_FAILURE / TWCC_MAXCONNECTIONS). The Source is responsible
for managing this, not the Source Manager (the Source Manager does not know in advance how
many connections the Source will support). Multiple connections only happen by the same
application connecting multiple times with different names.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_LOWMEMORY /* not enough memory to */
 /* open the Source */

 TWCC_MAXCONNECTIONS /* Source cannot support */
 /* another connection */

 TWCC_OPERATIONERROR /* internal Source error;*/
 /* handled by the Source */

See Also

DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS (from Source Manager to Source)
DG_CONTROL / DAT_IDENTITY / MSG_GET (from Source Manager to Source)
7-68 TWAIN 2.3 Specification

DG_CONTROL / DAT_IDENTITY / MSG_SET

Call

DSM_Entry(pOrigin, NULL, DG_CONTROL, DAT_IDENTITY, MSG_SET,
pTwIdentity);

_pTwIdentity = A pointer to a TW_IDENTITY structure containing a valid TW_IDENTITY for a
Data source.

Valid States

3

Description

This operation triplet is generated by the application and is consumed by
the Data Source Manager. It allows an application to set the default
TWAIN driver, which is reported back by DG_CONTROL / DAT_IDENTITY /
MSG_GETDEFAULT.

Application

The application must specify an available Source’s TW_IDENTITY structure
in pTwIdentity. That structure must have been obtained using a
MSG_GETFIRST, MSG_GETNEXT, or MSG_USERSELECT operation since the Source
Manager was last opened.

Source Manager

Sets a new default TWAIN driver.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADVALUE /* Invalid DS in TW_IDENTITY */

See Also

DG_CONTROL / DAT_IDENTITY / MSG_GETDEFAULT
TWAIN 2.3 Specification 7-69

Chapter 7
DG_CONTROL / DAT_IDENTITY / MSG_USERSELECT

Windows and Macintosh only; MSG_USERSELECT is not available on Linux. Refer to Chapter 12,
"Operating System Dependencies".

Call

DSM_Entry(pOrigin, NULL, DG_CONTROL, DAT_IDENTITY, MSG_USERSELECT,
pSourceIdentity);

pSourceIdentity = A pointer to a TW_IDENTITY structure.

Valid States

3 through 7

Description

This operation should be invoked when the user chooses Select Source... from the application’s
File menu (or an equivalent user action). This operation causes the Source Manager to display the
Select Source dialog. This dialog allows the user to pick which Source will be used during
subsequent Acquire operations. The Source selected becomes the system default Source. This
default persists until a different Source is selected by the user. The system default Source may be
overridden by an application (the override is local to only that application). Only Sources that can
supply data matching one or more of the application’s SupportedGroups (from the application’s
identity structure) will be selectable. All others will be unavailable for selection.

Application

If the application wants a particular Source, other than the system default, to be highlighted in the
Select Source dialog, it should set the ProductName field of the structure pointed to by
pSourceIdentity to the ProductName of that Source. This information should have been obtained
from an earlier operation using DG_CONTROL / DAT_IDENTITY / MSG_GETFIRST,
MSG_GETNEXT, or MSG_USERSELECT. Otherwise, the application should set the ProductName
field in pSourceIdentity to the null string (“\0”). In either case, the application should set the
Id field in pSourceIdentity to zero.

If the Source Manager can’t find a Source whose ProductName matches that specified by the
application, it will select the system default Source (the default that matches the SupportedGroups
of the application). This is not considered to be an error condition. No error will be reported. The
application should check the ProductName field of pSourceIdentity following this operation
to verify that the Source it wanted was opened.

Source Manager

The Source Manager displays the Select Source dialog and allows the user to select a Source.
When the user clicks the “OK” button (“Select” button in the Microsoft Windows Source
Manager) in the Select Source dialog, the system default Source (maintained by the Source
Manager) will be changed to the selected Source. This Source’s identifying information will be
written into pSourceIdentity.
7-70 TWAIN 2.3 Specification

The “Select” button (“OK” button in the Macintosh Source Manager) will be grayed out if there
are no Sources available matching the SupportedGroups specified in the application’s identity
structure, pOrigin. The user must click the “Cancel” button to exit the Select Source dialog. The
application cannot discern from this Return Code whether the user simply canceled the selection
or there were no Sources for the user to select. If the application really wants to know whether
any Sources are available that match the specified SupportedGroups it can invoke a
MSG_GETFIRST operation and check for a successful result.

It copies the TW_IDENTITY structure of the selected Source into pSourceIdentity.

Suggestion for Source Developers: The string written in the Source’s
TW_IDENTITY.ProductName field should clearly and unambiguously identify your product or
the Source to the user (if the Source can be used to control more than one device). ProductName
contains the string that will be placed in the Select Source dialog (accompanied, on the Macintosh,
with an icon from the Source’s resource file representing the Source). It is further suggested that
the Source’s disk file name approximate the ProductName to assist the user in equating the two.

Return Codes

TWRC_SUCCESS

TWRC_CANCEL /* User clicked cancel button - maybe there */
 /* were no Sources */

TWRC_FAILURE

 TWCC_LOWMEMORY /* not enough memory to perform this */
 /* operation */

See Also

DG_CONTROL / DAT_IDENTITY / MSG_GETDEFAULT
DG_CONTROL / DAT_IDENTITY / MSG_GETFIRST
DG_CONTROL / DAT_IDENTITY / MSG_GETNEXT
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS (from Application to Source
Manager)
DG_CONTROL / DAT_IDENTITY / MSG_OPENDS (from Source Manager to Source)
DG_CONTROL / DAT_IDENTITY / MSG_SET
TWAIN 2.3 Specification 7-71

Chapter 7
DG_CONTROL / DAT_NULL / MSG_CLOSEDSOK

For Macintosh OS X 1.9 data sources, refer to the TWAIN 1.9 specification.

Call

DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_NULL, MSG_CLOSEDSOK, NULL);

This operation requires no data (NULL).

Valid States

5 through 7 (This operation causes the session to transition to State 5.)

Description

The Source sends this message to the application to indicate that the Source needs to be closed.

Source

Source creates this triplet with NULL data and sends it to the Source Manager via the Source
Manager’s DSM_Entry point.

Source Manager

Upon receiving this triplet, the Source Manager passes this message to the application either using
the applications callback function or by posts a private message to the application’s event/
message loop.

Application

The Application will either receive this message in its callback function or as an event in its event
loop.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_SEQERROR /* Operation invoked in invalid state */

 TWCC_BADDEST /* No such application in session with*/
 /* Source */

See Also

DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT
DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS
7-72 TWAIN 2.3 Specification

DG_CONTROL / DAT_NULL / MSG_CLOSEDSREQ (from Source to Application)

For Macintosh OS X 1.9 data sources, refer to the TWAIN 1.9 specification.

Call

DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_NULL, MSG_CLOSEDSREQ, NULL);

This operation requires no data (NULL).

Valid States

5 through 7 (This operation causes the session to transition to State 5.)

Description

The Source sends this message to the application to indicate that the Source needs to be closed.

Source

Source creates this triplet with NULL data and sends it to the Source Manager via the Source
Manager’s DSM_Entry point.

Source Manager

Upon receiving this triplet, the Source Manager passes this message to the application either using
the applications callback function or by posts a private message to the application’s event/
message loop.

Application

The Application will either receive this message in its callback function or as an event in its event
loop.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_SEQERROR /* Operation invoked in invalid state */

 TWCC_BADDEST /* No such application in session with*/
 /* Source */

See Also

DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT
DG_CONTROL / DAT_CALLBACK / MSG_REGISTER_CALLBACK
DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS
TWAIN 2.3 Specification 7-73

Chapter 7
DG_CONTROL / DAT_NULL / MSG_DEVICEEVENT (from Source to Application)

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_NULL, MSG_DEVICEEVENT, NULL);

This operation requires no data (NULL)

Valid States

4 through 7

Description

When enabled the source sends this message to the Application to alert it that some event has
taken place. Upon receiving this message, the Application must immediately issue a call to
DG_CONTROL / DAT_DEVICEEVENT / MSG_GET to obtain the event information.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_SEQERROR - operation invoked in invalid state.

 TWCC_BADDEST - no such application in session with Source.

See Also

DG_CONTROL / DAT_DEVICEEVENT / MSG_GET

Capability - CAP_DEVICEEVENT
7-74 TWAIN 2.3 Specification

DG_CONTROL / DAT_NULL / MSG_XFERREADY (from Source to Application)

For Macintosh OS X 1.9 data sources, refer to the TWAIN 1.9 specification.

Call

DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_NULL, MSG_XFERREADY, NULL);

This operation requires no data (NULL).

Valid States

5 only (This operation causes the transition to State 6.)

Description

The Source sends this message to the application to indicate that the Source has data that is ready
to be transferred.

Source

Source creates this triplet with NULL data and sends it to the Source Manager via the Source
Manager’s DSM_Entry point.

Source Manager

Upon receiving this triplet, the Source Manager passes this message to the application either using
the applications callback function or by posts a private message to the application’s event/
message loop.

Application

The Application will either receive this message in its callback function or as an event in its event
loop.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_SEQERROR /* Operation invoked in invalid state */

 TWCC_BADDEST /* No such application in session with*/
 /* Source */

See Also

DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT
DG_CONTROL / DAT_CALLBACK / MSG_REGISTER_CALLBACK
DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET
DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET
TWAIN 2.3 Specification 7-75

Chapter 7
DG_CONTROL / DAT_PARENT / MSG_CLOSEDSM

Call

DSM_Entry(pOrigin, NULL, DG_CONTROL, DAT_PARENT, MSG_CLOSEDSM, pParent);
pParent = the same pParent used for OPENDSM.

Valid States

3 only (causes transition back to State 2, if successful)

Description

When the application has closed all the Sources it had previously opened, and is finished with the
Source Manager (the application plans to initiate no other TWAIN sessions), it must close the
Source Manager. The application should unload the Source Manager DLL or code resource after
the Source Manager is closed—unless the application has immediate plans to use the Source
Manager again.

After the Source Manager is closed the unique ID assigned to pOrigin->Id is no longer valid.

Application

References the same pParent parameter that was used during the “open Source Manager”
operation. If the operation returns TWRC_SUCCESS, the application should unload the Source
Manager from memory.

Source Manager

Does any housekeeping needed to prepare for being unloaded from memory. This housekeeping
is transparent to the application.

If the Source Manager has been opened multiple times it will remain active and connected to the
other connection(s).

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_CONTROL / DAT_PARENT / MSG_OPENDSM
7-76 TWAIN 2.3 Specification

DG_CONTROL / DAT_PARENT / MSG_OPENDSM

Call

DSM_Entry(pOrigin, NULL, DG_CONTROL, DAT_PARENT, MSG_OPENDSM, pParent);

On Windows - pParent = points to the window handle (hWnd) that will act as the Source’s
“parent”. The variable is of type TW_HANDLE and must contain the window handle.

On Macintosh - pParent = should be a NULL value.

Valid States

2 only (causes transition to State 3, if successful)

Description

Causes the Source Manager to initialize itself. This operation must be executed before any other
operations will be accepted by the Source Manager.

Application

The application must allocate a structure of type TW_IDENTITY and fill in all fields. The Id field
must be NULL. Once the structure is prepared, this pOrigin parameter should point at that
structure. If the Source Manager is opened successfully it will assign a value to Id.

The application must save the entire structure. From now on, the structure will be referred to by
the pOrigin parameter to identify the application in every call the application makes to
DSM_Entry().

Windows — Set pParent to point to a window handle (hWnd) of an open window that will
remain open until the Source Manager is closed.

Macintosh —Set pParent to NULL.

Linux —Set pParent to NULL.

Source Manager

Initializes and prepares itself for subsequent operations. Maintains a copy of pParent.

If successfully opened, the Source Manager will assign a unique ID to pOrigin->Id for this
application.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_LOWMEMORY /* not enough memory to perform */
 /* this operation */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */

See Also

DG_CONTROL / DAT_PARENT / MSG_CLOSEDSM
TWAIN 2.3 Specification 7-77

Chapter 7
DG_CONTROL / DAT_PASSTHRU / MSG_PASSTHRU

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_PASSTHRU,MSG_PASSTHRU,
 pSourcePassthru);

pSourcePassthru = A pointer to a TW_PASSTHRU structure

Valid States

4 through 7

Description

PASSTHRU is intended for the use of Source writers writing diagnostic applications. It allows raw
communication with the currently selected device in the Source.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL - capability not supported.

 TWCC_SEQERROR - command could not be completed in this state.

See Also

CAP_PASSTHRU
7-78 TWAIN 2.3 Specification

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_PENDINGXFERS, MSG_ENDXFER,
 pPendingXfers);

pPendingXfers = A pointer to a TW_PENDINGXFERS structure

Valid States

6 and 7

When DAT_XFERGROUP is set to DG_IMAGE:

(Transitions to State 5 if this was the last transfer (pPendingXfers->Count == 0).
Transitions to State 6 if there are more transfers pending (pPendingXfers->Count != 0).
To abort all remaining transfers and transition from State 6 to State 5, use DG_CONTROL /
DAT_PENDINGXFERS / MSG_RESET.

When DAT_XFERGROUP is set to DG_AUDIO:

Transitions to State 6 no matter what the value of pPendingXfers->Count.

Description

This triplet is used to cancel or terminate a transfer. Issued in state 6, this triplet cancels the next
pending transfer, discards the transfer data, and decrements the pending transfers count. In state
7, this triplet terminates the current transfer. If any data has not been transferred (this is only
possible during a memory transfer) that data is discarded.

The application can use this operation to cancel the next pending transfer (Source writers take
note of this). For example, after the application checks TW_IMAGEINFO (or TW_AUDIOINFO, if
transferring audio snippets), it may decide to not transfer the next image. The operation must be
sent prior to the beginning of the transfer, otherwise the Source will simply abort the current
transfer. The Source decrements the number of pending transfers.

Application

The application must invoke this operation at the end of every transfer to signal the Source that
the application has received all the data it expected. The application should send this after
receiving a TWRC_XFERDONE or TWRC_CANCEL.

No special set up or action required. Be sure to correctly track which state the Source will be in as
a result of your action. Be aware of the value in pPendingXfers->Count both before and after
the operation. Invoking this operation causes the loss of data that your user may not expect to be
lost. Be very careful and prudent when using this operation.

When DAT_XFERGROUP is set to DG_IMAGE and CAP_JOBCONTROL is set to other than
TWJC_NONE then check pPendingXfers->EOJ for TWEJ_xxx Job control value.
TWAIN 2.3 Specification 7-79

Chapter 7
Source

Option #1) Fill pPendingXfers->Count with the number of transfers the Source is ready to
supply to the application, upon demand. If pPendingXfers->Count > 0 (or equals -1),
transition to State 6 and await initiation of the next transfer by the application. If
pPendingXfers->Count == 0, transition all the way back to State 5 and await the next
acquisition.

Option #2) Preempt the acquired data that is next in line for transfer to the application (pending
transfers can be thought of as being pushed onto a FIFO queue as acquired and popped off the
queue when transferred). Decrement pPendingXfers->Count. If already acquired, discard the
data for the preempted transfer. Update pPendingXfers->Count with the new number of
pending transfers. If this value is indeterminate, leave the value in this field at -1. Note: -1 is not a
valid value for the number of audio snippets.

Option #3) Cancel the current transfer. Discard any local buffers or data involved in the transfer.
Prepare the Source and the device for the next transfer. Decrement pPendingXfers->Count
(don’t decrement if already zero or -1). If there is a transfer pending, return to State 6 and prepare
the Source to begin the next transfer. If no transfer is pending, return to State 5 and await initiation
of the next acquisition from the application or the user. Note: when DAT_XFERGROUP is set to
DG_AUDIO, the Source will not go lower than State 6 based on the value of pPendingXfers-
>Count.

When DAT_XFERGROUP is set to DG_IMAGE and CAP_JOBCONTROL is set to other than
TWJC_NONE then pPendingXfers->EOJ should reflect the current TWEJ_xxx Job control value.

Note: If a Source supports simultaneous connections to more than one application, the Source
should maintain a separate pPendingXfers structure for each application it is in-session
with.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADDEST /* No such Source in-session with application */

 TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_AUDIO / DAT_AUDIOFILEXFER / MSG_GET
DG_AUDIO / DAT_AUDIONATIVEXFER / MSG_GET
DG_CONTROL / DAT_PENDINGXFERS / MSG_GET
DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET
DG_CONTROL / DAT_PENDINGXFERS / MSG_STOPFEEDER
DG_CONTROL / DAT_XFERGROUP / MSG_SET
DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET
DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

Capability - CAP_XFERCOUNT
7-80 TWAIN 2.3 Specification

DG_CONTROL / DAT_PENDINGXFERS / MSG_GET

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_PENDINGXFERS,
 MSG_GET, pPendingXfers);

pPendingXfers = A pointer to a TW_PENDINGXFERS structure

Valid States

4 through 7

Description

Returns the number of transfers the Source is ready to supply to the application, upon demand. If
DAT_XFERGROUP is set to DG_IMAGE, this is the number of images. If DAT_XFERGROUP is set to
DG_AUDIO, this is the number of audio snippets for the current image. If there is no current
image, this call must return TWRC_FAILURE / TWCC_SEQERROR.

Application

No special set up or action required.

When DAT_XFERGROUP is set to DG_IMAGE and CAP_JOBCONTROL is set to other than
TWJC_NONE then check pPendingXfers->EOJ for TWEJ_xxx Job control value.

Source

Fill pPendingXfers->Count with the number of transfers the Source is ready to supply to the
application, upon demand. This value should reflect the number of complete data blocks that have
already been acquired or are in the process of being acquired.

When CAP_JOBCONTROL is set to other than TWJC_NONE then pPendingXfers->EOJ should
reflect the current TWEJ_xxx Job control value.

When DAT_XFERGROUP is set to DG_IMAGE:

If the Source is not sure how many transfers are pending, but is sure that the number is at least
one, set pPendingXfers->Count to -1. A Source connected to a device with an automatic
document feeder that cannot determine the number of pages in the feeder, or how many
selections the user may make on each page, would respond in this way. A Source providing
access to a series of images from a video camera or a data base may also respond this way.

When DAT_XFERGROUP is set to DG_AUDIO:

-1 is not a valid value for pPendingXfers->Count.

Return Codes

TWRC_SUCCESS
TWAIN 2.3 Specification 7-81

Chapter 7
TWRC_FAILURE

 TWCC_BADDEST /* No such Source in-session with application */

 TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER
DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET
DG_CONTROL / DAT_PENDINGXFERS / MSG_STOPFEEDER
DG_CONTROL / DAT_XFERGROUP / MSG_SET

Capability - CAP_XFERCOUNT
7-82 TWAIN 2.3 Specification

DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_PENDINGXFERS,
 MSG_RESET, pPendingXfers);

pPendingXfers = A pointer to a TW_PENDINGXFERS structure

Valid States

When DAT_XFERGROUP is set to DG_IMAGE:

6 only (Transitions to State 5, if successful)

When DAT_XFERGROUP is set to DG_AUDIO:

6 only (State remains at 6)

Description

Sets the number of pending transfers in the Source to zero.

Application

When DAT_XFERGROUP is set to DG_IMAGE:

No special set up or action required. Be aware of the state transition caused by this operation.
Invoking this operation causes the loss of data that your user may not expect to be lost. Be
very careful and prudent when using this operation. The application may need to use this
operation if an error occurs within the application that necessitates breaking off all TWAIN
sessions. This will get the application, Source Manager, and Source back to State 5 together.

When DAT_XFERGROUP is set to DG_AUDIO:

The available audio snippets are discarded, but the Source remains in State 6.

Source

Set pPendingXfers->Count to zero. Discard any local buffers or data involved in any of the
pending transfers.

When DAT_XFERGROUP is set to DG_IMAGE:

Return to State 5 and await initiation of the next acquisition from the application or the user.

When DAT_XFERGROUP is set to DG_AUDIO:

Remain in State 6.
TWAIN 2.3 Specification 7-83

Chapter 7
Note: If a Source supports simultaneous sessions with more than one application, the Source
should maintain a separate pPendingXfers structure for each application it is in-session
with.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADDEST /* No such Source in-session with application */

 TWCC_SEQERROR /* Operation invoked in invalid state */

See Also

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER
DG_CONTROL / DAT_PENDINGXFERS / MSG_GET
DG_CONTROL / DAT_PENDINGXFERS / MSG_STOPFEEDER
DG_CONTROL / DAT_XFERGROUP / MSG_SET

Capability - CAP_XFERCOUNT
7-84 TWAIN 2.3 Specification

DG_CONTROL / DAT_PENDINGXFERS / MSG_STOPFEEDER

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_PENDINGXFERS,
 MSG_STOPFEEDER, pPendingXfers);

pPendingXfers = A pointer to a TW_PENDINGXFERS structure

Valid States

6 only

Description

If CAP_AUTOSCAN is TRUE, this command will stop the operation of the scanner’s automatic
feeder. No other action is taken.

Application

The DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET command stops a session (returning to
State 5), but it also discards any images that have been captured by the scanner. The
MSG_STOPFEEDER command solves this problem by stopping the feeder, but remaining in State 6.
The application may then continue to transfer images, until pPendingXfers->Count goes to
zero.

Source

This command should only perform successfully if CAP_AUTOSCAN is TRUE. If CAP_AUTOSCAN is
FALSE, this command should return TWRC_FAILURE / TWCC_SEQERROR.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADDEST – no such Source in session with application.

 TWCC_BADPROTOCOL - Source does not support operation.

 TWCC_SEQERROR - Operation invoked in invalid state.

See Also

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER
DG_CONTROL / DAT_PENDINGXFERS / MSG_GET
DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET

Capabilities - CAP_AUTOSCAN
TWAIN 2.3 Specification 7-85

Chapter 7
DG_CONTROL / DAT_SETUPFILEXFER / MSG_GET

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_SETUPFILEXFER,
 MSG_GET, pSetupFile);

pSetupFile = A pointer to a TW_SETUPFILEXFER structure

Valid States

4 through 6

Description

Returns information about the file into which the Source has or will put the acquired DG_IMAGE or
DG_AUDIO data.

Application

No special set up or action required.

Source

Set the following:

pSetupFile->Format = format of destination file

 (DG_IMAGE Constants: TWFF_TIFF, TWFF_PICT, TWFF_BMP, etc.)

 (DG_AUDIO Constants: TWAF_WAV, TWAF_AIFF, TWAF_AU, etc.)

pSetupFile->FileName = name of file

 Windows: include the complete path name

 Macintosh: filename only

 Linux: include the complete path name

pSetupFile->VRefNum = volume reference number

 Windows: not used. Set to TWON_DONTCARE16.

 Macintosh: Set to the FSVolumeRefNum of the folder of the file.

 Linux: not used. Set to TWON_DONTCARE16.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADDEST /* No such Source in-session with application */

 TWCC_BADPROTOCOL /* Source does not support file transfer */

 TWCC_SEQERROR /* Operation invoked in invalid state */
7-86 TWAIN 2.3 Specification

See Also

DG_CONTROL / DAT_SETUPFILEXFER / MSG_GETDEFAULT
DG_CONTROL / DAT_SETUPFILEXFER / MSG_RESET
DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET
DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET

Capabilities - ICAP_XFERMECH, ICAP_IMAGEFILEFORMAT, ACAP_XFERMECH
TWAIN 2.3 Specification 7-87

Chapter 7
DG_CONTROL / DAT_SETUPFILEXFER / MSG_GETDEFAULT

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_SETUPFILEXFER,
 MSG_GETDEFAULT, pSetupFile);

pSetupFile = A pointer to a TW_SETUPFILEXFER structure

Valid States

4 through 6

Description

Returns information for the default DG_IMAGE or DG_AUDIO file.

Application

No special set up or action required.

Source

Set the following:

pSetupFile->Format = format of destination file

 (DG_IMAGE Constants: TWFF_TIFF, TWFF_PICT, TWFF_BMP, etc.)

 (DG_AUDIO Constants: TWAF_WAV, TWAF_AIFF, TWAF_AU, etc.)

pSetupFile->FileName = name of file

 Windows: include the complete path name

 Macintosh: filename only

 Linux: include the complete path name

pSetupFile->VRefNum = volume reference number

 Windows: not used. Set to TWON_DONTCARE16.

 Macintosh: Set to the FSVolumeRefNum of the folder of the file.

 Linux: not used. Set to TWON_DONTCARE16.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADDEST /* No such Source in-session with application */

 TWCC_BADPROTOCOL /* Source does not support file transfer */

 TWCC_SEQERROR /* Operation invoked in invalid state */
7-88 TWAIN 2.3 Specification

See Also

DG_CONTROL / DAT_SETUPFILEXFER / MSG_GET
DG_CONTROL / DAT_SETUPFILEXFER / MSG_RESET
DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET
DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET

Capabilities - ICAP_XFERMECH, ICAP_IMAGEFILEFORMAT, ACAP_XFERMECH
TWAIN 2.3 Specification 7-89

Chapter 7
DG_CONTROL / DAT_SETUPFILEXFER / MSG_RESET

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_SETUPFILEXFER,
 MSG_RESET, pSetupFile);

pSetupFile = A pointer to a TW_SETUPFILEXFER structure

Valid States

4 only

Description

Resets the current file information to the DG_IMAGE or DG_AUDIO default file information and
returns that default information..

Application

No special set up or action required.

Source

Set the following:

pSetupFile->Format = format of destination file

 (DG_IMAGE Constants: TWFF_TIFF, TWFF_PICT, TWFF_BMP, etc.)

 (DG_AUDIO Constants: TWAF_WAV, TWAF_AIFF, TWAF_AU, etc.)

pSetupFile->FileName = name of file

 Windows: include the complete path name

 Macintosh: filename only

 Linux: include the complete path name

pSetupFile->VRefNum = volume reference number

 Windows: not used. Set to TWON_DONTCARE16.

 Macintosh: Set to the FSVolumeRefNum to reflect the default file
 only if it already exists. Otherwise, set this field
 to NULL.

 Linux: not used. Set to TWON_DONTCARE16.
7-90 TWAIN 2.3 Specification

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADDEST /* No such Source in-session with application */

 TWCC_BADPROTOCOL /* Source does not support file transfer */

 TWCC_SEQERROR /* Operation invoked in invalid state */

/* The following introduced for 2.0 or higher */

TWCC_FILEWRITEERROR

See Also

DG_CONTROL / DAT_SETUPFILEXFER / MSG_GET
DG_CONTROL / DAT_SETUPFILEXFER / MSG_GETDEFAULT
DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET
DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET

Capabilities - ICAP_XFERMECH, ICAP_IMAGEFILEFORMAT, ACAP_XFERMECH
TWAIN 2.3 Specification 7-91

Chapter 7
DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_SETUPFILEXFER,
 MSG_SET, pSetupFile);

pSetupFile = A pointer to a TW_SETUPFILEXFER structure

Valid States

4 through 6

Description

Sets the file transfer information for the next file transfer. The application is responsible for
verifying that the specified file name is valid and that the file either does not currently exist (in
which case, the Source is to create the file), or that the existing file is available for opening and
read/write operations. The application should also assure that the file format it is requesting can
be provided by the Source (otherwise, the Source will generate a TWRC_FAILURE /
TWCC_BADVALUE error).

Application

Set the following:

pSetupFile->Format = format of destination file

 (DG_IMAGE Constants: TWFF_TIFF, TWFF_PICT, TWFF_BMP, etc.)

 (DG_AUDIO Constants: TWAF_WAV, TWAF_AIFF, TWAF_AU, etc.)

pSetupFile->FileName = name of file

 Windows: include the complete path name

 Macintosh: filename only

 Linux: include the complete path name

pSetupFile->VRefNum = volume reference number

 Windows: not used. Set to TWON_DONTCARE16.

 Macintosh: Set to the FSVolumeRefNum to reflect the default
 file only if it already exists. Otherwise, set this field to
 NULL.

 Linux: not used. Set to TWON_DONTCARE16.

Note: ICAP_XFERMECH or ACAP_XFERMECH (depending on the value of DAT_XFERGROUP)
must have been set to TWSXdata) and return TWRC_FAILURE with TWCC_BADVALUE. If
the format and file name are OK, but a file error occurs when trying to open the file (other
than "file does not exist”), return TWCC_BADVALUE and set up to use the default file. If the
specified file does not exit, create it. If the file exists and has data in it, overwrite the
existing data starting with the first byte of the file.
7-92 TWAIN 2.3 Specification

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADDEST /* No such Source in-session with application */

 TWCC_BADPROTOCOL /* Source does not support file transfer */

 TWCC_BADVALUE /* Source cannot comply with one of the */

 /* settings */

 TWCC_SEQERROR /* Operation invoked in invalid state */

/* The following introduced for 2.0 or higher */

TWCC_FILEWRITEERROR

See Also

DG_CONTROL / DAT_SETUPFILEXFER / MSG_GET
DG_CONTROL / DAT_SETUPFILEXFER / MSG_GETDEFAULT
DG_CONTROL / DAT_SETUPFILEXFER / MSG_RESET
DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET

Capabilities - ICAP_XFERMECH, ICAP_IMAGEFILEFORMAT, ACAP_XFERMECH
TWAIN 2.3 Specification 7-93

Chapter 7
 DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET

Call

DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_SETUPMEMXFER, MSG_GET,
pSetupMem);

pSetupMem = A pointer to a TW_SETUPMEMXFER structure.

Valid States

4 through 6

Description

Returns the Source’s preferred, minimum, and maximum allocation sizes for transfer memory
buffers. The application using buffered memory transfers must use a buffer size between
MinBufSize and MaxBufSize in their TW_IMAGEMEMXFER.Memory.Length when using the
DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET operation. Sources may return a more efficient
preferred value in State 6 after the image size, etc. has been specified.

Application

No special set up or action required.

Source

Set the following:

pSetupMem->MinBufSize = minimum usable buffer size,
in bytes

pSetupMem->MaxBufSize = maximum usable buffer size,
in bytes (-1 means an indeterminately large buffer is acceptable)

pSetupMem->Preferred = preferred transfer buffer size, in bytes

If the Source doesn’t care about the size of any of these specifications, set the field(s) to
TWON_DONTCARE32. This signals the application that any value for that field is OK with the
Source.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADDEST /* No such Source in-session with */
 /* application */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */
7-94 TWAIN 2.3 Specification

See Also

DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET

Capabilities - ICAP_COMPRESSION, ICAP_XFERMECH
TWAIN 2.3 Specification 7-95

Chapter 7
DG_CONTROL / DAT_STATUS / MSG_GET (from Application to Source Manager)

Call

DSM_Entry(pOrigin, NULL, DG_CONTROL, DAT_STATUS, MSG_GET,
pSourceStatus);

pSourceStatus = A pointer to a TW_STATUS structure.

Valid States

2 through 7

Description

Returns the current Condition Code for the Source Manager.

Application

NULL references the operation to the Source Manager.

Source Manager

Fills pSourceStatus->ConditionCode with its current Condition Code. Then, it will clear its
internal Condition Code so you cannot issue a status inquiry twice for the same error (the
information is lost after the first request).

Return Codes

TWRC_SUCCESS /* This operation must succeed */

TWRC_FAILURE

 TWCC_BADDEST /* No such Source in-session with */
 /* application */

See Also

Return Codes and Condition Codes (Chapter 11, "Return Codes and Condition Codes")
7-96 TWAIN 2.3 Specification

DG_CONTROL / DAT_STATUS / MSG_GET (from Application to Source)

Call

DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_STATUS, MSG_GET,
pSourceStatus);

pSourceStatus = A pointer to a TW_STATUS structure.

Valid States

4 through 7

Description

Returns the current Condition Code for the specified Source.

Application

pDest references a copy of the targeted Source’s identity structure.

Source

Fills pSourceStatus->ConditionCode with its current Condition Code. Then, it will clear its
internal Condition Code so you cannot issue a status inquiry twice for the same error (the
information is lost after the first request).

Fills pSourceStatus->Data with its current custom code. If there is no custom code, the value
must be 0.

Return Codes

TWRC_SUCCESS /* This operation must succeed */

TWRC_FAILURE

 TWCC_BADDEST /* No such Source in-session with */
 /* application */

See Also

Return Codes and Condition Codes (Chapter 11, "Return Codes and Condition Codes")
TWAIN 2.3 Specification 7-97

Chapter 7
DG_CONTROL / DAT_STATUSUTF8 / MSG_GET

Call

DSM_Entry(pOrigin, NULL, DG_CONTROL, DAT_STATUSUTF8, MSG_GET,
pStatusUtf8);

pStatusUtf8 = pointer to a TW_STATUSUTF8 structure.

Valid States

3 through 7

Description

Translate the contents of a TW_STATUS structure received from a Source into a localized UTF-8
encoded string.

Application

This operation can be called at anytime, with the contents of any TW_STATUS structure that it has
received from the Source. The Source returns a value indicating the number of bytes (not
characters) of data, including the terminating NUL byte. It also returns a handle to a UTF-8
encoded string, which the Application must lock before accessing, and which it must unlock and
free when it is done.

Source

Translates the full contents of a TW_STATUS structure into a localized UTF-8 encode string,
returning back a handle to that string, and the number of bytes (not characters) in the string,
including the terminating NUL byte.

The Source returns a generic message if it is asked to return a string for a status code that it does
not recognize.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADVALUE// something is wrong with &StatusUtf8

See Also

DG_CONTROL / DAT_STATUS / MSG_GET (from Application to Source Manager)
DG_CONTROL / DAT_STATUS / MSG_GET (from Application to Source)
7-98 TWAIN 2.3 Specification

DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS

Call

DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_USERINTERFACE, MSG_DISABLEDS,
pUserInterface);

pUserInterface = A pointer to a TW_USERINTERFACE structure.

Valid States

5 only (Transitions to State 4, if successful)

Description

This operation causes the Source’s user interface, if displayed during the DG_CONTROL /
DAT_USERINTERFACE / MSG_ENABLEDS operation, to be lowered. The Source is returned to
State 4, where capability negotiation can again occur. The application can invoke this operation
either because it wants to shut down the current session, or in response to the Source “posting” a
MSG_CLOSEDSREQ event to it. Rarely, the application may need to close the Source because an
error condition was detected.

Application

References the same pUserInterface structure as during the MSG_ENABLEDS operation. This
implies that the application keep a copy of this structure locally as long as the Source is enabled.

If the application did not display the Source’s built-in user interface, it will most likely invoke this
operation either when all transfers have been completed or aborted (TW_PENDINGXFERS.Count =
0).

Source

If the Source’s user interface is displayed, it should be lowered. The Source returns to State 4 and
is again available for capability negotiation.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADDEST /* No such Source in-session */
 /* with application */

 TWCC_SEQERROR /* Operation invoked in */
 /* invalid state */

See Also

DG_CONTROL / DAT_NULL / MSG_CLOSEDSREQ (from Source to Application)
DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS

Event loop information (in Chapter 3, "Application Implementation")
TWAIN 2.3 Specification 7-99

Chapter 7
DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS

Call

DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_USERINTERFACE, MSG_ENABLEDS,
pUserInterface);

pUserInterface = A pointer to a TW_USERINTERFACE structure

Valid States

4 only (Transitions to State 5, if successful)

Description

This operation causes three responses in the Source:

• Places the Source into a “ready to acquire” condition. If the application raises the Source’s user
interface (see #2, below), the Source will wait to assert MSG_XFERREADY until the “GO” button
in its user interface or on the device is clicked. If the application bypasses the Source’s user
interface, this operation causes the Source to become immediately “armed”. That is, the Source
should assert MSG_XFERREADY as soon as it has data to transfer.

• The application can choose to raise the Source’s built-in user interface, or not, using this
operation. The application signals the Source’s user interface should be displayed by setting
pUserInterface->ShowUI to TRUE. If the application does not want the Source’s user interface
to be displayed, or wants to replace the Source’s user interface with one of its own, it sets
pUserInterface->ShowUI to FALSE. If activated, the Source’s user interface will remain
displayed until it is closed by the user or explicitly disabled by the application (see Note).

• Terminates Source’s acceptance of “set capability” requests from the application. Capabilities
can only be negotiated in State 4 (unless special arrangements are made using the
CAP_EXTENDEDCAPS capability). Values of capabilities can still be inquired in States 5 through
7.

Note: Once the Source is enabled, the application must begin sending the Source every event
that enters the application’s main event loop. The application must continue to send the
Source events until it disables (MSG_DISABLEDS) the Source. This is true even if the
application chooses not to use the Source’s built-in user interface.

Application

Set pUserInterface->ShowUI to TRUE to display the Source’s built-in user interface, or to
FALSE to place the Source in an “armed” condition so that it is immediately prepared to acquire
data for transfer. Set ShowUI to FALSE only if bypassing the Source’s built-in user interface—that
is, only if the application is prepared to handle all user interaction necessary to acquire data from
the selected Source.

Sources are not required to be enabled without showing their User Interface (i.e.
TW_USERINTERFACE.ShowUI = FALSE). If a Source does not support ShowUI = FALSE, they will
continue to be enabled just as if ShowUI = TRUE, but return TWRC_CHECKSTATUS. The
application can check for this Return Code and continue knowing the Source’s User Interface is
being displayed.
7-100 TWAIN 2.3 Specification

Watch the value of pUserInterface->ModalUI after the operation has completed to see if the
Source’s user interface is modal or modeless.

The application must maintain a local copy of pUserInterface while the Source is enabled.

• Windows: Set pUserInterface->hParent to a handle (hWnd) to the window that will act
as the Source’s parent.

• Macintosh: Set pUserInterface->hParent to NULL.

• Linux: Set pUserInterface->hParent to NULL.

Note: Application should establish that the Source can supply compatible ICAP_PIXELTYPEs
and ICAP_BITDEPTHs prior to enabling the Source. The application must verify that the
Source can supply data of a type it can consume. If this operation fails, the application
should notify the user that the device and application are incompatible due to data type
mismatch. If the application diligently sets SupportedGroups in its identity structure
before it tries to open the Source, the Source Manager will, in the Select Source dialog or
through the MSG_GETFIRST/MSG_GETNEXT mechanism, filter out the Sources that don’t
match these SupportedGroups.

Source

If pUserInterface->ShowUI is TRUE, the Source should display its user interface and wait for
the user to initiate an acquisition. If pUserInterface->ShowUI is FALSE, the Source should
immediately begin acquiring data based on its current configuration (a device that requires the
user to push a button on the device, such as a hand-scanner, will be “armed” by this operation and
will assert MSG_XFERREADY as soon as the Source has data ready for transfer). The Source should
fail any attempt to set a capability value (TWRC_FAILURE / TWCC_SEQERROR) until it returns to
State 4 (unless an exception approval exists via a CAP_EXTENDEDCAPS agreement).

Set pUserInterface->ModalUI to TRUE if your built-in user interface is modal. Otherwise, set
it to FALSE.

Note: If the application has set ShowUI or CAP_INDICATORS to TRUE, then the Source is
responsible for presenting the user with appropriate progress indicators regarding the
acquisition and transfer process. If ShowUI is set to TRUE, CAP_INDICATORS is ignored
and progress and errors are always shown.

Note: It is strongly recommended that all Sources support being enabled without their User
Interface if the application requests (TW_USERINTERFACE.ShowUI = FALSE). But if your
Source cannot be used without its User Interface, it should enable showing the Source
User Interface (just as if ShowUI = TRUE) but return TWRC_CHECKSTATUS. All Sources,
however, must support the CAP_UICONTROLLABLE. This capability reports whether or
not a Source allows ShowUI = FALSE. An application can use this capability to know
whether the Source-supplied user interface can be suppressed before it is displayed.

Return Codes

TWRC_SUCCESS

TWRC_CHECKSTATUS /* Source cannot enable */
TWAIN 2.3 Specification 7-101

Chapter 7
 /* without User Interface */

 /* so it enabled with the */

 /* User Interface. */

TWRC_FAILURE

 TWCC_BADDEST /* No such Source in-session */
 /* with application */

 TWCC_LOWMEMORY /* Not enough memory to open */
 /* the Source */

 TWCC_OPERATIONERROR /* Internal Source error; */
 /* handled by the Source */

 TWCC_SEQERROR /* Operation invoked in */
 /* invalid state */

 TWCC_NOMEDIA /* Source has nothing to capture */

See Also

DG_CONTROL / DAT_NULL / MSG_CLOSEDSREQ (from Source to Application)
DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS

Capability - CAP_INDICATORS

Event loop information (in Chapter 3, "Application Implementation")
7-102 TWAIN 2.3 Specification

DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDSUIONLY

Call

DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_USERINTERFACE,
MSG_ENABLEDSUIONLY, pUserInterface);

pUserInterface = A pointer to a TW_USERINTERFACE structure.

Valid States

4 only (transitions to State 5, if successful)

Description

This operation is very similar to DG_CONTROL/ DAT_USERINTERFACE/ MSG_ENABLEDS
operation except that no image transfer will take place. This operation is used by applications that
wish to display the source user interface to allow the user to manipulate the sources current
settings for DPI, paper size, etc. but not acquire an image. The ShowUI member of the
TW_USERINTERFACE structure is ignored since this operations only purpose is to display the
source UI. The other members of the TW_USERINTERFACE structure have the same meaning as in
the DG_CONTROL/ DAT_USERINTERFACE/ MSG_ENABLEDS operation.

This operation has the following effects.

• The source transitions from state 4 to state 5. The source will display its user interface dialog
but will not have a scan button (unless its only purpose is to preview the image).

• The application must begin sending the Source every event that enters the applications main
event loop. This mechanism is the same as in the MSG_ENABLEDS operation.

• When the user hits OK or cancel from the source user interface dialog the source will send
either MSG_CLOSEDSOK or MSG_CLOSEDSREQ Message.

• To close the source the application will respond back by sending a DG_CONTROL /
DAT_USERINTERFACE / MSG_DISABLEDS. This source closes the dialog and then transitions
from state 5 back to state 4 .
TWAIN 2.3 Specification 7-103

Chapter 7
DG_CONTROL / DAT_XFERGROUP / MSG_GET

Call

DSM_Entry(pOrigin, pDest, DG_CONTROL, DAT_XFERGROUP, MSG_GET,
pXferGroup);

pXferGroup = A pointer to a TW_UINT32 value.

Valid States

4 through 6

Description

Returns the Data Group (the type of data) for the upcoming transfer. The Source is required to
only supply one of the DGs specified in the SupportedGroups field of pOrigin.

Application

Should have previously (during a DG_CONTROL / DAT_PARENT / MSG_OPENDSM) set pOrigin.
SupportedGroups to reflect the DGs the application is interested in receiving from a Source. Since
DG_xxxx identifiers are bit flags, the application can perform a bitwise OR of DG_xxxx constants
of interest to build the SupportedGroups field (this is appropriate when more kinds of data than
DG_IMAGE are available).

Note: Version 1.x of the Toolkit defines DG_IMAGE and DG_AUDIO as the sole Data Groups
(DG_CONTROL is masked from any processing of SupportedGroups). Future versions of
TWAIN may define support for other DGs.

Source

Set pXferGroup to the DG_xxxx constant that identifies the type of data that is ready for transfer
from the Source (DG_IMAGE is the only non-custom Data Group defined in TWAIN version 1.x).

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADDEST /* No such Source in-session with */
 /* application */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */

See Also

DG_CONTROL / DAT_XFERGROUP / MSG_SET
7-104 TWAIN 2.3 Specification

DG_CONTROL / DAT_XFERGROUP / MSG_SET

Call

DSM_Entry (pOrigin, pDest, DG_CONTROL, DAT_XFERGROUP,
 MSG_SET, pXFerGroup);

pXferGroup = A pointer to a TW_UINT32 value.

Valid States

6 only

Description

The transfer group determines the kind of data being passed from the Source to the Application.
By default a TWAIN Source must default to DG_IMAGE. Currently the only other data group
supported is DG_AUDIO, which is a feature supported by some digital cameras.

An Application changes the data group in State 6 to indicate that it wants to transfer any audio
data associated with the current image. The transfers follow the typical TWAIN State 6 – State 7 –
State 6 pattern for each audio snippet transferred. When the application is done transferring
audio data it must change back to DG_IMAGE in order to move on to the next image or to end the
transfers and return to State5.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADDEST – no such Source in session with application.

 TWCC_BADPROTOCOL - capability not supported.

 TWCC_SEQERROR - not state 6.

See Also

DG_CONTROL / DAT_XFERGROUP / MSG_GET
TWAIN 2.3 Specification 7-105

Chapter 7
DG_IMAGE / DAT_CIECOLOR / MSG_GET

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_CIECOLOR, MSG_GET, pCIEColor);

pCIEColor = A pointer to a TW_CIECOLOR structure.

Valid States

4 through 6

Description

Background - The DAT_CIECOLOR data argument type is used to communicate the parametrics
for performing a transformation from any arbitrary set of tri-stimulus values into CIE XYZ color
space. Color data stored in this format is more readily manipulated mathematically than some
other spaces. Go to http://www.cie.co.at/ for more information about CIE XYZ Color Space.

This operation causes the Source to report the currently active parameters to be used in converting
acquired color data into CIE XYZ.

Application

Prior to invoking this operation, the application should establish that the Source can provide data
in CIE XYZ form. This can be determined by invoking a MSG_GET on ICAP_PIXELTYPE. If
TWPT_CIEXYZ is one of the supported types, then these operations are valid. The application can
specify that transfers should use the CIE XYZ space by invoking a MSG_SET operation on
ICAP_PIXELTYPE using a TW_ONEVALUE container structure whose value is TWPT_CIEXYZ.

No special set up is required. Invoking this operation following the transfer (after the Source is
back in State 6) will guarantee that the exact parameters used to convert the image are reported.

Source

Fill pCIEColor with the current values applied in any conversion of image data to CIE XYZ. If no
values have been set by the application, fill the structure with either the values calculated for this
image or the Source’s default values, whichever most accurately reflect the state of the Source.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL /* Source does not support the */
 /* CIE descriptors */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */

See Also

Capability - ICAP_PIXELTYPE
Chapter A, "TWAIN Articles"
7-106 TWAIN 2.3 Specification

DG_IMAGE / DAT_EXTIMAGEINFO / MSG_GET

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_EXTIMAGEINFO, MSG_GET,
pExtImageInfo);

pExtImageInfo = A pointer to a TW_EXTIMAGEINFO structure.

Valid States

7 only, after receiving TWRC_XFERDONE

Description

This operation is used by the application to query the data source for extended image attributes,
.e.g. bar codes found on a page. The extended image information will be returned in a
TW_EXTIMAGEINFO structure.

Application

To query extended image information, set the pExtImageInfo fields as follows:

The Application will allocate memory for the necessary container structure, the source will fill the
values, and then application will free it up.

pExtImageInfo->NumInfos = Desired number of information;

pExtImageInfo->Info[0].InfoID = TWEI_xxxx;

pExtImageInfo->Info[1].InfoID = TWEI_xxxx;

Source

If the application requests information that the Source does not recognize, the Source should put
TWRC_INFONOTSUPPORTED in the ReturnCode field of TW_INFO structure.

pExtImageInfo->Info[0].ReturnCode = TWRC_INFONOTSUPPORTED;

If the application requests information that the Source recognizes but is currently not available,
the Source should put TWRC_INFONOTAVAILABLE in the ReturnCode field of TW_INFO structure.

pExtImageInfo->Info[0].ReturnCode = TWRC_INFONOTAVAILABLE;

If you support the capability, fill in the fields allocating extra memory if necessary. For example,
for TWEI_BARCODEX:

pExtImageInfo->Info[0].ReturnCode = TWRC_SUCCESS;

pExtImageInfo->Info[0].ItemType = TWTY_UINT32;

pExtImageInfo->Info[0].NumItems = 1;

pExtImageInfo->Info[0].Item = 20;
TWAIN 2.3 Specification 7-107

Chapter 7
For TWEI_FORMTEMPLATEMATCH:

pExtImageInfo->Info[0].RetCode = TWRC_SUCCESS;

pExtImageInfo->Info[0].ItemType = TWTY_STR255;

pExtImageInfo->Info[0].NumItems = 1;

pExtImageInfo->Info[0].Item = GlobalAlloc(GHND, sizeof(TW_STR255));

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL /* Source does not support extended image */

 /* information */

 TWCC_SEQERROR /* Not State 7, or in State 7 but TWRC_XFERDONE */

 /* has not been received yet */

TWCC_NOMEDIA /* Source has nothing to capture */

See Also

Capability ICAP_EXTIMAGEINFO, ICAP_SUPPORTEDEXTIMAGEINFO
7-108 TWAIN 2.3 Specification

DG_IMAGE / DAT_FILTER / MSG_GET

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_FILTER, MSG_GET, pFilter);

pFilter = A pointer to a TW_FILTER structure.

Valid States

4 through 6

Description

Causes the Source to return the filter parameters that will be used during the next image
acquisition.

TW_FILTER describes the color characteristic of the subtractive filter applied to the image data.
Multiple filters may be applied to a single acquisition.

Application

The Application allocates the TW_FILTER structure. The Source will allocate memory for the
TW_FILTER_DESCRIPTOR array if any. TW_FILTER/Descriptors field specifies the number
of elements in the array returned in hDescriptors. The size of the TW_FILTER_DESCRIPTOR
structure may vary across the versions, so use the TW_FILTER_DESCRIPTOR/Size filed to step
through the array. The Application has to deallocate hDescriptors after it is not needed
anymore.

Source

Fill pFilter with the filter parameters that will be applied during the next acquisition.

The Source must allocate memory for the TW_FILTER_DESCRIPTOR array if any. The Source
must check the TW_FILTER/Size field to see which of the structure fields it can fill.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL /* Source does not support it */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */

See Also

DG_IMAGE / DAT_FILTER / MSG_GETDEFAULT
DG_IMAGE / DAT_FILTER / MSG_SET
DG_IMAGE / DAT_FILTER / MSG_RESET

Capability - ICAP_FILTER
TWAIN 2.3 Specification 7-109

Chapter 7
DG_IMAGE / DAT_FILTER / MSG_GETDEFAULT

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_FILTER, MSG_GET, pFilter);

pFilter = A pointer to a TW_FILTER structure.

Valid States

4 through 6

Description

Causes the Source to return the power-on default values applied to the filter.

Source will fill TW_FILTER structure fields Descriptors and hDescriptors with 0. This
means no filter will be applied.

TW_FILTER describes the color characteristic of the subtractive filter applied to the image data.
Multiple filters may apply to a single acquisition.

Application

The Application allocates the TW_FILTER structure. The Source will allocate memory for the
TW_FILTER_DESCRIPTOR array if any. The TW_FILTER/Descriptors field specifies the
number of elements in the array returned in hDescriptors. The size of the
TW_FILTER_DESCRIPTOR structure may vary across the versions, so use the
TW_FILTER_DESCRIPTOR/Size filed to step through the array. The Application has to
deallocate hDescriptors after it is not needed anymore.

Source

Fill pFilter with the filter parameters that will be applied during the next acquisition.

The Source must allocate memory for the TW_FILTER_DESCRIPTOR array if any. The Source
must check the TW_FILTER/Size field to see which of the structure fields it can fill.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL /* Source does not support it */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */

See Also

DG_IMAGE / DAT_FILTER / MSG_GET
DG_IMAGE / DAT_FILTER / MSG_SET
DG_IMAGE / DAT_FILTER / MSG_RESET

Capability - ICAP_FILTER
7-110 TWAIN 2.3 Specification

DG_IMAGE / DAT_FILTER / MSG_SET

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_FILTER, MSG_SET, pFilter);

pFilter = A pointer to a TW_FILTER structure.

Valid States

4 only

Description

Allows the Application to configure the filter parameters that will be used during the next image
acquisition.

TW_FILTER describes the color characteristic of the subtractive filter applied to the image data.
Multiple filters may be applied to a single acquisition.

If the Source supports DAT_FILTER as well, then it will apply the filter set by the last SET
operation invoked by the Application. Setting/Resetting ICAP_FILTER will clear the filter
associated with DAT_FILTER. Setting/Resetting DAT_FILTER will clear the filter associated with
ICAP_FILTER.

Application

The Application allocates the TW_FILTER structure. The Application also has to allocate memory
for the TW_FILTER_DESCRIPTOR array if any. The TW_FILTER/Descriptors field specifies
the number of elements in the array in hDescriptors. If this number exceeds the TW_FILTER/
MaxDescriptors returned by any GET operation, then the Source will accept only the allowed
number of descriptors and it will return TWRC_CHECKSTATUS.

Source

Adopt the requested filter parameters that will be applied during the next acquisition. If a value
does not exactly match an available value, match the value as closely as possible and return
TWRC_CHECKSTATUS. If the value is beyond the range of available values, clip to the nearest value
and return TWRC_FAILURE/TWCC_BADVALUE.

The Source must check the TW_FILTER/Size field to see which of the structure fields are valid.
The size of the TW_FILTER_DESCRIPTOR structure may vary across the versions, so use the
TW_FILTER_DESCRIPTOR/Size filed to step through the array.

The Source must discard all previously set filter parameters.

Return Codes

TWRC_SUCCESS

TWRC_CHECKSTATUS /* value(s) could not be matched exactly */

TWRC_FAILURE
TWAIN 2.3 Specification 7-111

Chapter 7
 TWCC_BADPROTOCOL /* Source does not support it */

 TWCC_BADVALUE /* illegal value(s) */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */

See Also

DG_IMAGE / DAT_FILTER / MSG_GET
DG_IMAGE / DAT_FILTER / MSG_GETDEFAULT
DG_IMAGE / DAT_FILTER / MSG_RESET

Capability - ICAP_FILTER
7-112 TWAIN 2.3 Specification

DG_IMAGE / DAT_FILTER / MSG_RESET

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_FILTER, MSG_SET, pFilter);

pFilter = A pointer to a TW_FILTER structure.

Valid States

4 only

Description

Return the Source to using its power-on default values when it is applying the filter.

Source will fill TW_FILTER structure fields Descriptors and hDescriptors with 0. This
means no filter will be applied.

TW_FILTER describes the color characteristic of the subtractive filter applied to the image data.
Multiple filters may be applied to a single acquisition.

If the Source supports DAT_FILTER as well, then it will apply the filter set by the last SET
operation invoked by the Application. Setting/Resetting ICAP_FILTER will clear the filter
associated with DAT_FILTER. Setting/Resetting DAT_FILTER will clear filter associated with
ICAP_FILTER.

Application

The application allocates the TW_FILTER structure. The Source will allocate memory for the
TW_FILTER_DESCRIPTOR array if any. The TW_FILTER/Descriptors field specifies the
number of elements in the array returned in hDescriptors. The size of the
TW_FILTER_DESCRIPTOR structure may vary across the versions, so use the
TW_FILTER_DESCRIPTOR/Size filed to step through the array. The Application has to
deallocate hDescriptors after it is not needed anymore.

Source

Fill pFilter with the filter parameters that will be applied during the next acquisition.

The Source must allocate memory for the TW_FILTER_DESCRIPTOR array if any. The Source
must check TW_FILTER/Size field to see which of the structure fields it can fill.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL /* Source does not support it */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */

See Also

DG_IMAGE / DAT_FILTER / MSG_GET
DG_IMAGE / DAT_FILTER / MSG_GETDEFAULT
DG_IMAGE / DAT_FILTER / MSG_SET
Capability - ICAP_FILTER
TWAIN 2.3 Specification 7-113

Chapter 7
DG_IMAGE / DAT_GRAYRESPONSE / MSG_RESET

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_GRAYRESPONSE, MSG_RESET,
pResponse);

pResponse = A pointer to a TW_GRAYRESPONSE structure.

Valid States

4 only

Description

Background - The two DAT_GRAYRESPONSE operations allow the application to specify a transfer
curve that the Source should apply to the grayscale it acquires. This curve should be applied to
the data prior to transfer. The Source should maintain an “identity response curve” to be used
when it is MSG_RESET.

The MSG_RESET operation causes the Source to use its “identity response curve.” The identity
curve causes no change in the values of the captured data when it is applied.

Application

No special action.

Source

Apply the identity response curve to all future grayscale transfers. This means that the Source
will transfer the grayscale data exactly as acquired.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL /* Source does not support */
 /* grayscale response curves */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */

See Also

DG_IMAGE / DAT_GRAYRESPONSE / MSG_SET

Capability - ICAP_PIXELTYPE
7-114 TWAIN 2.3 Specification

DG_IMAGE / DAT_GRAYRESPONSE / MSG_SET

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_GRAYRESPONSE, MSG_SET,
pResponse);

pResponse = A pointer to a TW_GRAYRESPONSE structure.

Valid States

4 only

Description

Background - The two DAT_GRAYRESPONSE operations allow the application to specify a transfer
curve that the Source should apply to the grayscale it acquires. This curve should be applied to
the data prior to transfer. The Source should maintain an “identity response curve” to be used
when it is MSG_RESET. This identity curve should cause no change in the values of the data it is
applied to.

This operation causes the Source to transform any grayscale data according to the response curve
specified.

Application

All three elements of the response curve for any given index should hold the same value (the
curve is stored in a TW_ELEMENT8 which contains three “channels” of data). The Source may not
support this operation. The application should be diligent to examine the return code from this
operation.

Source

Apply the specified response curve to all future grayscale transfers. The transformation should be
applied before the data is transferred.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL /* Source does not support */
 /* grayscale response curves */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */

See Also

DG_IMAGE / DAT_GRAYRESPONSE / MSG_RESET

Capability - ICAP_PIXELTYPE
TWAIN 2.3 Specification 7-115

Chapter 7
DG_IMAGE / DAT_ICCPROFILE / MSG_GET

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_ICCPROFILE, MSG_GET,
pICCProfile);

pICCProfile = A pointer to a TW_MEMORY structure.

Valid States

6 or 7

Description

This operation provides the application with the ICC profile associated with the image which is
about to be transferred (state 6) or is being transferred (state 7).

Application

The application can use the operation to retrieve an ICC profile associated with image data. This
profile could then be used to transform the image to sRGB or to embed into a JPEG or TIFF file
that the application is writing. If the application is having the source write the file
(ICAP_XFERMECH of TWSX_FILE), then there is no need to call this triplet and the capability
ICAP_ICCPROFILE should be used. It is important that the application not allocate the memory
itself. Although a TW_MEMORY structure is used, the memory is always allocated by the source.
The application should set the entire structure to zero. Note that not all sources will have profiles
and some might have profiles for color data but not for grayscale data.

The profile returned always applies to the current data being transferred and not the image being
currently scanned. This distinction is important for scanners that buffer pages since the data being
transferred is most likely not the image being currently scanned.

For optimization, it is recommended that applications attempt to only call this on an as needed
basis. In general, the application calls this once for each batch. However, it is important to note
any changes in the pixeltype during a batch because changes in pixeltype will mandata a change
in profile. While most scanners will not change the pixeltype int eh middle of a batch, those with
job control sheets may do so.

Source

Allocates the TheMem member and sets the Flags member to have TWMF_DSOWNS. Fills in the
Length member.

It is recommended that sources obey platform specific rules about locations for profile files. When
possible, it is desirable to store the profiles in the platform specific location and then to read that
profile and send the data back to the location.

See Also

Capability - ICAP_ICCPROFILE
7-116 TWAIN 2.3 Specification

The new ICAP_PIXELTYPE values are:

TWPT_CIELAB
TWPT_SRGB Specifies that the data coming back has been calibrated to sRGB

If a source supports TWPT_SRGB, it must also support TWPT_RGB for backwards compatibility. If it
only has sRGB data, then it should still support TWPT_RGB and pass back its sRBG data in that
mode.
TWAIN 2.3 Specification 7-117

Chapter 7
DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_IMAGEFILEXFER, MSG_GET, NULL);

This operation acts on NULL data. File information can be set with the DG_CONTROL /
DAT_SETUPFILEXFER / MSG_SET operation.

Valid States

6 only (Transitions to State 7, if successful. Remains in State 7 until MSG_ENDXFER operation.)

Description

This operation is used to initiate the transfer of an image from the Source to the application via the
disk-file transfer mechanism. It causes the transfer to begin.

Application

No special set up or action required. Application should have already invoked the DG_CONTROL
/ DAT_SETUPFILEXFER / MSG_SET operation unless the Source’s default transfer format and
file name (typically, TWAIN.TMP) are acceptable to the application. The application need only
invoke this operation once per image transferred.

Note: If the application is planning to receive multiple images from the Source while using the
Source’s default file name, the application should plan to pause between transfers and
copy the file just written. The Source will overwrite the file unless it is instructed to write
to a different file.

Note: Applications can specify a unique file for each transfer using DG_CONTROL /
DAT_SETUPFILEXFER / MSG_SET operation in State 6 or 5 (and 4, of course).

Source

Acquire the image data, format it, create any appropriate header information, and write
everything into the file specified by the previous DG_CONTROL / DAT_SETUPFILEXFER /
MSG_SET operation, and close the file.

Handling Possible File Conditions:

• If the application did not set conditions up using the DAT_SETUPFILEXFER / MSG_SET
operation during this session, use your own default file name, file format, and location for the
created file.

• If the specified file already exists, overwrite the file in place.

• If the specified file does not exist, create the file.

• If the specified file exists and cannot be accessed, or a system error occurs while writing the file,
report the error to the user and return TWRC_FAILURE with TWCC_OPERATIONERROR. Stay in
7-118 TWAIN 2.3 Specification

State 6. The file contents are invalid. The image whose transfer failed is still a pending transfer
so do not decrement TW_PENDINGXFERS.Count.

• If the file is written successfully, return TWRC_XFERDONE.

• If the user cancels the transfer, return TWRC_CANCEL.

Return Codes

TWRC_XFERDONE

TWRC_CANCEL

TWRC_FAILURE

TWCC_BADDEST /* No such Source in-session */
 /* with application */

TWCC_OPERATIONERROR /* Failure in the Source -- */
 /* transfer invalid */

TWCC_SEQERROR /* Operation invoked in */
 /* invalid state */

/* The following introduced for 2.0 or higher */

TWCC_FILEWRITEERROR

TWCC_INTERLOCK /* Cover or door is open */

TWCC_DAMAGEDCORNER /* Document has a damaged corner */

TWCC_FOCUSERROR /* Focusing error during document capture */

TWCC_DOCTOOLIGHT /* Document is too light */

TWCC_DOCTOODARK /* Document is too dark */

TWCC_NOMEDIA /* Source has nothing to capture */

See Also

DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET
DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEINFO / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET

Capabilities - ICAP_XFERMECH, ICAP_IMAGEFILEFORMAT
TWAIN 2.3 Specification 7-119

Chapter 7
DG_IMAGE / DAT_IMAGEINFO / MSG_GET

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_IMAGEINFO, MSG_GET,pImageInfo);

pImageInfo = A pointer to a TW_IMAGEINFO structure.

Valid States

6 and 7 (State 7 only after receiving TWRC_XFERDONE)

Description

When called in State 6, this operation provides to the application general image description
information about the image about to be transferred.

When called in State 7, this operation provides the Application with specific image description
information about the current image that has just been transferred. It is important during a
Memory transfer to call this triplet only after TWRC_XFERDONE is received, since that is the only
time the Source will know all the final image information.

The same data structure type is used regardless of the mechanism used to transfer the image
(Native, Disk File, or Buffered Memory transfer).

Application

The Application can use this operation to check the parameters of the image before initiating the
transfer during State 6, or to clarify image parameters during State 7 after the transfer is complete.

Applications may inform Sources that they accept -1 value for ImageHeight/ImageWidth by
setting the ICAP_UNDEFINEDIMAGESIZE capability to TRUE.

Should the Application decide to invoke any Source features that allow the image description
information to change during scanning (such as ICAP_UNDEFINEDIMAGESIZE) and still wish to
transfer in Buffered memory mode, a DG_CONTROL/DAT_IMAGEINFO/MSG_GET call must be
made in State 7 after receiving TWRC_XFERDONE to properly interpret the image data. This is not
the default behavior of the Source.

Note that the speed at which the Application supplies buffers may determine the scanning speed.

Source

For maximum compatibility with applications, Data Source writers are strongly encouraged to
report back finished image values in State 6. In other words, calls to DAT_IMAGEINFO should
return the same identical values in State 6, and in State 7 after TWRC_XFERDONE has been issued to
the application.

During State 6 - Fills in all fields in pImageInfo. All fields are filled in as you would expect with
the following exceptions:
7-120 TWAIN 2.3 Specification

XResolution or YResolution

Set to -1 if the device creates data with no inherent resolution (such as a digital camera).

ImageWidth

Set to -1 if the image width to be acquired is unknown (such as when using a hand-held
scanner and dragging left-to-right) , and the Application has set
ICAP_UNDEFINEDIMAGESIZE to TRUE. In this case the Source must transfer the image in
tiles.

ImageLength

ImageLength—Set to -1 if the image length to be acquired is unknown (such as when using a
hand-held scanner and dragging top-to-bottom), and the Application has set
ICAP_UNDEFINEDIMAGESIZE to TRUE.

During State 7 - Fills in all fields in pImageInfo. All fields are filled in as during State 6, except
ImageWidth and ImageLength MUST be valid. Source shall return TWRC_SEQERROR if call is
made before TWRC_XFERDONE is sent.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADDEST /* No such Source in-session with */
 /* application */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */

See Also

DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET
DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

Capabilities - ICAP_BITDEPTH, ICAP_COMPRESSION, ICAP_PIXELTYPE,
ICAP_PLANARCHUNKY, ICAP_XRESOLUTION, ICAP_YRESOLUTION
TWAIN 2.3 Specification 7-121

Chapter 7
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_IMAGELAYOUT, MSG_GET,
pImageLayout);

pImageLayout = A pointer to a TW_IMAGELAYOUT structure.

Valid States

4 through 6

Description

The DAT_IMAGELAYOUT operations control information on the physical layout of the image on the
acquisition platform of the Source (e.g. the glass of a flatbed scanner, the size of a photograph,
etc.).

The MSG_GET operation describes both the size and placement of the image on the scanner. The
coordinates on the scanner and the extents of the image are expressed in the unit of measure
currently negotiated for ICAP_UNITS (default is inches).

The outline of the image is expressed by a “frame.” The Left, Top, Right, and Bottom edges of the
frame are stored in pImageLayout->Frame. These values place the frame within the scanner.
All measurements are relative to the scanner’s “upper-left” corner. Define “upper-left” by how
the image would appear on the computer’s screen before any rotation or other position transform
is applied to the image data. This origin point will be apparent for most Sources (although folks
working with satellites or radio telescopes may be at a bit of a loss).

Finally pImageLayout optionally includes information about which frame on the page, which
page within a document, and which document the image belongs to. These fields were included
mostly for future versions which could merge more than one type of data. A more immediate use
might be for an application that needs to keep track of which frame on the page an image came
from while acquiring from a Source that can supply more than one image from the same page at
the same time. The information in this structure always describes the current image. To set
multiple frames for any page simultaneously, reference ICAP_FRAMES.

Application

No special set up or action required, unless the current units of measure are unacceptable. In that
case, the application must re-negotiate ICAP_UNITS prior to invoking this operation. Remember
to do this in State 4—the only state wherein capabilities can be set or reset.

Beyond supplying possibly interesting position information on the image to be transferred, the
application can use this structure to constrain the final size of the image and to relate the image
within a series of pages or documents (see the DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET
operation).
7-122 TWAIN 2.3 Specification

Source

Fill all fields of pImageLayout. Most Sources will set FrameNumber, PageNumber, and
DocumentNumber to 1.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADDEST /* No such Source in-session */
 /* with application */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */

See Also

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GETDEFAULT
DG_IMAGE / DAT_IMAGELAYOUT / MSG_RESET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET

Capabilities - Many such as ICAP_FRAMES, ICAP_MAXFRAMES, ICAP_UNITS
TWAIN 2.3 Specification 7-123

Chapter 7
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GETDEFAULT

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_IMAGELAYOUT, MSG_GETDEFAULT,
pImageLayout);

pImageLayout = A pointer to a TW_IMAGELAYOUT structure.

Valid States

4 through 6

Description

The DAT_IMAGELAYOUT operations control information on the physical layout of the image on the
acquisition platform of the Source (e.g. the glass of a flatbed scanner, the size of a photograph,
etc.).

This operation returns the default information on the layout of an image. This is the size and
position of the image that will be acquired from the Source if the acquisition is started with the
Source (and the device it is controlling) in its power-on state (for instance, most flatbed scanners
will capture the entire bed).

Application

No special set up or action required.

Source

Fill in all fields of pImageLayout with the device’s power-on origin and extents. Most Sources
will set FrameNumber, PageNumber, and DocumentNumber to 1.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADDEST /* No such Source in-session */
 /* with application */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */

See Also

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_RESET

Capabilities - ICAP_FRAMES, ICAP_MAXFRAMES, ICAP_UNITS
7-124 TWAIN 2.3 Specification

DG_IMAGE / DAT_IMAGELAYOUT / MSG_RESET

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_IMAGELAYOUT, MSG_RESET,
pImageLayout);

pImageLayout = A pointer to a TW_IMAGELAYOUT structure.

Valid States

4 only

Description

The DAT_IMAGELAYOUT operations control information on the physical layout of the image on the
acquisition platform of the Source (e.g. the glass of a flatbed scanner, the size of a photograph,
etc.).

This operation sets the image layout information for the next transfer to its default settings.

Application

No special set up or action required. Ascertain the current settings of ICAP_ORIENTATION,
ICAP_PHYSICALWIDTH, and ICAP_PHYSICALHEIGHT if you don’t already know this device’s
power-on default values.

Source

Reset all the fields of the structure pointed at by pImageLayout to the device’s power-on origin
and extents. There is an implied resetting of ICAP_ORIENTATION, ICAP_PHYSICALWIDTH, and
ICAP_PHYSICALHEIGHT to the device’s power-on default values.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADDEST /* No such Source in-session */
 /* with application */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */

See Also

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GETDEFAULT
DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET

Capabilities - ICAP_FRAMES, ICAP_MAXFRAMES, ICAP_UNITS
TWAIN 2.3 Specification 7-125

Chapter 7
DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_IMAGELAYOUT, MSG_SET,
pImageLayout);

pImageLayout = A pointer to a TW_IMAGELAYOUT structure.

Valid States

4 only

Description

The DAT_IMAGELAYOUT operations control information on the physical layout of the image on the
acquisition platform of the Source (e.g. the glass of a flatbed scanner, the size of a photograph,
etc.).

This operation sets the layout for the next image transfer. This allows the application to specify
the physical area to be acquired during the next image transfer (for instance, a frame-based
application would pass to the Source the size of the frame the user selected within the
application—the helpful Source would present a selection region already sized to match the
layout frame size).

If the application and Source have negotiated one or more frames through ICAP_FRAMES, the
frame set with this operation will only persist until the transfer following this one. Otherwise, the
frame will persist as the current frame for the remainder of the session (unless superseded by
negotiation on ICAP_FRAMES or another operation on DAT_IMAGELAYOUT overrides it).

The application writer should note that setting these values is a request. The Source should first try
to match the requested values exactly. Failing that, it should approximate the requested values as
closely as it can—extents of the approximated frame should at least equal the requested extents
unless the device cannot comply. The Source should return TWRC_CHECKSTATUS if the actual
values set in pImageLayout->Frame are greater than or equal to the requested values in both
extents. If one or both of the requested values exceed the Source’s available values, the Source
should return TWRC_FAILURE with TWCC_BADVALUE. The application should check for these
return codes and perform a MSG_GET to verify that the values set by the Source are acceptable.
The application may choose to cancel the transfer if Source could not set the layout information
closely enough to the requested values.

Application

Fill in all fields of pImageLayout. Especially important is the Frame field whose values are
expressed in ICAP_UNITS. If the application doesn’t care about one or more of the other fields, be
sure to set them to -1 to prevent confusion. If the application only cares about the extents of the
Frame, and not about the origin on the page, set the Frame.Top and Frame.Left to zero.
Otherwise, the application can specify the location on the scanner where the Source should begin
acquiring the image, in addition to the extents of the acquired image.
7-126 TWAIN 2.3 Specification

Source

Use the values in pImageLayout as the Source’s current image layout information. If you are
unable to set the device exactly to the values requested in the Frame field, set them as closely as
possible, always snapping to a value that will result in a larger frame, and return
TWRC_CHECKSTATUS to the application.

If the application sets Frame.Top and Frame.Left to zero, then the Source should set the frame
taking into consideration the default alignment set through CAP_FEEDERALIGNMENT.

If the application has set Frame.Top and Frame.Left to a non-zero value , set the origin for the
image to be acquired accordingly. If possible, the Source should consider reflecting these settings
in the user interface when it is raised. For instance, if your Source presents a pre-scan image,
consider showing the selection region in the proper location and with the proper size suggested
by the settings from this operation.

If the requested values exceed the maximum size the Source can acquire, set the
pImageLayout->Frame values used within the Source to the largest extent possible within the
axis of the offending value. Return TWRC_FAILURE with TWCC_BADVALUE.

Return Codes

TWRC_SUCCESS

TWRC_CHECKSTATUS /* Source approximated the requested*/
 /* values */

TWRC_FAILURE

 TWCC_BADDEST /* No such Source in-session */
 /* with application */

 TWCC_BADVALUE /* Specified Layout values illegal */
 /* for Source */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */

See Also

DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GETDEFAULT
DG_IMAGE / DAT_IMAGELAYOUT / MSG_RESET

Capabilities - ICAP_FRAMES, ICAP_MAXFRAMES, ICAP_UNITS
TWAIN 2.3 Specification 7-127

Chapter 7
DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_IMAGEMEMFILEXFER, MSG_GET,
pImageMemXfer);

pImageMemXfer = A pointer to a TW_IMAGEMEMXFER structure.

File format information can be set with the DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET
operation.

Valid States

6 only (Transitions to State 7, if successful. Remains in State 7 until MSG_ENDXFER operation.)

Description

This operation is used to initiate the transfer of an image from the Source to the application via the
Memory-File transfer mechanism.

This operation supports the transfer of successive blocks of an image file from the Source into one
or more main memory transfer buffers. These buffers are allocated and owned by the application.
The application should repeatedly invoke this operation while TWRC_SUCCESS is returned by the
Source.

Application

No special set up is required. The application should have already invoked the DG_CONTROL /
DAT_SETUPFILEXFER / MSG_SET operation unless the Source’s default file format is acceptable
to the application (the filename is not used, since this transfer is being done in memory). The
DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET operation should be used to determine the
valid range of sizes for transferring the image. The application only needs to invoke both of these
operations once per image transferred.

The application will allocate one or more memory buffers to contain the data being transferred
from the Source. The application may allocate enough buffer space to contain the entire image
being transferred or, more commonly, use the transfer buffer(s) as a temporary holding area while
the complete image is assembled elsewhere (on disk, for instance).

If the application sets up buffers that are either too small or too large, the Source will fail the
operation returning TWRC_FAILURE/TWCC_BADVALUE.

Once the buffers have been set up, the application should fill
pImageMemXfer->Memory.Length with the actual size (in bytes) of each memory buffer
(which are, of course, all the same size).

Notes: Applications can specify a unique file format for each transfer using DG_CONTROL /
DAT_SETUPFILEXFER / MSG_SET in State 6 or 5 (and 4 also). Also note that although the images
are being transferred in complete image formats, they are memory transfers, and will be chunked
just like a DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET operation.
7-128 TWAIN 2.3 Specification

The size of the allocated buffer(s) should be homogeneous (don’t change buffer sizes during
transfer). The size the application selects should be based on the information returned by the
Source from the DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET operation. The application
should do its best to allocate transfer buffers of the size “preferred” by the Source. This will
enhance the chances for superior transfer performance. The buffer size must be between
MinBufSize and MaxBufSize as reported by the Source.

There is no concept of striping or tiling when using this operation. Data is transferred in generic
chucks, which, depending on the file format, may result in partial header or footer information
being sent in any given transfer. Applications are advised to avoid parsing the image format data
until all of the blocks have been transferred

Source

If the application did not set up the conditions via the DAT_SETUPFILEXFER / MSG_SET
operation during this session, use the Source’s default file format for the transfer.

Prior to writing the first buffer, check pImageMemXfer->Memory.Length for the size of the
buffer(s) the application has allocated. If the size lies outside the maximum or minimum buffer
size communicated to the application during the DG_CONTROL / DAT_SETUPMEMXFER /
MSG_GET operation, return TWRC_FAILURE/TWCC_BADVALUE and remain in State 6.

If the buffer is of an acceptable size, fill in all fields of pImageMemXfer except pImageMemXfer-
>Memory. The Source must write the data block into the buffer referenced by pImageMemXfer-
>Memory.TheMem and store the actual number of bytes written into the buffer in
pImageMemXfer->BytesWritten. Compressed and tiled data effects how the Source fills in
these values.

Return TWRC_SUCCESS after successfully writing each buffer. Return TWRC_CANCEL if the Source
needs to terminate the transfer before the last buffer is written (as when the user aborts the
transfer from the Source’s user interface). Return TWRC_XFERDONE to signal that the last buffer
has been written. Following completion of the transfer, either after all the data has been written or
the transfer has been canceled, remain in State 7 until explicitly transitioned back to State 6 by the
application (DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER).

If TWRC_FAILURE occurred on the first buffer, the session remains in State 6. If failing on a
subsequent buffer, the session remains in State 7. The strip whose transfer failed is still pending.

Notes on Memory Usage: Following a canceled transfer, the Source should dispose of the image
that was being transferred and assure that any temporary variable and local buffer allocations are
eliminated. The Source should be wary of allocating large temporary buffers or variables. Doing
so may disrupt or even disable the transfer process. The application should be aware of the
possible needs of the Source to allocate such space, however, and consider allocating all large
blocks of RAM needed to support the transfer prior to invoking this operation. This may be
especially important for devices that create image transfers of indeterminate size—such as hand-
held scanners.

Return Codes

TWRC_SUCCESS /* Source done transferring */

 /* the specified block */

TWRC_XFERDONE /* Source done transferring */
TWAIN 2.3 Specification 7-129

Chapter 7
/* the specified image */

TWRC_CANCEL /* User aborted the transfer from */

 /* the Source */

TWRC_FAILURE

 TWCC_BADDEST /* No such Source in-session */

/* with application */

 TWCC_BADVALUE /* Size of buffer did not */

/* match TW_SETUPMEMXFER */

 TWCC_OPERATIONERROR /* Failure in the Source -- */

 /* transfer invalid */

 TWCC_SEQERROR /* Operation invoked in */

 /* invalid state */

 /* The following introduced for 2.0 or higher */

 TWCC_INTERLOCK /* Cover or door is open */

 TWCC_DAMAGEDCORNER /* Document has a damaged corner */

 TWCC_FOCUSERROR /* Focusing error during document capture */

 TWCC_DOCTOOLIGHT /* Document is too light */

 TWCC_DOCTOODARK /* Document is too dark */

TWCC_NOMEDIA /* Source has nothing to capture */

See Also

DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET
DG_CONTROL / DAT_SETUPFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET
DG_IMAGE / DAT_IMAGEINFO / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET

Capabilities - ICAP_COMPRESSION, ICAP_IMAGEFILEFORMAT, ICAP_XFERMECH
7-130 TWAIN 2.3 Specification

DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_IMAGEMEMXFER, MSG_GET,
pImageMemXfer);

pImageMemXfer = A pointer to a TW_IMAGEMEMXFER structure.

Valid States

6 and 7 (Transitions to State 7, if successful. Remains in State 7 until MSG_ENDXFER operation.)

Description

This operation is used to initiate the transfer of an image from the Source to the application via the
Buffered Memory transfer mechanism.

This operation supports the transfer of successive blocks of image data (in strips or, optionally,
tiles) from the Source into one or more main memory transfer buffers. These buffers (for strips)
are allocated and owned by the application. For tiled transfers, the source allocates the buffers.
The application should repeatedly invoke this operation while TWRC_SUCCESS is returned by the
Source.

Application

The application will allocate one or more memory buffers to contain the data being transferred
from the Source. The application may allocate enough buffer space to contain the entire image
being transferred or, more commonly, use the transfer buffer(s) as a temporary holding area while
the complete image is assembled elsewhere (on disk, for instance).

The size of the allocated buffer(s) should be homogeneous (don’t change buffer sizes during
transfer). The size the application selects should be based on the information returned by the
Source from the DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET operation. The application
should do its best to allocate transfer buffers of the size “preferred” by the Source. This will
enhance the chances for superior transfer performance. The buffer size must be between
MinBufSize and MaxBufSize as reported by the Source. Further, the buffers must contain an even
number of bytes. Memory buffers must be double-word aligned and should be padded with zeros
at the end of each raster line.

If the application sets up buffers that are either too small or too large, the Source will fail the
operation returning TWRC_FAILURE/TWCC_BADVALUE.

Once the buffers have been set up, the application should fill pImageMemXfer->Memory.Length
with the actual size (in bytes) of each memory buffer (which are, of course, all the same size).

Windows only—The buffers should be allocated in global memory.

Source

Prior to writing the first buffer, check pImageMemXfer->Memory.Length for the size of the
buffer(s) the application has allocated. If the size lies outside the maximum or minimum buffer
TWAIN 2.3 Specification 7-131

Chapter 7
size communicated to the application during the DG_CONTROL / DAT_SETUPMEMXFER /
MSG_GET operation, return TWRC_FAILURE/TWCC_BADVALUE and remain in State 6.

If the buffer is of an acceptable size, fill in all fields of pImageMemXfer except
pImageMemXfer->Memory. The Source must write the data block into the buffer referenced by
pImageMemXfer->Memory.TheMem. Store the actual number of bytes written into the buffer in
pImageMemXfer->BytesWritten. Compressed and tiled data effects how the Source fills in
these values.

Return TWRC_SUCCESS after successfully writing each buffer. Return TWRC_CANCEL if the Source
needs to terminate the transfer before the last buffer is written (as when the user aborts the
transfer from the Source’s user interface). Return TWRC_XFERDONE to signal that the last buffer
has been written. Following completion of the transfer, either after all the data has been written or
the transfer has been canceled, remain in State 7 until explicitly transitioned back to State 6 by the
application (DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER).

If TWRC_FAILURE occurred on the first buffer, the session remains in State 6. If failing on a
subsequent buffer, the session remains in State 7. The strip whose transfer failed is still pending.

Notes on Memory Usage: Following a canceled transfer, the Source should dispose of the image
that was being transferred and assure that any temporary variable and local buffer allocations are
eliminated. The Source should be wary of allocating large temporary buffers or variables. Doing
so may disrupt or even disable the transfer process. The application should be aware of the
possible needs of the Source to allocate such space, however, and consider allocating all large
blocks of RAM needed to support the transfer prior to invoking this operation. This may be
especially important for devices that create image transfers of indeterminate size—such as hand-
held scanners.

Return Codes

TWRC_SUCCESS /* Source done transferring */
 /* the specified block */

TWRC_XFERDONE /* Source done transferring */
 /* the specified image */

TWRC_CANCEL /* User aborted the transfer from */
 /* the Source */

TWRC_FAILURE

 TWCC_BADDEST /* No such Source in-session */
 /* with application */

 TWCC_BADVALUE /* Size of buffer did not */
 /* match TW_SETUPMEMXFER */

 TWCC_OPERATIONERROR /* Failure in the Source-- */
 /* transfer invalid */

 TWCC_SEQERROR /* Operation invoked in */
 /* invalid state */

 /* The following introduced for 2.0 or higher */

 TWCC_INTERLOCK /* Cover or door is open */

 TWCC_DAMAGEDCORNER /* Document has a damaged corner */
7-132 TWAIN 2.3 Specification

 TWCC_FOCUSERROR /* Focusing error during document capture */

 TWCC_DOCTOOLIGHT /* Document is too light */

 TWCC_DOCTOODARK /* Document is too dark */

See Also

DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET
DG_IMAGE / DAT_IMAGEINFO / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET

Capabilities - ICAP_COMPRESSION, ICAP_TILES, ICAP_XFERMECH
TWAIN 2.3 Specification 7-133

Chapter 7
DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_IMAGENATIVEXFER, MSG_GET,
pHandle);

pHandle = A pointer to a variable of the Operating Systems Native image format.

Windows: Pointer to a handle to a DIB (Device Independent Bitmap) located in memory.

Macintosh: Pointer to a handle to a Picture (a PicHandle, QuickDraw picture) located in memory.

Linux: Pointer to a handle to a DIB (Device Independent Bitmap) located in memory.

Refer to Chapter 12, "Operating System Dependencies" for more information on Native Transfer.

Valid States

6 only (Transitions to State 7, if successful. Remains in State 7 until MSG_ENDXFER operation).

Description

Causes the transfer of an image’s data from the Source to the application, via the Native transfer
mechanism, to begin. The resulting data is stored in main memory in a single block. The data is
stored in the Operating Systems native image format. The size of the image that can be transferred
is limited to the size of the memory block that can be allocated by the Source. If the image is too
large to fit, the Source may resize or crop the image.

Note: This is the default transfer mechanism. All Source’s support this mechanism. The Source
will use this mechanism unless the application explicitly negotiates a different transfer
mechanism with ICAP_XFERMECH.

Application

The application need only invoke this operation once per image. The Source allocates up to the
largest block of available memory and transfers the image into it.

Read the image header to determine if the source has modified the image size to fit memory
available. The application is responsible for deallocating the memory block holding the Native-
format image.

Set pHandle pointing to a handle.

The Source will allocate the image buffer and return the handle to the address specified.

Note: This odd combination of pointer and handle to reference the image data block was used to
assure that the allocated memory object would be relocatable under Microsoft Windows,
Macintosh, and UNIX. A handle was required for this task on both the Macintosh and
under Microsoft Windows; though pointers are inherently relocatable under UNIX.
Rather than disturb the entry points convention that the data object is always referenced
by a pointer, it was decided to have that pointer reference the relocatable handle. A
handle in UNIX is typecast to a pointer.
7-134 TWAIN 2.3 Specification

Source

Allocate a single block of memory to hold the image data and write the image data into it using
the appropriate format for the operating environment. The source must assure that the allocated
block will be accessible to the application. Place the handle of the allocated block in the
TW_HANDLE pointed to by pHandle.

Windows: Set pHandle pointing to a handle to a device-independent bit map (DIB) in
memory.

Macintosh: Set pHandle pointing to a handle to a Picture in memory.

Linux: Set pHandle pointing to a handle to a TIFF file in memory.

If the allocation fails and the image cannot be clipped, return TWRC_FAILURE and remain in
State 6. Set the pHandle to NULL. The image whose transfer failed is still pending transfer. Do
not decrement TW_PENDINGXFERS.Count.

Return Codes

TWRC_XFERDONE /* Source done transferring the */
 /* specified block */

TWRC_CANCEL /* User aborted the transfer */
 /* within the Source */

TWRC_FAILURE

 TWCC_BADDEST /* No such Source in session */
 /* with application */

 TWCC_LOWMEMORY /* Not enough memory for */
 /* image--cannot crop to fit */

 TWCC_OPERATIONERROR /* Failure in the Source-- */
 /* transfer invalid */

 TWCC_SEQERROR /* Operation invoked in */
 /* invalid state */

 /* The following introduced for 2.0 or higher */

 TWCC_INTERLOCK /* Cover or door is open */

 TWCC_DAMAGEDCORNER /* Document has a damaged corner */

 TWCC_FOCUSERROR /* Focusing error during document capture */

 TWCC_DOCTOOLIGHT /* Document is too light */

 TWCC_DOCTOODARK /* Document is too dark */

TWCC_NOMEDIA /* Source has nothing to capture */

See Also

DG_IMAGE / DAT_IMAGEINFO / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET

Capability - ICAP_XFERMECH
TWAIN 2.3 Specification 7-135

Chapter 7
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GET

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_JPEGCOMPRESSION, MSG_GET,
pCompData);

pCompData = A pointer to a TW_JPEGCOMPRESSION structure.

Valid States

4 through 6

Description

Causes the Source to return the parameters that will be used during the compression of data using
the JPEG algorithms.

All the information that is reported by the MSG_GET operation will be available in the header
portion of the JPEG data. Transferring JPEG-compressed data through memory buffers is slightly
different than other types of buffered transfers. The difference is that the JPEG-compressed image
data will be prefaced by a block of uncompressed information—the JPEG header. This header
information contains all the information that is returned from the MSG_GET operation. The
compressed image information follows the header. The Source should return the header
information in the first transfer. The compressed image data will then follow in the second
through the final buffer. If the application is allocating the buffers, it should assure that the buffer
size for transfer of the header is large enough to contain the complete header.

Application

The application allocates the TW_JPEGCOMPRESSION structure.

Source

Fill pCompData with the parameters that will be applied to the next JPEG-compression operation.
The Source must allocate memory for the contents of the pointer fields pointed to within the
structure (i.e. QuantTable, HuffmanDC, and HuffmanAC).

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL /* Source does not support JPEG */
 /* data compression */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */

See Also

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GETDEFAULT
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_RESET
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_SET

Capability - ICAP_COMPRESSION
7-136 TWAIN 2.3 Specification

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GETDEFAULT

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_JPEGCOMPRESSION, MSG_GETDEFAULT,
pCompData);

pCompData = A pointer to a TW_JPEGCOMPRESSION structure.

Valid States

4 through 6

Description

Causes the Source to return the power-on default values applied to JPEG-compressed data
transfers.

Application

The application allocates the TW_JPEGCOMPRESSION structure.

Source

Fill in pCompData with the power-on default values. The Source must allocate memory for the
contents of the pointer fields pointed to within the structure (i.e. QuantTable, HuffmanDC and
HuffmanAC). The Source should maintain meaningful default values.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL /* Source does not support JPEG */
 /* data compression */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */

See Also

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GET
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_RESET
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_SET

Capability - ICAP_COMPRESSION, ICAP_JPEGQUALITY
TWAIN 2.3 Specification 7-137

Chapter 7
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_RESET

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_JPEGCOMPRESSION, MSG_RESET,
pCompData);

pCompData = A pointer to a TW_JPEGCOMPRESSION structure.

Valid States

4 only

Description

Return the Source to using its power-on default values for JPEG-compressed transfers.

Application

No special action. May want to perform a MSG_GETDEFAULT if you’re curious what the new
values might be.

Source

Use your power-on default values for all future JPEG-compressed transfers. The Source should
maintain meaningful default values for all parameters.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL /* Source does not support JPEG */
 /* data compression */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */

See Also

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GET
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GETDEFAULT
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_SET

Capability - ICAP_COMPRESSION, ICAP_JPEGQUALITY
7-138 TWAIN 2.3 Specification

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_SET

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_JPEGCOMPRESSION, MSG_SET,
pCompData);

pCompData = A pointer to a TW_JPEGCOMPRESSION structure.

Valid States

4 only

Description

Allows the application to configure the compression parameters to be used on all future JPEG-
compressed transfers during the current session. The application should have already established
that the requested values are supported by the Source.

Application

Fill pCompData. Write TWON_DONTCARE16 into the numeric fields that don’t matter to the
application. Write NULL into the table fields that should use the default tables as defined by the
JPEG specification.

Source

Adopt the requested values for use with all future JPEG-compressed transfers. If a value does not
exactly match an available value, match the value as closely as possible and return
TWRC_CHECKSTATUS. If the value is beyond the range of available values, clip to the nearest
value and return TWRC_FAILURE/TWCC_BADVALUE.

Return Codes

TWRC_SUCCESS

TWRC_CHECKSTATUS

TWRC_FAILURE

 TWCC_BADPROTOCOL /* Source does not support JPEG */
 /* data compression */

 TWCC_BADVALUE /* illegal value specified */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */

See Also

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GET
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GETDEFAULT
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_RESET

Capability - ICAP_COMPRESSION, ICAP_JPEGQUALITY
TWAIN 2.3 Specification 7-139

Chapter 7
DG_IMAGE / DAT_PALETTE8 / MSG_GET

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_PALETTE8, MSG_GET, pPalette);

pPalette = A pointer to a TW_PALETTE8 structure.

Valid States

4 through 6

Description

This operation causes the Source to report its current palette information. The application should
assure that the Source can provide palette information by invoking a MSG_GET operation on
ICAP_PIXELTYPE and checking for TWPT_PALETTE. If this pixel type has not been established
as the type to be used for future acquisitions, the Source should respond with its default palette.

To assure that the palette information is wholly accurate, the application should invoke this
operation immediately after completion of the image transfer. The Source may perform palette
optimization during acquisition of the data and the palette it reports before the transfer will differ
from the one available afterwards.

(In general, the DAT_PALETTE8 operations are specialized to deal with 8-bit data, whether
grayscale or color (8-bit or 24-bit). Most current devices provide data with this bit depth. These
operations allow the application to inquire a Source’s support for palette color data and set up a
palette color transfer. See Chapter 8, "Data Types and Data Structures" for the definitions and data
structures used to describe palette color data within TWAIN.)

Application

The application should allocate the pPalette structure for the Source.

Source

Fill pPalette with the current palette. If no palette has been specified or calculated, use the
Source’s default palette (which may coincidentally be the current or default system palette).

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL /* Source does not support */
 /* palette color transfers */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */

See Also

DG_IMAGE / DAT_PALETTE8 / MSG_GETDEFAULT
DG_IMAGE / DAT_PALETTE8 / MSG_RESET
DG_IMAGE / DAT_PALETTE8 / MSG_SET

Capability - ICAP_PIXELTYPE
7-140 TWAIN 2.3 Specification

DG_IMAGE / DAT_PALETTE8 / MSG_GETDEFAULT

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_PALETTE8, MSG_GETDEFAULT,
pPalette);

pPalette = A pointer to a TW_PALETTE8 structure.

Valid States

4 through 6

Description

This operation causes the Source to report its power-on default palette.

Application

The application should allocate the pPalette structure for the Source.

Source

Fill pPalette with the default palette.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL /* Source does not support */
 /* palette color transfers */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */

See Also

DG_IMAGE / DAT_PALETTE8 / MSG_GET
DG_IMAGE / DAT_PALETTE8 / MSG_RESET
DG_IMAGE / DAT_PALETTE8 / MSG_SET

Capability - ICAP_PIXELTYPE
TWAIN 2.3 Specification 7-141

Chapter 7
DG_IMAGE / DAT_PALETTE8 / MSG_RESET

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_PALETTE8, MSG_RESET, pPalette);

pPalette = A pointer to a TW_PALETTE8 structure.

Valid States

4 only

Description

This operation causes the Source to dispose of any current palette it has and to use its default
palette for the next palette transfer. A Source that always performs palette optimization may not
use the default palette for the next transfer, but should dispose of its current palette and adopt the
default palette for the moment, anyway. The application can check the actual palette information
by invoking a MSG_GET operation immediately following the image transfer.

Application

The application should allocate the pPalette structure for the Source.

Source

Fill pPalette with the default palette and use the default palette for the next palette transfer.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL /* Source does not support */
 /* palette color transfers */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */

See Also

DG_IMAGE / DAT_PALETTE8 / MSG_GET
DG_IMAGE / DAT_PALETTE8 / MSG_GETDEFAULT
DG_IMAGE / DAT_PALETTE8 / MSG_SET

Capability - ICAP_PIXELTYPE
7-142 TWAIN 2.3 Specification

DG_IMAGE / DAT_PALETTE8 / MSG_SET

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_PALETTE8, MSG_SET, pPalette);

pPalette = A pointer to a TW_PALETTE8 structure.

Valid States

4 only

Description

This operation requests that the Source adopt the specified palette for use with all subsequent
palette transfers. The application should be careful to supply a palette that matches the bit depth
of the Source. The Source is not required to adopt this palette. The application should be careful
to check the return value from this operation.

Application

Fill pPalette with the desired palette. If writing grayscale information, write the same data into
the Channel1, Channel2, and Channel3 fields of the Colors array. If NumColors != 256,
fill the unused array elements with minimum (“black”) values.

Source

The Source should not return TWRC_SUCCESS unless it will actually use the requested palette.
The Source should not modify the palette in any way until the transfer is complete. The palette
should be used for all remaining palette transfers for the duration of the session.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL /* Source does not support */
 /* palette color transfers */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */

See Also

DG_IMAGE / DAT_PALETTE8 / MSG_GET
DG_IMAGE / DAT_PALETTE8 / MSG_GETDEFAULT
DG_IMAGE / DAT_PALETTE8 / MSG_RESET

Capability - ICAP_PIXELTYPE
TWAIN 2.3 Specification 7-143

Chapter 7
DG_IMAGE / DAT_RGBRESPONSE / MSG_RESET

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_RGBRESPONSE, MSG_RESET,
pResponse);

pResponse = A pointer to a TW_RGBRESPONSE structure.

Valid States

4 only

Description

Causes the Source to use its “identity” response curves for future RGB transfers. The identity
curve causes no change in the values of the captured data when it is applied. (Note that resetting
the curves for RGB data does not reset any MSG_SET curves for other pixel types).

Note: The DAT_RGBRESPONSE operations allow the application to specify the transfer curves
that the Source should apply to the RGB data it acquires. The Source should not support
these operations unless it can provide data of pixel type TWPT_RGB. The Source need not
maintain actual “identity response curves” for use with the MSG_RESET operation—once
reset, the Source should transfer the RGB data as acquired from the Source. The
application should be sure that the Source supports these operations before invoking
them. The operations should only be invoked when the active pixel type is RGB
(TWPT_RGB). See Chapter 8, "Data Types and Data Structures" for information about the
definitions and data structures used to describe the RGB response curve within TWAIN.

Application

No special action.

Source

Apply the identity response curve to all future RGB transfers. This means that the Source will
transfer the RGB data exactly as acquired from the device.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL /* Source does not support RGB */
 /* response curves */

 TWCC_BADVALUE /* Current pixel type is not */
 /* TWPT_RGB */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */

See Also

DG_IMAGE / DAT_RGBRESPONSE / MSG_SET

Capability - ICAP_PIXELTYPE
7-144 TWAIN 2.3 Specification

DG_IMAGE / DAT_RGBRESPONSE / MSG_SET

Call

DSM_Entry(pOrigin, pDest, DG_IMAGE, DAT_RGBRESPONSE, MSG_SET,
pResponse);

pResponse = A pointer to a TW_RGBRESPONSE structure.

Valid States

4 only

Description

Causes the Source to transform any RGB data according to the response curves specified by the
application.

Application

Fill all three elements of the response curve with the response curve data you want the Source to
apply to future RGB transfers. The application should consider writing the same values into each
element of the same index to minimize color shift problems.

The Source may not support this operation. The application should ensure that the current pixel
type is TWPT_RGB and examine the return code from this operation.

Source

Apply the specified response curves to all future RGB transfers.

Return Codes

TWRC_SUCCESS

TWRC_FAILURE

 TWCC_BADPROTOCOL /* Source does not support color */
 /* response curves */

 TWCC_BADVALUE /* Current pixel type is not RGB */

 TWCC_SEQERROR /* Operation invoked in invalid */
 /* state */

See Also

DG_IMAGE / DAT_RGBRESPONSE / MSG_RESET

Capability - ICAP_PIXELTYPE
TWAIN 2.3 Specification 7-145

Chapter 7
7-146 TWAIN 2.3 Specification

8
Data Types and Data Structures

Chapter Contents

Naming Conventions . 8-1

Platform Dependent Definitions and Typedefs . 8-3

Platform Specific Typedefs. 8-4

Definitions of Common Types. 8-6

Data Structure Definitions . 8-8

Data Argument Types that Don’t Have Associated TW_Structures . 8-63

Constants . 8-65

Deprecated Items. 8-98

This section of the Specification is definitive and authoritative in its description of the TWAIN
namespace and the numeric ids that go with each name in that space. If a discrepancy is found
between this chapter and any C/C++ TWAIN.H definition file then the TWAIN.H file must be
corrected.

A TWAIN.H definition file is provided with this toolkit, this file is specific to C/C++ solutions.

If a definition file for a previously unsupported language is submitted to the TWAIN Working
Group, and if it passes review, then the salient points needed to recreate it will be added to this
chapter. A definition file cannot be called TWAIN or said to support TWAIN unless it can be
completely created following the information in this chapter.

Naming Conventions

Data Structures, Variables, Pointers and Handles

Data structures referenced by pData parameter in DSM_Entry calls

Are prefixed by TW_ and followed by a descriptive name, in upper case. The name typically
matches the call’s DAT parameter.

Example: TW_USERINTERFACE
TWAIN 2.3 Specification 8-1

Chapter 8
Fields in data structures (not containing pointers or handles)

Typically, begin with a capital letter followed by mixed upper and lower case letters.

Example: The MinBufSize, MaxBufSize, and Preferred fields in which are in the
TW_SETUPMEMXFER structure.

Fields in data structures that contain pointers or handles

Name starts with lower case “p” or “h” for pointer or handle followed by a typical field name
with initial capital then mixed case characters.

Example: pData, hContainer

Constants and Types

General-use constants

Are prefixed by TWON_ followed by the description of the constant’s meaning.

Example: TWON_ARRAY, TWON_ONEVALUE

Specific-use constants

Are prefixed with TWxx_ where xx are two letters identifying the group to which the constant
belongs.

Example: TWTY_INT16, TWTY_STR32 are constants of the group TW Types

Common data types

Rather than use the int, char, long, and other. types with their variations between
compilers, TWAIN defines a group of types that are used to cast each data item used by the
protocol. Types are prefixed and named exactly the same as TWAIN data structures, TW_
followed by a descriptive name, all in upper case characters.

Example: TW_UINT32, TW_HANDLE

TWAIN.H internal constants

Starting with TWAIN 2.0 internal constants that are of special interest to TWAIN.H itself are
used to improve the readability and maintainability of the file. They are prefixed with TWH_.

Custom Constants

Applications and Sources may define their own private (custom) constant identifiers for any
existing constant group by assigning the constant a value greater than or equal to 0x8000. They
may also define any new desired custom constant group. The consuming entity should check the
originating entity’s TW_IDENTITY.ProductName when encountering a constant value greater
than or equal to 0x8000 to see whether it can be recognized as a custom constant. Sources and
applications should not assume that all entities will have such error checking built in, however.

The following are operation identifiers:

Data Groups Prefixed with DG_

Data Argument Types Prefixed with DAT_

Messages Prefixed with MSG_

Return codes Prefixed with TWRC_

Condition codes Prefixed with TWCC_

General capabilities Prefixed with CAP_
8-2 TWAIN 2.3 Specification

Image-specific capabilities Prefixed with ICAP_

Audio-specific capabilities Prefixed with ACAP_

As a general note, whenever the application or the Source allocates a TWAIN data structure, it
should fill all the fields it is instructed to fill and write the default value (if one is specified) into
any field it is not filling. If no default is specified, fill the field with the appropriate
TWON_DONTCARExx constant where xx describes the size of the field in bits (bytes, in the case of
strings). The TWON_ constants are described at the end of this chapter and defined in the TWAIN.H
file.

Some fields return a value of -1 when the data to be returned is ambiguous or unknown.
Applications and Sources must look for these special cases, especially when allocating memory.
Examples of Fields with -1 values are found in TW_PENDINGXFERS (Count),
TW_SETUPMEMXFER (MaxBufSize) and TW_IMAGEINFO (ImageWidth and
ImageLength).

Platform Dependent Definitions and Typedefs

Single Compile

The TWAIN include file must only be referenced once for any compiled module. This is achieved
by bracketing the contents of the entire file with the following:

#ifndef TWAIN

#define TWAIN

…contents of the TWAIN include file…

#endif /* TWAIN */

Platform Identification Macros

TWAIN supports multiple operating system platforms; it also can run with multiple compilers.
The following macros are intended to help organize these combinations. Note that they focus
more on the compilers than the platforms (cf: for the purposes of TWAIN GNU works the same on
all operating systems).

/* Microsoft C/C++ Compiler */

#if defined(WIN32) || defined(WIN64) || defined (_WINDOWS)

 #define TWH_CMP_MSC

 #if defined(_WIN64) || defined(WIN64)

 #define TWH_64BIT

 #elif defined(WIN32) || defined(_WIN32)

 #define TWH_32BIT

 #endif

/* Apple Compiler (which is GNU now) */

#elif defined(__APPLE__)

 #define TWH_CMP_XCODE
TWAIN 2.3 Specification 8-3

Chapter 8
 #define TWH_32BIT

/* GNU C/C++ Compiler */

#elif defined(__GNUC__)

 #define TWH_CMP_GNU

 #if defined(__alpha__)\

 ||defined(__ia64__)\

 ||defined(__ppc64__)\

 ||defined(__s390x__)\

 ||defined(__x86_64__)

 #define TWH_64BIT

 #else

 #define TWH_32BIT

 #endif

/* Borland C/C++ Compiler */

#elif defined(__BORLAND__)

 #define TWH_CMP_BORLAND

 #define TWH_32BIT

/* Unrecognized */

#else

 #error Unrecognized compiler

#endif

Platform Specific Typedefs

These definitions and typedefs are dependent on the compiler.

/* Win32 and Win64 systems */

#if defined(TWH_CMP_MSC) | defined(TWH_CMP_BORLAND)

 typedef HANDLE TW_HANDLE;

 typedef LPVOID TW_MEMREF;

 typedef UINT_PTR TW_UINTPTR;

/* MacOS/X... */

#elif defined(TWH_CMP_XCODE)

 #define PASCAL pascal

 #define FAR

 typedef Handle TW_HANDLE;

 typedef char *TW_MEMREF;

 #ifdef TWH_32BIT

 //32 bit GNU

 typedef unsigned long TW_UINTPTR;

 #else

 //64 bit GNU

 typedef unsigned long long TW_UINTPTR;
8-4 TWAIN 2.3 Specification

 #endif

/* Everything else... */

#else

 #define PASCAL

 #define FAR

 typedef void* TW_HANDLE;

 typedef void* TW_MEMREF;

 typedef unsigned char BYTE;

 #ifdef TWH_32BIT

 //32 bit GNU

 typedef unsigned long TW_UINTPTR;

 #else

 //64 bit GNU

 typedef unsigned long long TW_UINTPTR;

 #endif

#endif

Platform Specific Byte Packing (Alignment)

In addition to the dependent definitions and typedefs TWAIN requires that the data alignment of
all structures occurs on an agreed upon boundary. This prevents mismatches in the alignment of
the data between the driver, the source manager and the application.

/* Set the packing: this occurs before any structures are defined */

#ifdef TWH_CMP_MSC

#pragma pack (push, before_twain)

#pragma pack (2)

#elif defined(TWH_CMP_GNU)

#if defined(__APPLE__) /* cf: Mac version of TWAIN.h */

#pragma options align = power

#else

#pragma pack (push, before_twain)

#pragma pack (2)

#endif

#elif defined(TWH_CMP_BORLAND)

#pragma option -a2

#endif

/* Restore the previous packing alignment: this occurs after all
structures are defined */

#ifdef TWH_CMP_MSC

#pragma pack (pop, before_twain)
TWAIN 2.3 Specification 8-5

Chapter 8
#elif defined(TWH_CMP_GNU)

#if defined(__APPLE__) /* cf: Mac version of TWAIN.h */

#pragma options align = reset

#else

#pragma pack (pop, before_twain)

#endif

#elif defined(TWH_CMP_BORLAND)

#pragma option –a.

#endif

Definitions of Common Types

String types
#if defined(__APPLE__)/* cf: Mac version of TWAIN.h */

typedef unsigned char TW_STR32[34], FAR *pTW_STR32;
typedef unsigned char TW_STR64[66], FAR *pTW_STR64;
typedef unsigned char TW_STR128[130], FAR *pTW_STR128;
typedef unsigned char TW_STR255[256], FAR *pTW_STR255;

#else
typedef char TW_STR32[34], FAR *pTW_STR32;
typedef char TW_STR64[66], FAR *pTW_STR64;
typedef char TW_STR128[130], FAR *pTW_STR128;
typedef char TW_STR255[256], FAR *pTW_STR255;

#endif

On Windows: These include room for the strings and a NULL character.

On Macintosh: These include room for a length byte followed by the string.

Note: The TW_STR255 must hold less than 256 characters so the length fits in the first byte on
Macintosh.

Numeric types
typedtypedef char TW_INT8, FAR *pTW_INT8;
typedef short TW_INT16, FAR *pTW_INT16;
#if defined(__APPLE__) /* cf: Mac version of TWAIN.h */

typedef int TW_INT32, FAR *pTW_INT32;
#else

typedef long TW_INT32, FAR *pTW_INT32;
#endif
typedef unsigned char TW_UINT8, FAR *pTW_UINT8;
typedef unsigned short TW_UINT16, FAR *pTW_UINT16;
#if defined(__APPLE__) /* cf: Mac version of TWAIN.h */
typedef unsigned int TW_UINT32, FAR *pTW_UINT32;
#else

typedef unsigned long TW_UINT32, FAR *pTW_UINT32;
8-6 TWAIN 2.3 Specification

#endif
typedef unsigned short TW_BOOL, FAR *pTW_BOOL;

Fixed point structure type
typedef struct {

TW_INT16 Whole;
TW_UINT16 Frac;

} TW_FIX32, FAR * pTW_FIX32;

Note: In cases where the data type is smaller than TW_UINT32, the data resides in the lower
word.
TWAIN 2.3 Specification 8-7

Chapter 8
Data Structure Definitions
This section provides descriptions of the data structure definitions.

TW_ARRAY
typedef struct {

 TW_UINT16 ItemType;

 TW_UINT32 NumItems;

 TW_UINT8 ItemList[1];

} TW_ARRAY, FAR * pTW_ARRAY;

Used by

TW_CAPABILITY structure (when ConType field specifies TWON_ARRAY)

Description

This structure stores a group of associated individual values which, when taken as a whole,
describes a single “value” for a capability. The values need have no relationship to one another
aside from being used to describe the same “value” of the capability. Such an array of values is
useful to describe the CAP_SUPPORTEDCAPS list. This structure is used as a member of
TW_CAPABILITY structures. Since this structure does not, therefore, exist “stand-alone” it is
identified by a TWON_xxxx constant rather than a DAT_xxxx. This structure is related in function
and purpose to TW_ENUMERATION, TW_ONEVALUE, and TW_RANGE.

Field Descriptions

ItemType The type of items in the array. The type is indicated by the constant held in
this field. The constant is of the kind TWTY_xxxx. All items in the array
have the same size.

NumItems How many items are in the array.

ItemList[1] This is the array. One value resides within each element of the array. Space
for the array is not allocated inside this structure. The ItemList value is
simply a placeholder for the start of the actual array, which must be
allocated when the container is allocated. Remember to typecast the
allocated array, as well as references to the elements of the array, to the type
indicated by the constant in ItemType.

Ex:
To set an item in a CAP_SUPPORTEDCAPS array…

((TW_UINT16*)twarray.ItemList)[2] = ICAP_XFERMECH;
8-8 TWAIN 2.3 Specification

TW_AUDIOINFO
typedef struct {

 TW_STR255 Name;

 TW_UINT32 Reserved;

} TW_AUDIOINFO, FAR * pTW_AUDIOINFO;

Used by

The DG_AUDIO / DAT_AUDIOINFO / MSG_GET operation

Description

Field Descriptions

Name Name of audio data

Reserved Reserved space
TWAIN 2.3 Specification 8-9

Chapter 8
TW_CALLBACK
typedef struct {

TW_MEMREF CallBackProc;
#if defined(__APPLE__) /* cf: Mac version of TWAIN.h */

TW_MEMREF RefCon;
#else

TW_UINT32 RefCon;
#endif
TW_INT16 Message;

} TW_CALLBACK, FAR * pTW_CALLBACK;

Used by
DG_CONTROL / DAT_CALLBACK / MSG_REGISTER_CALLBACK
DG_CONTROL / DAT_CALLBACK / MSG_INVOKE_CALLBACK

Description

Used in Callback mechanism for sending messages from the Source to the Application.
Applications version 2.2 or higher must use TW_CALLBACK2.

Field Descriptions

CallBackProc The callback function’s entry point, used by MSG_REGISTER_CALLBACK.

RefCon An application defined reference constant.

Message Initialized to any valid DG_CONTROL / DAT_NULL message.
8-10 TWAIN 2.3 Specification

TW_CALLBACK2
typedef struct {

 TW_MEMREF CallBackProc;

 TW_UINTPTR RefCon;

 TW_INT16 Message;

} TW_CALLBACK2, FAR * pTW_CALLBACK2;

Used by
DG_CONTROL / DAT_CALLBACK2 / MSG_REGISTER_CALLBACK

Description

Used in the Callback mechanism for sending messages from the Source to the Application.

Field Descriptions

CallBackProc The callback function’s entry point, used by MSG_REGISTER_CALLBACK.

RefCon An application defined reference constant. It has a different size on different
platforms.

Message Initialized to any valid DG_CONTROL / DAT_NULL message.
TWAIN 2.3 Specification 8-11

Chapter 8
TW_CAPABILITY
typedef struct {

 TW_UINT16 Cap;

 TW_UINT16 ConType;

 TW_HANDLE hContainer;

} TW_CAPABILITY, FAR * pTW_CAPABILITY;

Used by
DG_CONTROL / DAT_CAPABILITY / MSG_GET
DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT
DG_CONTROL / DAT_CAPABILITY / MSG_GETDEFAULT
DG_CONTROL / DAT_CAPABILITY / MSG_RESET
DG_CONTROL / DAT_CAPABILITY / MSG_RESETALL
DG_CONTROL / DAT_CAPABILITY / MSG_SET

Description

Used by an application either to get information about, or control the setting of a capability. The
first field identifies the capability being negotiated (e.g., ICAP_BRIGHTNESS). The second
specifies the format of the container (e.g., TWON_ONEVALUE). The third is a handle (HGLOBAL
under Microsoft Windows) to the container itself.

The application always sets the Cap field. On MSG_SET, the application also sets the ConType
and hContainer fields. On MSG_RESET, MSG_RESETALL, MSG_GET, MSG_GETCURRENT, and
MSG_GETDEFAULT, the source fills in the ConType and hContainer fields.

It is always the application’s responsibility to free the container when it is no longer needed. On a
MSG_GET, MSG_GETCURRENT, or MSG_GETDEFAULT, the source allocates the container but
ownership passes to the application. On a MSG_SET, the application provides the container either
by allocating it or by re-using a container created earlier.

On a MSG_SET, the Source must not modify the container and it must copy any data that it wishes
to retain.

Field Descriptions

Cap The numeric designator of the capability (of the form CAP_xxxx, ICAP_xxxx, or ACAP_xxxx).
e.g. ICAP_BRIGHTNESS. A list of these can be found in Chapter 10, "Capabilities" and in the
TWAIN.H file.

ConType The type of the container referenced by hContainer. The container structure will be one of four
types: TWON_ARRAY, TWON_ENUMERATION, TWON_ONEVALUE, or TWON_RANGE. One of these
values, which types the container, should be entered into this field by whichever TWAIN entity
fills in the container. When the application wants to set (MSG_SET) the Source’s capability, the
application must fill in this field. When the application wants to get (MSG_GET) capability
information from the Source, the Source must fill in this field.

hContainer References the container structure where detailed information about the capability is stored.
When the application wants to set (MSG_SET) the Source’s capability, the application must
provide the hContainer. When the application wants to get (MSG_GET) the Source’s capability
information, the Source must allocate the space for the container. In either case, the application
must release this space.
8-12 TWAIN 2.3 Specification

TW_CIECOLOR
typedef struct {

 TW_UINT16 ColorSpace

 TW_INT16 LowEndian;

 TW_INT16 DeviceDependent;

 TW_INT32 VersionNumber;

 TW_TRANSFORMSTAGE StageABC;

 TW_TRANSFORMSTAGE StageLMN;

 TW_CIEPOINT WhitePoint;

 TW_CIEPOINT BlackPoint;

 TW_CIEPOINT WhitePaper;

 TW_CIEPOINT BlackInk;

 TW_FIX32 Samples[1];

} TW_CIECOLOR, FAR * pTW_CIECOLOR;

Used by

DG_IMAGE / DAT_CIECOLOR / MSG_GET

Description

Defines the mapping from an RGB color space device into CIE 1931 (XYZ) color space. For more
in-depth information, please reference the PostScript Language Reference Manual, Second
Edition, pp. 173-193. Note that the field names do not follow the conventions used elsewhere
within TWAIN.

If the Source can provide TWPT_CIEXYZ, it must support all operations on this structure.

Go to http://www.cie.co.at/ for more information about CIE XYZ Color Space.

Field Descriptions

ColorSpace Defines the original color space that was transformed into CIE XYZ. Use a
constant of type TWPT_xxxx. This value is not set-able by the application.
Application should write TWON_DONTCARE16 into this on a MSG_SET.

LowEndian Used to indicate which data byte is taken first. If zero, then high byte is
first. If non-zero, then low byte is first.

DeviceDependent If non-zero then color data is device-dependent and only ColorSpace is
valid in this structure.

VersionNumber Version of the color space descriptor specification used to define the
transform data. The current version is zero.

StageABC Describes parametrics for the first stage transformation of the Postscript
Level 2 CIE color space transform process.

StageLMN Describes parametrics for the first stage transformation of the Postscript
Level 2 CIE color space transform process.

WhitePoint Values that specify the CIE 1931 (XYZ space) tri-stimulus value of the
diffused white point.
TWAIN 2.3 Specification 8-13

Chapter 8
BlackPoint Values that specify the CIE 1931 (XYZ space) tri-stimulus value of the
diffused black point.

WhitePaper Values that specify the CIE 1931 (XYZ space) tri-stimulus value of ink-less
“paper” from which the image was acquired.

BlackInk Values that specify the CIE 1931 (XYZ space) tri-stimulus value of solid
black ink on the “paper” from which the image was acquired.

Samples[1] Optional table look-up values used by the decode function. Samples are
ordered sequentially and end-to-end as A, B, C, L, M, and N.
8-14 TWAIN 2.3 Specification

TW_CIEPOINT
typedef struct {

 TW_FIX32 X;

 TW_FIX32 Y;

 TW_FIX32 Z;

} TW_CIEPOINT, FAR * pTW_CIEPOINT;

Used by

Embedded in the TW_CIECOLOR structure

Description

Defines a CIE XYZ space tri-stimulus value.

Go to http://www.cie.co.at/ for more information about CIE XYZ Color Space.

Field Descriptions

X First tri-stimulus value of the CIE space representation.

Y Second tri-stimulus value of the CIE space representation.

Z Third tri-stimulus value of the CIE space representation.
TWAIN 2.3 Specification 8-15

Chapter 8
TW_CUSTOMDSDATA
typedef struct {

 TW_UINT32 InfoLength;/* Length (in bytes) of data */

 TW_HANDLE hData; /* Handle to data */

} TW_CUSTOMDSDATA, FAR * pTW_CUSTOMDSDATA;

Used by

DG_CONTROL / DAT_CUSTOMDSDATA / MSG_GET
DG_CONTROL / DAT_CUSTOMDSDATA / MSG_SET

Description

Allows for a data source and application to pass custom data to each other.

The format of the data contained in hData will be data source specific and will not be defined by
the TWAIN API. This structure will be used by an application to query the data source for its
current settings, and to archive them to disk. Although the format for this custom data is not
defined by TWAIN, source implementers are encouraged to use a ASCII representation for the
custom data to be used for settings archival. A Windows INI style format would be easy to
implement and allow for additional features to be added without breaking backwards
compatibility.

It is also recommended that source vendors embed basic source revision and vendor ID
information in the hData body so they can determine if the structure being passed to the data
source is correct.

Note: 1.x versions of the specification have shown the following structure.

typedef struct {
 TW_UINT32 InfoLength; /* Length (in bytes) of data */
 TW_UINT8 InfoData[1]; /* Array (Length) bytes long */
} TW_CUSTOMDSDATA, FAR * pTW_CUSTOMDSDATA;

Starting with TWAIN 2.0 only the structure with hData is considered correct. If both a driver and
an application are reporting version 2 by examining the TW_IDENTITY.SupportedGroups for
DF_APP2 and DF_DS2, then both may assume that hData is in use. It is not sufficient to check the
TW_IDENTITY. ProtocolMajor field for a value greater than or equal to 2.

For older drivers and applications it’s expected that most developers have followed the use of
hData from the TWAIN.H file, however, good defensive programming recommends at least
attempting to anticipate both forms. On Window systems the developer can use GlobalSize()
to test if the TW_CUSTOMDSDATA structure is greater than sizeof (TW_CUSTOMDSDATA), which
would suggest that hData isn’t a pointer, but is the actual beginning of the data. Other calls like
GlobalLock() and IsBadReadPtr() can be used to check the validity of the pointer in
hData. No system is perfect, but it should be possible to cover most drivers and applications this
way.

Field Descriptions

InfoLength Length, in bytes, of data

hData Handle to memory containing InfoLength bytes of data
8-16 TWAIN 2.3 Specification

TW_DECODEFUNCTION
typedef struct {

 TW_FIX32 StartIn;

 TW_FIX32 BreakIn;

 TW_FIX32 EndIn;

 TW_FIX32 StartOut;

 TW_FIX32 BreakOut;

 TW_FIX32 EndOut;

 TW_FIX32 Gamma;

 TW_FIX32 SampleCount;

} TW_DECODEFUNCTION, FAR * pTW_DECODEFUNCTION;

Used by

Embedded in the TW_TRANSFORMSTAGE structure that is embedded in the TW_CIECOLOR
structure

Description

Defines the parameters used for channel-specific transformation. The transform can be described
either as an extended form of the gamma function or as a table look-up with linear interpolation.

Go to http://www.cie.co.at/ for more information about CIE XYZ Color Space.

Field Descriptions

StartIn Starting input value of the extended gamma function. Defines the minimum
input value of channel data.

BreakIn Ending input value of the extended gamma function. Defines the maximum
input value of channel data.

EndIn The input value at which the transform switches from linear transformation/
interpolation to gamma transformation.

StartOut Starting output value of the extended gamma function. Defines the minimum
output value of channel data.

BreakOut Ending output value of the extended gamma function. Defines the maximum
output value of channel data.

EndOut The output value at which the transform switches from linear transformation/
interpolation to gamma transformation.

Gamma Constant value. The exponential used in the gamma function.

SampleCount The number of samples in the look-up table. Includes the values of StartIn and
EndIn. Zero-based index (actually, number of samples - 1). If zero, use
extended gamma, otherwise use table look-up.
TWAIN 2.3 Specification 8-17

Chapter 8
8-18 TWAIN 2.3 Specification

TW_DEVICEEVENT
typedef struct {

 TW_UINT32 Event;

 TW_STR255 DeviceName;

 TW_UINT32 BatteryMinutes; // Battery Minutes Remaining

 TW_INT16 BatteryPercentage; // Battery Percentage Remaining

 TW_INT32 PowerSupply; // Power Supply

 TW_FIX32 XResolution; // Resolution

 TW_FIX32 YResolution; // Resolution

 TW_UINT32 FlashUsed2; // Flash Used2

 TW_UINT32 AutomaticCapture; // Automatic Capture

 TW_UINT32 TimeBeforeFirstCapture; // Automatic Capture

 TW_UINT32 TimeBetweenCaptures; // Automatic Capture

} TW_DEVICEEVENT, FAR * pTW_DEVICEEVENT;

Used by

DG_CONTROL / DAT_DEVICEEVENT / MSG_GET

Description

Provides information about the Event that was raised by the Source. The Source should only fill in
those fields applicable to the Event. The Application must only read those fields applicable to the
Event.

Field Descriptions

Event One of the TWDE_xxxx values. Defines event that has taken place.

DeviceName The name of the device that generated the event.

Valid for TWDE_BATTERYCHECK only

BatteryMinutes Minutes of battery power remaining.

BatteryPercentage Percentage of battery power remaining.

Valid for TWDE_POWERSUPPLY only

PowerSupply Current power supply in use.

Valid for TWDE_RESOLUTION only

XResolution Current X Resolution.

YResolution Current Y Resolution.

Valid for TWDE_FLASHUSED2 only

FlashUsed2 Current flash setting.

Valid for TWDE_AUTOMATICCAPTURE only

AutomaticCapture Number of images camera will capture.

TimeBeforeFirstCapture Number of seconds before first capture.

TimeBetweenCaptures Hundredths of a second between captures.
TWAIN 2.3 Specification 8-19

Chapter 8
TW_ENTRYPOINT
typedef struct {

TW_UINT32 Size;
DSM_ENTRY DSM_Entry;
DSM_MEMALLOCATE DSM_MemAllocate;
DSM_MEMFREE DSM_MemFree;
DSM_MEMLOCK DSM_MemLock;
DSM_MEMUNLOCK DSM_MemUnlock;

} TW_ENTRYPOINT, FAR * pTW_ENTRYPOINT;

Used by
DG_CONTROL / DAT_ENTRYPOINT / MSG_GET
DG_CONTROL / DAT_ENTRYPOINT / MSG_SET

Description

Provides entry points required by TWAIN 2.0 Applications and Sources.

Field Descriptions

Size Size of the structure in bytes. The application must set this
before calling MSG_GET. The Source should examine this
when processing a MSG_SET.

DSM_Entry A pointer to the DSM_Entry function. TWAIN 2.0 Sources
must use this value instead of getting it themselves.

DSM_MemAllocate A pointer to the memory allocation function, taking the form

TW_HANDLE PASCAL DSM_MemAllocate (TW_UINT32).

DSM_MemFree A pointer to the memory free function, taking the form

void PASCAL DSM_MemAllocate (TW_HANDLE)

DSM_MemLock A pointer to the memory lock function, taking the form

TW_MEMREF PASCAL DSM_MemAllocate (TW_HANDLE)

DSM_MemUnlock A pointer to the memory unlock function, taking the form
void PASCAL DSM_MemUnlock (TW_HANDLE)
8-20 TWAIN 2.3 Specification

TW_ELEMENT8
typedef struct {

 TW_UINT8 Index;

 TW_UINT8 Channel1;

 TW_UINT8 Channel2;

 TW_UINT8 Channel3;

 } TW_ELEMENT8, FAR * pTW_ELEMENT8;

Used by

Embedded in the TW_GRAYRESPONSE, TW_PALETTE8 and TW_RGBRESPONSE structures

Description

This structure holds the tri-stimulus color palette information for TW_PALETTE8 structures. The
order of the channels shall match their alphabetic representation. That is, for RGB data, R shall be
channel 1. For CMY data, C shall be channel 1. This allows the application and Source to maintain
consistency. Grayscale data will have the same values entered in all three channels.

Field Descriptions

Index Value used to index into the color table.

Channel1 First tri-stimulus value (e.g. Red).

Channel2 Second tri-stimulus value (e.g. Green).

Channel3 Third tri-stimulus value (e.g. Blue).
TWAIN 2.3 Specification 8-21

Chapter 8
TW_ENUMERATION
 typedef struct {

 TW_UINT16 ItemType;

 TW_UINT32 NumItems;

 TW_UINT32 CurrentIndex;

 TW_UINT32 DefaultIndex;

 TW_UINT8 ItemList[1];

 } TW_ENUMERATION, FAR * pTW_ENUMERATION;

Used by

TW_CAPABILITY structure (when ConType field specifies TWON_ENUMERATION)

Description

An enumeration stores a list of individual values, with one of the items designated as the current
value.

There is no required order to the values in the list. However, it is recommended that the data
source’s GUI show the values in the order that they have been negotiated by the application.

It is also recommended, but not required, that a MSG_GET operation reflects the same order as the
last MSG_SET operation for that capability.

Data sources may opt to always order some enumerated lists, like ICAP_XRESOLUTION, so that
the values are presented on the GUI in numerical order.

This structure is related in function and purpose to TW_ARRAY, TW_ONEVALUE, and TW_RANGE.

Field Descriptions

ItemType The type of items in the enumerated list. The type is indicated by the
constant held in this field. The constant is of the kind TWTY_xxxx. All items
in the array have the same size.

NumItems How many items are in the enumeration.

CurrentIndex The item number, or index (zero-based) into ItemList[], of the “current”
value for the capability.

DefaultIndex The item number, or index (zero-based) into ItemList[], of the “power-on”
value for the capability.

ItemList[1] The enumerated list: one value resides within each array element. Space for
the list is not allocated inside this structure. The ItemList value is simply a
placeholder for the start of the actual array, which must be allocated when
the container is allocated. Remember to typecast the allocation to ItemType,
as well as references to the elements of the array.

Ex:
Second element of ICAP_XFERMECH (assuming >= 2 NumItems)

value = ((TW_UINT16*)twenum.ItemList)[1];
8-22 TWAIN 2.3 Specification

TW_EVENT
typedef struct {

 TW_MEMREF pEvent;

 TW_UINT16 TWMessage;

} TW_EVENT, FAR * pTW_EVENT;

Used by
DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT

Description

Used on Windows and Macintosh pre OS X to pass application events/messages from the
application to the Source. The Source is responsible for examining the event/message, deciding if
it belongs to the Source, and returning an appropriate return code to indicate whether or not the
Source owns the event/message. This process is covered in more detail in the Event Loop section
of Chapter 3, "Application Implementation".

Field Descriptions

pEvent A pointer to the event/message to be examined by the Source.

Under Microsoft Windows, pEvent is a pMSG (pointer to a Microsoft Windows
MSG struct). That is, the message the application received from
GetMessage().

On the Macintosh, pEvent is a pointer to an EventRecord.

TWMessage Any message (MSG_xxxx) the Source needs to send to the application in
response to processing the event/message. The messages currently defined for
this purpose are MSG_NULL, MSG_XFERREADY and MSG_CLOSEDSREQ.
TWAIN 2.3 Specification 8-23

Chapter 8
TW_EXTIMAGEINFO
typedef struct {

 TW_UINT32 NumInfos;

 TW_INFO Info[1];

} TW_EXTIMAGEINFO, FAR * pTW_EXTIMAGEINFO;

Used by

DG_IMAGE / DAT_EXTIMAGEINFO / MSG_GET

Description

This structure is used to pass extended image information from the Data Source to the Application
at the end of State 7. The Application creates this structure at the end of State 7 when it receives
XFERDONE. The Application fills NumInfos with the Number information it needs, and the array
of extended information attributes in Info[]array. The Application then sends it down to the
source using the above operation triplet. The Data Source then examines each Info, and fills the
rest of data with information allocating memory when necessary.

The design of extended image information allows for two methods of passing multiple InfoID
types. For instance, assume it is possible for a Source to generate more than one barcode off an
image. An Application can request to acquire the data in one of two ways. The first way is as
follows:

Applications asks for:

TW_EXTIMAGEINFO

 NumInfos = 4

 TW_INFO[0]

 InfoID = TWEI_BARCODECOUNT

 ItemType = TW_UNINT32

 NumItems = 0

 ReturnCode = 0

 Item = 0

 TW_INFO[1]

 InfoID = TWEI_BARCODETYPE

 ItemType = TW_UNINT32

 NumItems = 0

 ReturnCode = 0

 Item = 0

 TW_INFO[2]

 InfoID = TWEI_BARCODETEXTLENGTH

 ItemType = TW_UNINT32

 NumItems = 0

 ReturnCode = 0

 Item = 0

 TW_INFO[3]

 InfoID = TWEI_BARCODETEXT

 ItemType = 0

 NumItems = 0
8-24 TWAIN 2.3 Specification

 ReturnCode = 0

 Item = 0

The Source returns…

TW_EXTIMAGEINFO

 NumInfos = 4

 TW_INFO[0]

 InfoID = TWEI_BARCODECOUNT

 ItemType = TW_UINT32

 NumItems = 1

 ReturnCode = TWCC_SUCCESS

 Item = 2

 TW_INFO[1]

 InfoID = TWEI_BARCODETYPE

 ItemType = TW_UINT32

 NumItems = 2

 ReturnCode = TWCC_SUCCESS

 Item = TW_HANDLE-0

 TW_INFO[2]

 InfoID = TWEI_BARCODETEXTLENGTH

 ItemType = TW_UINT32

 NumItems = 2

 ReturnCode = TWCC_SUCCESS

 Item = TW_HANDLE-1

 TW_INFO[3]

 InfoID = TWEI_BARCODETEXT

 ItemType = TW_HANDLE

 NumItems = 2

 ReturnCode = TWCC_SUCCESS

 Item = TW_HANDLE-2

((TW_UINT32*)TW_HANDLE-0)[0] TWBT_3OF9

((TW_UINT32*)TW_HANDLE-0)[1] TWBT_2OF5INTERLEAVED

((TW_UINT32*)TW_HANDLE-1)[0] 16

((TW_UINT32*)TW_HANDLE-1)[1] 32

((TW_UINT8*)TW_HANDLE-2)[0] Barcode Text 0

((TW_UINT8*)TW_HANDLE-2)[((TW_UINT32*)TW_HANDLE-1)[0]]

 Barcode Text 1

Note that Item is a pointer to the first datum for this TW_INFO. The Item field must be a
TW_HANDLE to the data if the value if the following is true:

 (SizeOfSpecifiedItem * NumItems) > sizeof(TW_HANDLE)

It is the responsibility of the Application to free both the TW_EXTIMAGEINFO structure and
any Item values that are TW_HANDLE, based on this calculation.
The reason for this design is so that the Source and Application can easily index through the
TW_INFO structures (ex: TW_EXTIMAGEINFO->Item[0])
Note that the above structure could also be requested by the Application as follows:
TWAIN 2.3 Specification 8-25

Chapter 8
TW_EXTIMAGEINFO

 NumInfos = 5

 TW_INFO[0]

 InfoID = TWEI_BARCODECOUNT

 ItemType = TW_UNINT32

 NumItems = 0

 ReturnCode = 0

 Item = 0

 TW_INFO[1]

 InfoID = TWEI_BARCODETYPE

 ItemType = TW_UNINT32

 NumItems = 0

 ReturnCode = 0

 Item = 0

 TW_INFO[2]

 InfoID = TWEI_BARCODETEXTLENGTH

 ItemType = TW_UNINT32

 NumItems = 0

 ReturnCode = 0

 Item = 0

 TW_INFO[3]

 InfoID = TWEI_BARCODETEXT

 ItemType = 0

 NumItems = 0

 ReturnCode = 0

 Item = 0

 TW_INFO[4]

 InfoID = TWEI_BARCODETEXT

 ItemType = 0

 NumItems = 0

 ReturnCode = 0

 Item = 0

If the Source detects multiple occurrences of a tag, then it must distribute the data as best it can
across the applicable TW_INFO fields. NumItems must be equal to one, and if there are not
enough TW_INFOs supplied for the specified InfoID, then any remaining data is discarded by
the Source. In this instance the return structure is big enough, and would look like the
following…

TW_EXTIMAGEINFO

 NumInfos = 5

 TW_INFO[0]

 InfoID = TWEI_BARCODECOUNT

 ItemType = TW_UINT32

 NumItems = 1

 ReturnCode = TWCC_SUCCESS

 Item = 2

 TW_INFO[1]
8-26 TWAIN 2.3 Specification

 InfoID = TWEI_BARCODETYPE

 ItemType = TW_UINT32

 NumItems = 2

 ReturnCode = TWCC_SUCCESS

 Item = TW_HANDLE-0

 TW_INFO[2]

 InfoID = TWEI_BARCODETEXTLENGTH

 ItemType = TW_UINT32

 NumItems = 2

 ReturnCode = TWCC_SUCCESS

 Item = TW_HANDLE-1

 TW_INFO[3]

 InfoID = TWEI_BARCODETEXT

 ItemType = TW_HANDLE

 NumItems = 1

 ReturnCode = TWCC_SUCCESS

 Item = TW_HANDLE-2

 TW_INFO[4]

 InfoID = TWEI_BARCODETEXT

 ItemType = TW_HANDLE

 NumItems = 1

 ReturnCode = TWCC_SUCCESS

 Item = TW_HANDLE-3

((TW_UINT32*)TW_HANDLE-0)[0] TWBT_3OF9

((TW_UINT32*)TW_HANDLE-0)[1] TWBT_2OF5INTERLEAVED

((TW_UINT32*)TW_HANDLE-1)[0] 16

((TW_UINT32*)TW_HANDLE-1)[1] 32

((TW_UINT8*)TW_HANDLE-2)[0] Barcode Text 0

((TW_UINT8*)TW_HANDLE-3)[0] Barcode Text 1

Field Descriptions

NumInfos The number of INFO structures must be greater than 0. The application should
allocate memory and fill in the attribute tag for image information.

Info[1] Array of information. See TW_INFO structure.
TWAIN 2.3 Specification 8-27

Chapter 8
TW_FILESYSTEM
typedef struct {

 // DG_CONTROL / DAT_FILESYSTEM / MSG_xxxx fields…

 TW_STR255 InputName;

 TW_STR255 OutputName;

 TW_MEMREF Context;

 // DG_CONTROL / DAT_FILESYSTEM / MSG_COPY

 // DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE field…

 union {

int Recursive;

TW_BOOL Subdirectories;

 };

 // DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO fields…

 union {

TW_INT32 FileType;

TW_UINT32 FileSystemType;

 };

 TW_UINT32 Size;

 TW_STR32 CreateTimeDate;

 TW_STR32 ModifiedTimeDate;

 TW_UINT32 FreeSpace;

 TW_INT32 NewImageSize;

 TW_UINT32 NumberOfFiles;

 TW_UINT32 NumberOfSnippets;

 TW_UINT32 DeviceGroupMask;

 TW_INT8 Reserved[508];

} TW_FILESYSTEM, FAR * pTW_FILESYSTEM;

Used by
DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_COPY
DG_CONTROL / DAT_FILESYSTEM / MSG_CREATEDIRECTORY
DG_CONTROL / DAT_FILESYSTEM / MSG_DELETE
DG_CONTROL / DAT_FILESYSTEM / MSG_FORMATMEDIA
DG_CONTROL / DAT_FILESYSTEM / MSG_GETCLOSE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO
DG_CONTROL / DAT_FILESYSTEM / MSG_GETNEXTFILE
DG_CONTROL / DAT_FILESYSTEM / MSG_RENAME

Description

Provides information about the currently selected device.

Field Descriptions

InputName The name of the input or source file.
8-28 TWAIN 2.3 Specification

OutputName The result of an operation or the name of a destination file.

Context A pointer to Source specific data used to remember state
information, such as the current directory.

MSG_GETINFO / MSG_GETFILEFIRST / MSG_DELETE

Recursive When set to TRUE recursively apply the operation. (ex: deletes all
subdirectories in the directory being deleted; or copies all sub-
directories in the directory being copied.

MSG_GETINFO / MSG_GETFILEFIRST / MSG_GETFILENEXT

FileType One of the TWFY_xxxx values.

Size TWFY_DIRECTORY- Total size of media in bytes.
TWFY_IMAGE- Size of image in bytes.
TWFY_xxxx- All other file types return a value of
0.

CreateTimeDate The create date of the file, in the form “YYYY/MM/DD
HH:mm:SS:sss” where YYYY is the year, MM is the numerical
month, DD is the numerical day, HH is the hour, mm is the
minute, SS is the second, and sss is the millisecond.

ModifyTimeDate Last date the file was modified. Same format as CreateTimeDate.

FreeSpace The bytes of free space left on the current device.

NewImageSize An estimate of the amount of space a new image would take up,
based on image layout, resolution and compression. Dividing
this value into the FreeSpace will yield the approximate number
of images that the Device has room for.

NumberOfFiles TWFY_IMAGE- Return 0

TWFY_xxxx- Return number of TWFY_IMAGE files
on the file system including those in all sub-directories.

NumberOfSnippets The number of audio snippets associated with a file of type
TWFY_IMAGE.

DeviceGroupMask A set of bits, with each bit uniquely identifying a device of type
TWFY_CAMERA and any associated TWFY_CAMERATOP and/or
TWFY_CAMERABOTTOM devices.

This field is intended to be used to group devices together. For
example:

• /Camera_ADF_Top – DeviceGroupMask = 1
• /Camera_ ADF_Bottom – DeviceGroupMask = 1
• /Camera_Flatbed_Top – DeviceGroupMask = 2

Possible masks values are bit fields – possible values are:

• 1, 2, 4, 8, 16, 32, 64, 128 (0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
0x40, 0x80)

See “File System” on page A-11. of this specification for more
information.

Reserved Space reserved for future expansion of this structure.
TWAIN 2.3 Specification 8-29

Chapter 8
TW_FILTER
typedef struct {

 TW_UINT32 Size;
 TW_UINT32 DescriptorCount;
 TW_UINT32 MaxDescriptorCount;
 TW_UINT32 Condition;
 TW_HANDLE hDescriptors

} TW_FILTER, *pTW_FILTER

Used by
DG_IMAGE / DAT_FILTER / MSG_GET

DG_IMAGE / DAT_FILTER / MSG_GETDEFAULT

DG_IMAGE / DAT_FILTER / MSG_RESET

DG_IMAGE / DAT_FILTER / MSG_SET

Description

Specifies the filter to be applied during image acquisition. More than one descriptor can be
specified. All descriptors are applied with an OR statement. Filter will check if the current pixel
color is inside (or outside) the area specified by the descriptors, and if it is, it will replace its color
with value specified in TW_FILTER_DESCRIPTOR/Replacement. Note that the resulting image
can be grayscale or bitonal, but not color.

Field Descriptions

Size Size of this structure in bytes.

Descriptors Number of descriptors in hDescriptors array.

MaxDescriptorCount Maximum possible descriptors. Valid only for MSG_GET and
MSG_GETDEFAULT operations.

Condition If the value is 0 filter will check if current pixel color is inside the area
specified by the descriptor. If the value is 1 it will check if it is outside
of this area.

hDescriptors Handle to array of TW_FILTER_DESCRIPTOR.

See TW_FILTER_DESCRIPTOR.
8-30 TWAIN 2.3 Specification

TW_FILTER_DESCRIPTOR
typedef struct {

 TW_UINT32 Size;
 TW_UINT32 HueStart;
 TW_UINT32 HueEnd;
 TW_UINT32 SaturationStart;
 TW_UINT32 SaturationEnd;
 TW_UINT32 ValueStart;
 TW_UINT32 ValueEnd;
 TW_UINT32 Replacement;

} TW_FILTER_DESCRIPTOR, *pTW_FILTER_DESCRIPTOR;

Used by
DG_IMAGE / DAT_FILTER / MSG_GET

DG_IMAGE / DAT_FILTER / MSG_GETDEFAULT

DG_IMAGE / DAT_FILTER / MSG_RESET

DG_IMAGE / DAT_FILTER / MSG_SET

Description

The range of colors specified by this structure is replaced with Replacement grayscale value in the
binary image. The color is specified in HSV color space.

Field Descriptions

Size Size of this structure in bytes.

HueStart Hue starting number. Valid values 0 to 3600 (0° to 360°)

HueEnd Hue ending number. Valid values 0 to 3600 (0° to 360°)

SaturationStart Saturation starting number. Valid values 0 to 1000 (0% to 100%)

SaturationEnd Saturation ending number. Valid values 0 to 1000 (0% to 100%)

ValueStart Luminosity starting number. Valid values 0 to 1000 (0% to 100%)

ValueEnd Luminosity ending number. Valid values 0 to 1000 (0% to 100%)

Replacement Replacement grayscale value. Valid values 0 to (232)–1 (Maximum value
depends on grayscale bit depth)
TWAIN 2.3 Specification 8-31

Chapter 8
TW_FIX32
typedef struct {

 TW_INT16 Whole;

 TW_UINT16 Frac;

} TW_FIX32, FAR * pTW_FIX32;

Used by

Embedded in the TW_CIECOLOR, TW_CIEPOINT, TW_DECODEFUNCTION, TW_FRAME,
TW_IMAGEINFO, and TW_TRANSFORMSTAGE structures.

Used in TW_ARRAY, TW_ENUMERATION, TW_ONEVALUE, and TW_RANGE structures when
ItemType is TWTY_FIX32.

Description

Stores a Fixed point number in two parts, a whole and a fractional part. The Whole part carries
the sign for the number. The Fractional part is unsigned.

Field Descriptions

The following functions convert TW_FIX32 to float and float to TW_FIX32:

/**

* FloatToFix32

* Convert a floating point value into a FIX32.

**/
TW_FIX32 FloatToFix32 (float floater)
{
 TW_FIX32 Fix32_value;
 TW_INT32 value = (TW_INT32) (floater * 65536.0 + 0.5);
 Fix32_value.Whole = value >> 16;
 Fix32_value.Frac = value & 0x0000ffffL;
 return (Fix32_value);
}
/**
* Fix32ToFloat
* Convert a FIX32 value into a floating point value.
**/
float FIX32ToFloat (TW_FIX32 fix32)
{
 float floater;
 floater = (float) fix32.Whole + (float) fix32.Frac / 65536.0;

 return floater;
}

Whole The Whole part of the floating point number. This number is signed.

Frac The Fractional part of the floating point number. This number is unsigned.
8-32 TWAIN 2.3 Specification

TW_FRAME
typedef struct {

 TW_FIX32 Left;

 TW_FIX32 Top;

 TW_FIX32 Right;

 TW_FIX32 Bottom;

} TW_FRAME, FAR * pTW_FRAME;

Used by

Embedded in the TW_IMAGELAYOUT structure

Description

Defines a frame rectangle in ICAP_UNITS coordinates.

Field Descriptions

Left Value of the left-most edge of the rectangle (in ICAP_UNITS).

Top Value of the top-most edge of the rectangle (in ICAP_UNITS).

Right Value of the right-most edge of the rectangle (in ICAP_UNITS).

Bottom Value of the bottom-most edge of the rectangle (in ICAP_UNITS).
TWAIN 2.3 Specification 8-33

Chapter 8
TW_GRAYRESPONSE
typedef struct {

 TW_ELEMENT8 Response[1];

} TW_GRAYRESPONSE, FAR * pTW_GRAYRESPONSE;

Used by
DG_IMAGE / DAT_GRAYRESPONSE / MSG_RESET
DG_IMAGE / DAT_GRAYRESPONSE / MSG_SET

Description

This structure is used by the application to specify a set of mapping values to be applied to
grayscale data. Use this structure for grayscale data whose bit depth is up to and including 8-bits.
This structure can only be used if TW_IMAGEINFO. PixelType is TWPT_GRAY. The number of
elements in the array is determined by TW_IMAGEINFO.BitsPerPixel—the number of
elements is 2 raised to the power of TW_IMAGEINFO.BitsPerPixel.

This structure is primarily intended for use by applications that bypass the Source’s built-in user
interface.

Field Descriptions

Response[1] Transfer curve descriptors. All three channels (Channel1, Channel2
and Channel3) must contain the same value for every entry.
8-34 TWAIN 2.3 Specification

TW_HANDLE

See “Platform Specific Typedefs” on page 8-4 for information on the actual mapping of this type.

Used by

Embedded in the TW_CAPABILITY and TW_USERINTERFACE structures, and used by TW_INFO
and TW_ONEVALUE structures when ItemType is TWTY_HANDLE. When used in a capability
TW_HANDLE must reflect a string. For TW_INFO, Application writers will need to look at the
metadata to determine if the Handle is a string or binary data.

Description

The typedef of Handles are defined by the operating system. TWAIN defines TW_HANDLE to be
the handle type supported by the operating system. Identified as a TW_HANDLE by setting
ItemType to TWTY_HANDLE where appropriate.

Field Descriptions

See definitions above
TWAIN 2.3 Specification 8-35

Chapter 8
TW_IDENTITY
typedef struct {

#if defined(__APPLE__) /* cf: Mac version of TWAIN.h */

TW_MEMREF Id;

#else

TW_UINT32 Id;

#endif

TW_VERSION Version;

TW_UINT16 ProtocolMajor;

TW_UINT16 ProtocolMinor;

TW_UINT32 SupportedGroups;

TW_STR32 Manufacturer;

TW_STR32 ProductFamily;

TW_STR32 ProductName;

} TW_IDENTITY, FAR * pTW_IDENTITY;

Used by

A large number of the operations because it identifies the application and the Source

Description

Provides identification information about a TWAIN entity. Used to maintain consistent
communication between entities.

Field Descriptions

Id A unique, internal identifier for the TWAIN entity. This field is only filled by the Source
Manager. Neither an application nor a Source should fill this field. The Source uses the
contents of this field to “identify” which application is invoking the operation sent to the
Source.

Version A TW_VERSION structure identifying the TWAIN entity.

ProtocolMajor Major number of latest TWAIN version that this element supports (see
TWON_PROTOCOLMAJOR).

ProtocolMinor Minor number of latest TWAIN version that this element supports (see
TWON_PROTOCOLMINOR).

Manufacturer String identifying the manufacturer of the application or Source. e.g. “Aldus”.

ProductFamily Tells an application that performs device-specific operations which product family the
Source supports. This is useful when a new Source has been released and the application
doesn’t know about the particular Source but still wants to perform Custom operations
with it. e.g. “ScanMan”.

ProductName A string uniquely identifying the Source. This is the string that will be displayed to the
user at Source select-time. This string must uniquely identify your Source for the user, and
should identify the application unambiguously for Sources that care. e.g. “ScanJet IIc”.
8-36 TWAIN 2.3 Specification

SupportedGroups • The application will normally set this field to specify which Data Group(s) it wants the
Source Manager to sort Sources by when presenting the Select Source dialog, or returning a
list of available Sources. The application sets this prior to invoking a MSG_USERSELECT
operation.

• The application may also set this field to specify which Data Group(s) it wants the Source
to be able to acquire and transfer. The application must do this prior to sending the Source
its MSG_ENABLEDS operation.

• The Source must set this field to specify which Data Group(s) it can acquire. It will do this
in response to a MSG_OPENDS.

• Beginning with TWAIN 2.0 the Source Manager reserves the most significant two byes in
the SupportedGroups for the Data Flags (0x0001000 to 0xFFFF0000).

DF_DSM2 – identifies the Source Manager as TWAIN 2.0 compliant

DF_APP2 – is set by an Application that is TWAIN 2.0 compliant

DF_DS2 – is set by a Source that is TWAIN 2.0 compliant
TWAIN 2.3 Specification 8-37

Chapter 8
TW_IMAGEINFO
typedef struct {

 TW_FIX32 XResolution;

 TW_FIX32 YResolution;

 TW_INT32 ImageWidth;

 TW_INT32 ImageLength;

 TW_INT16 SamplesPerPixel;

 TW_INT16 BitsPerSample[8];

 TW_INT16 BitsPerPixel;

 TW_BOOL Planar;

 TW_INT16 PixelType;

 TW_UINT16 Compression;

} TW_IMAGEINFO, FAR * pTW_IMAGEINFO;

Used by

The DG_IMAGE / DAT_IMAGEINFO / MSG_GET operation

Description

Describes the “real” image data, that is, the complete image being transferred between the Source
and application. The Source may transfer the data in a different format--the information may be
transferred in “strips” or “tiles” in either compressed or uncompressed form. See the
TW_IMAGEMEMXFER structure for more information.

The term “sample” is referred to a number of times in this structure. It holds the same meaning as
in the TIFF specification. A sample is a contiguous body of image data that can be categorized by
the channel or “ink color” it was captured to describe. In an R-G-B (Red-Green-Blue) image, such
as on your TV or computer’s CRT, each color channel is composed of a specific color. There are 3
samples in an R-G-B; Red, Green, and Blue. A C-Y-M-K image has 4 samples. A Grayscale or
Black and White image has a single sample.

Note: The value -1 in ImageWidth and ImageLength are special cases. It is possible for a
Source to not know either its Width or Length. Applications need to consider this when
allocating memory or otherwise dealing with the size of the Image.

Field Descriptions

XResolution The number of pixels per ICAP_UNITS in the horizontal direction. The current unit is
assumed to be “inches” unless it has been otherwise negotiated between the application
and Source.

YResolution The number of pixels per ICAP_UNITS in the vertical direction.

ImageWidth How wide, in pixels, the entire image to be transferred is. If the Source doesn’t know, set
this field to -1 (hand scanners may do this).

--1 can only be used if the application has set ICAP_UNDEFINEDIMAGESIZE to TRUE.
8-38 TWAIN 2.3 Specification

ImageLength How tall/long, in pixels, the image to be transferred is. If the Source doesn’t know, set
this field to -1 (hand scanners may do this).

-1 can only be used if the application has set ICAP_UNDEFINEDIMAGESIZE to TRUE.

SamplesPerPixel The number of samples being returned. For R-G-B, this field would be set to 3. For C-M-
Y-K, 4. For Grayscale or Black and White, 1.

BitsPerSample[8] For each sample, the number of bits of information. 24-bit R-G-B will typically have 8 bits
of information in each sample (8+8+8). Some 8-bit color is sampled at 3 bits Red, 3 bits
Green, and 2 bits Blue. Such a scheme would put 3, 3, and 2 into the first 3 elements of
this array. The supplied array allows up to 8 samples. Samples are not limited to 8 bits.
However, both the application and Source must simultaneously support sample sizes
greater than 8 bits per color.

BitsPerPixel The number of bits in each image pixel (or bit depth). This value is invariant across the
image. 24-bit R-G-B has BitsPerPixel = 24. 40-bit C-M-Y-K has BitsPerPixel=40. 8-bit
Grayscale has BitsPerPixel = 8. Black and White has BitsPerPixel = 1.

Planar If SamplesPerPixel > 1, indicates whether the samples follow one another on a pixel-by-
pixel basis (R-G-B-R-G-B-R-G-B...) as is common with a one-pass scanner or all the pixels
for each sample are grouped together (complete group of R, complete group of G,
complete group of B) as is common with a three-pass scanner. If the pixel-by-pixel
method (also known as “chunky”) is used, the Source should set Planar = FALSE. If the
grouped method (also called “planar”) is used, the Source should set Planar = TRUE.

PixelType This is the highest categorization for how the data being transferred should be
interpreted by the application. This is how the application can tell if the data is Black and
White, Grayscale, or Color. Currently, the only color type defined is “tri-stimulus”, or
color described by three characteristics. Most popular color description methods use tri-
stimulus descriptors. For simplicity, the constant used to identify tri-stimulus color is
called TWPT_RBG, for R-G-B color. There is no default for this value. Fill this field with
the appropriate TWPT_xxxx constant.

Compression The compression method used to process the data being transferred. Default is no
compression. Fill this field with the appropriate TWCP_xxxx constant.
TWAIN 2.3 Specification 8-39

Chapter 8
TW_IMAGELAYOUT
typedef struct {

 TW_FRAME Frame;

 TW_UINT32 DocumentNumber;

 TW_UINT32 PageNumber;

 TW_UINT32 FrameNumber;

} TW_IMAGELAYOUT, FAR * pTW_IMAGELAYOUT;

Used by
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GETDEFAULT
DG_IMAGE / DAT_IMAGELAYOUT / MSG_RESET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET

Description

Involves information about the original size of the acquired image and its position on the scanner
relative to the scanner’s upper-left corner. Default measurements are in inches (units of measure
can be changed by negotiating the ICAP_UNITS capability). This information may be used by the
application to relate the acquired (and perhaps processed image) to the original. Further, the
application can, using this structure, set the size of the image it wants acquired.

Another attribute of this structure is the included frame, page, and document indexing
information. Most Sources and applications, at least at first, will likely set all these fields to one.
For Sources that can acquire more than one frame from a page in a single acquisition, the
FrameNumber field will be handy. Sources that can acquire more than one page from a document
feeder will use PageNumber and DocumentNumber. These fields will be especially useful for
forms-processing applications and other applications with similar document tracking
requirements.

Field Descriptions

Frame Defines the Left, Top, Right, and Bottom coordinates (in ICAP_UNITS) of the rectangle
enclosing the original image on the scanner. If the application isn’t interested in setting the
origin of the image, set both Top and Left to zero. The Source will fill in the actual values
following the acquisition. See also TW_FRAME.

DocumentNumber The document number, assigned by the Source, that the acquired data originated on. Useful
for grouping pages together. Usually a physical representation, this could just as well be a
logical construct. Initial value is 1. Increment when a new document is placed into the
document feeder (usually tell this has happened when the feeder empties). Reset when no
longer acquiring from the feeder.

PageNumber The page which the acquired data was captured from. Useful for grouping Frames together
that are in some way related, usually Source. Usually a physical representation, this could
just as well be a logical construct. Initial value is 1. Increment for each page fed from a page
feeder. Reset when a new document is placed into the feeder.

FrameNumber Usually a chronological index of the acquired frame. These frames are related to one
another in some way; usually they were acquired from the same page. The Source assigns
these values. Initial value is 1. Reset when a new page is acquired.
8-40 TWAIN 2.3 Specification

TW_IMAGEMEMXFER
typedef struct {

 TW_UINT16 Compression;
 TW_UINT32 BytesPerRow;
 TW_UINT32 Columns;
 TW_UINT32 Rows;
 TW_UINT32 XOffset;
 TW_UINT32 YOffset;
 TW_UINT32 BytesWritten;
 TW_MEMORY Memory;

} TW_IMAGEMEMXFER, FAR * pTW_IMAGEMEMXFER;

Used by

DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET

Description

Describes the form of the acquired data being passed from the Source to the application. When
used in combination with a TW_IMAGEINFO structure, the application can correctly interpret the
image.

This structure allows transfer of “chunks” from the acquired data. These portions may be either
“strips” or “tiles.” Strips are tiles whose width matches that of the full image. Strips are always
passed sequentially, from “top” to “bottom”. A tile’s position does not necessarily follow that of
the previously passed tile. Most Sources will transfer strips.

Note: When transferring tiles, the application should remember what corner was contained in
the first tile of a plane. When the opposite corner is delivered, the plane is complete. The
dimensions of the memory transfers may vary.

Data may be passed either compressed or uncompressed. All Sources must support
uncompressed Data. Sources are not required to support compressed data transfers. Compressed
data transfers, and how the values are entered into the fields of this structure, are described in
Chapter 4, "Advanced Application Implementation".

Following is a picture of some of the fields from a TW_IMAGEMEMXFER structure. The large
outline shows the entire image which was selected to be transferred. The smaller rectangle
shows the particular portion being described by this TW_IMAGEMEMXFER structure.

Note: Remember that for a “strip” transfer XOffset = 0, and
Columns = TW_IMAGEINFO.ImageWidth.
TWAIN 2.3 Specification 8-41

Chapter 8
Field Descriptions

Compression The compression method used to process the data being transferred. Write the constant
(TWCP_xxxx) that precisely describes the type of compression used for the buffer. This
may be different from the method reported in the TW_IMAGEINFO structure (if the user
selected a different method before the actual transfer began, for instance). This is unlikely,
but possible. The application can optionally abort the acquisition if the value in this field
differs from the TW_IMAGEINFO value. Default is no compression (TWCP_NONE) and most
transfers will probably be uncompressed. See the list of constants in the TWAIN.H file.

BytesPerRow The number of uncompressed bytes in each row of the piece of the image being described in
this buffer.

Columns The number of uncompressed columns (in pixels) in this buffer.

Rows The number or uncompressed rows (in pixels) in this buffer.

XOffset How far, in pixels, the left edge of the piece of the image being described by this structure is
inset from the “left” side of the original image. If the Source is transferring in “strips”, this
value will equal zero. If the Source is transferring in “tiles”, this value will often be non-
zero.

YOffset Same idea as XOffset, but the measure is in pixels from the “top” of the original image to
the upper edge of this piece.

BytesWritten The number of bytes written into the transfer buffer. This field must always be filled in
correctly, whether compressed or uncompressed data is being transferred.

Memory A structure of type TW_MEMORY describing who must dispose of the buffer, the actual size
of the buffer, in bytes, and where the buffer is located in memory.
8-42 TWAIN 2.3 Specification

TW_INFO
typedef struct {

 TW_UINT16 InfoID;

 TW_UINT16 ItemType;

 TW_UINT16 NumItems;

 TW_UINT16 ReturnCode;

 TW_UINTPTR Item;

 } TW_INFO, FAR * pTW_INFO;

Used by

Within TW_EXTIMAGEINFO structure.

Description

This structure is used to pass specific information between the data source and the application.

Field Descriptions

TW_INFO.ITEMTYPE

TW_INFO Return Codes

InfoID Tag identifying an information. For TW_EXTIMAGEINFO, the information ID is defined as
IACAP_xxxx. (Please refer to Extended Image capabilities).

ItemType Item data type. It is one of TWTY_xxxx value as listed in the TW_INFO.ITEMTYPE below.

NumItems Number of items for this field.

ReturnCode This is the return code of availability of data for extended image attribute requested. Following
is the list of possible condition codes:

TWRC_INFONOTSUPPORTED

TWRC_DATANOTAVAILABLE

TWRC_SUCCESS

Item The TW_INFO.Item field contains either data or a handle to data. The field contains data if the
total amount of data is less than or equal to four bytes. The field contains a handle if the total
amount of data is more than four bytes. The amount of data is determined by multiplying
TW_INFO.NumItems times the byte size of the data type specified by TW_INFO.ItemType.

If the TW_INFO.Item field contains a handle to data, then the Application is responsible for
freeing that memory.

ItemType NumItems Data/Pointer Reason

TW_STR32 1 handle to data (sizeof (TW_STR32) * 1) > 4

TW_INT32 1 data (sizeof (TW_INT32) * 1) == 4

TW_INT8 3 data (sizeof (TW_INT8) * 3) < 4

TW_INT8 5 handle to data (sizeof (TW_INT8) * 5) > 4
TWAIN 2.3 Specification 8-43

Chapter 8
Following is the list of added return codes.

TWRC_INFONOTSUPPORTED Requested information is not supported.

TWRC_DATANOTAVAILABLE Requested information is supported, but some unknown
reason, information is not available.
8-44 TWAIN 2.3 Specification

TW_JPEGCOMPRESSION
typedef struct {

 TW_UINT16 ColorSpace;

 TW_UINT32 SubSampling;

 TW_UINT16 NumComponents;

 TW_UINT16 RestartFrequency;

 TW_UINT16 QuantMap[4];

 TW_MEMORY QuantTable[4];

 TW_UINT16 HuffmanMap[4];

 TW_MEMORY HuffmanDC[2];

 TW_MEMORY HuffmanAC[2];

} TW_JPEGCOMPRESSION, FAR * pTW_JPEGCOMPRESSION;

Used by
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GET
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GETDEFAULT
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_RESET
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_SET

Description

Describes the information necessary to transfer a JPEG-compressed image during a buffered
transfer. Images compressed in this fashion will be compatible with the JPEG File Interchange
Format, version 1.1. For more information on JPEG and TWAIN, see Chapter 4, "Advanced
Application Implementation". The TWAIN JPEG implementation is based on the JPEG Draft
International Standard, version 10918-1. The sample tables found in Section K of the JPEG Draft
International Standard, version 10918-1 are used as the default tables for QuantTable,
HuffmanDC, and HuffmanAC.

Field Descriptions

ColorSpace One of the TWPT_xxxx values. Defines the color space in which the compressed
components are stored. Only spaces supported by the Source for
ICAP_JPEGPIXELTYPE are valid.

SubSampling Encodes the horizontal and vertical subsampling in the form ABCDEFGH, where ABCD
are the high-order four nibbles which represent the horizontal subsampling and EFGH
are the low-order four nibbles which represent the vertical subsampling. Each nibble
may have a value of 0, 1, 2, 3, or 4. However, max(A,B,C,D) * max(E,F,G,H) must be less
than or equal to 10. Subsampling is irrelevant for single component images. Therefore,
the corresponding nibbles should be set to 1. e.g. To indicate subsampling two Y for each
U and V in a YUV space image, where the same subsampling occurs in both horizontal
and vertical axes, this field would hold 0x21102110. For a grayscale image, this field
would hold 0x10001000. A CMYK image could hold 0x11111111.

NumComponents Number of color components in the image to be compressed.

RestartFrequency Number of MDUs (Minimum Data Units) between restart markers. Default is 0,
indicating that no restart markers are used. An MDU is defined for interleaved data (i.e.
R-G-B, Y-U-V, etc.) as a minimum complete set of 8x8 component blocks.

QuantMap[4] Mapping of components to Quantization tables.
TWAIN 2.3 Specification 8-45

Chapter 8
QuantTable[4] Quantization tables.

HuffmanMap[4] Mapping of components to Huffman tables. Null entries signify selection of the default
tables.

HuffmanDC[2] DC Huffman tables. Null entries signify selection of the default tables.

HuffmanAC[2] AC Huffman tables. Null entries signify selection of the default tables.
8-46 TWAIN 2.3 Specification

TW_MEMORY
typedef struct {

 TW_UINT32 Flags;

 TW_UINT32 Length;

 TW_MEMREF TheMem;

} TW_MEMORY, FAR * pTW_MEMORY;

Used by

Embedded in the TW_IMAGEMEMXFER and TW_JPEGCOMPRESSION structures

Description

Provides information for managing memory buffers. Memory for transfer buffers is allocated by
the application--the Source is asked to fill these buffers. This structure keeps straight which entity
is responsible for deallocation.

Field Descriptions

Flags Encodes which entity releases the buffer and how the buffer is referenced. The
ownership flags must be used:

• when transferring Buffered Memory data as tiles

• ·when transferring Buffered Memory that is compressed

• in the TW_JPEGCOMPRESSION structure

When transferring Buffered Memory data as uncompressed strips, the application
allocates the buffers and is responsible for setting the ownership flags.

This field is used to identify how the memory is to be referenced. The memory is
always referenced by a Handle on the Macintosh and a Pointer under UNIX. It is
referenced by a Handle or a pointer under Microsoft Windows.

Use TWMF_xxxx constants, bit-wise OR’d together to fill this field.

Flag Constants:

TWMF_APPOWNS 0x1

TWMF_DSMOWNS 0x2

TWMF_DSOWNS 0x4

TWMF_POINTER 0x8

TWMF_HANDLE 0x10

Length The size of the buffer in bytes. Should always be an even number and word-
aligned.

TheMem Reference to the buffer. May be a Pointer or a Handle (see Flags field to make this
determination). You must typecast this field before referencing it in your code.
TWAIN 2.3 Specification 8-47

Chapter 8
TW_MEMREF

See “Platform Specific Typedefs” on page 8-4 for information on the actual mapping of this type.

Used by

Embedded in the TW_EVENT and TW_MEMORY structures

Description

Memory references are specific to each operating system. TWAIN defines TW_MEMREF to be the
memory reference type supported by the operating system.

Field Descriptions

See definitions above.
8-48 TWAIN 2.3 Specification

TW_UINTPTR

On Windows:

typedef UINT_PTR TW_UINTPTR;

On Macintosh and Unix:

//32 bit GNU

typedef unsigned long TW_UINTPTR;

//64 bit GNU

typedef unsigned long long TW_UINTPTR;

Used by

Embedded in the TW_INFO structure.

Description

Integer pointer references are specific to each operating system. TWAIN defines TW_UINTPTR to
be the integer pointer reference type supported by the operating system.

Field Descriptions

See definitions above
TWAIN 2.3 Specification 8-49

Chapter 8
TW_ONEVALUE
typedef struct {

 TW_UINT16 ItemType;

 TW_UINT32 Item;

} TW_ONEVALUE, FAR * pTW_ONEVALUE;

Used by

TW_CAPABILITY structure (when ConType field specifies TWON_ONEVALUE)

Description

Stores a single value (item) which describes a capability. This structure is currently used only in a
TW_CAPABILITY structure. Such a value would be useful to describe the current value of the
device’s contrast, or to set a specific contrast value. This structure is related in function and
purpose to TW_ARRAY, TW_ENUMERATION, and TW_RANGE.

Note that in cases where the data type is TW_UINT16, the data should reside in the lower word.

Field Descriptions

ItemType The type of the item. The type is indicated by the constant held in this field. The
constant is of the kind TWTY_xxxx.

Item The value.
8-50 TWAIN 2.3 Specification

TW_PALETTE8
typedef struct {

 TW_UINT16 NumColors;

 TW_UINT16 PaletteType;

 TW_ELEMENT8 Colors[256];

} TW_PALETTE8, FAR * pTW_PALETTE8;

Used by
DG_IMAGE / DAT_PALETTE8 / MSG_GET
DG_IMAGE / DAT_PALETTE8 / MSG_GETDEFAULT
DG_IMAGE / DAT_PALETTE8 / MSG_RESET
DG_IMAGE / DAT_PALETTE8 / MSG_SET

Description

This structure holds the color palette information for buffered memory transfers of type
ICAP_PIXELTYPE = TWPT_PALETTE.

Field Descriptions

NumColors Number of colors in the color table; maximum index into the color table should
be one less than this (since color table indexes are zero-based).

PaletteType TWPA_xxxx constant specifying the type of palette.

Colors[256] Array of palette values.
TWAIN 2.3 Specification 8-51

Chapter 8
TW_PASSTHRU
typedef struct {

 TW_MEMREF pCommand;

 TW_UINT32 CommandBytes;

 TW_INT32 Direction;

 TW_MEMREF pData;

 TW_UINT32 DataBytes;

 TW_UINT32 DataBytesXfered;

} TW_PASSTHRU, FAR * pTW_PASSTHRU;

Used by

DG_CONTROL / DAT_PASSTHRU / MSG_PASSTHRU

Description

Used to bypass the TWAIN protocol when communicating with a device. All memory must be
allocated and freed by the Application. Use of this feature is limited to Source writers who require
a standard entry point for specialized Applications, such as diagnostics.

Field Descriptions

pCommand Pointer to Command buffer.

CommandBytes Number of bytes in Command buffer.

Direction One of the TWDR_xxxx values. Defines the direction of data flow.

pData Pointer to Data buffer.

DataBytes Number of bytes in Data buffer.

DataBytesXfered Number of bytes successfully transferred.
8-52 TWAIN 2.3 Specification

TW_PENDINGXFERS
typedef struct {

TW_UINT16 Count;

union {

TW_UINT32 EOJ;

TW_UINT32 Reserved;

#if defined(__APPLE__) /* cf: Mac version of TWAIN.h */

union {

TW_UINT32 EOJ;

TW_UINT32 Reserved;

} TW_JOBCONTROL;

#endif

};

} TW_PENDINGXFERS, FAR *pTW_PENDINGXFERS;

Used by

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER
DG_CONTROL / DAT_PENDINGXFERS / MSG_GET
DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET

Description

This structure tells the application how many more complete transfers the Source currently has
available. The application should MSG_GET this structure at the conclusion of a transfer to
confirm the Source’s current state. If the Source has more transfers pending it will remain in State
6 awaiting initiation of the next transfer by the application.

If it has no more image transfers pending, it will place zero into the Count and will have
automatically transitioned to State 5 (audio transfers will remain in State 6, even when the Count
goes to zero).

If the Source knows there are more transfers pending but is unsure of the actual number, it should
place -1 into Count (for example, with document feeders or continuous video sources).
Otherwise, the Source should place the actual number of pending transfers into Count.

Field Descriptions

Count When DAT_XFERGROUP is set to DG_IMAGE

The number of complete transfers a Source has available for the application it is
connected to. If no more transfers are available, set to zero. If an unknown and
non-zero number of transfers are available, set to -1.

When DAT_XFERGROUP is set to DG_AUDIO

The number of complete audio snippet transfers for a given image a Source has
available for the application it is connected to. If no more transfers are available,
set to zero. –1 is not a valid value.
TWAIN 2.3 Specification 8-53

Chapter 8
EOJ The application should check this field if the CAP_JOBCONTROL is set to other
than TWJC_NONE. If the EOJ is not 0, the application should expect more data
from the driver according to CAP_JOBCONTROL settings.

The source should fill this value with one of the TWEJ_xxx patch codes if
CAP_JOBCONTROL is set to other than TWJC_NONE.

Reserved Maintained so as not to cause compile time errors for pre-1.7 code.
8-54 TWAIN 2.3 Specification

TW_RANGE
typedef struct {

 TW_UINT16 ItemType;

 TW_UINT32 MinValue;

 TW_UINT32 MaxValue;

 TW_UINT32 StepSize;

 TW_UINT32 DefaultValue;

 TW_UINT32 CurrentValue;

} TW_RANGE, FAR * pTW_RANGE;

Used by

TW_CAPABILITY structure (when ConType field specifies TWON_RANGE)

Description

Stores a range of individual values describing a capability. The values are uniformly distributed
between a minimum and a maximum value. The step size between each value is constant. Such a
value is useful when describing such capabilities as the resolutions of a device which supports
discreet, uniform steps between each value, such as 50 through 300 dots per inch in steps of 2 dots
per inch (50, 52, 54, ..., 296, 298, 300). This structure is related in function and purpose to
TW_ARRAY, TW_ENUMERATION, and TW_ONEVALUE.

Field Descriptions

ItemType The type of items in the list. The type is indicated by the constant held in
this field. The constant is of the kind TWTY_xxxx. All items in the list have
the same size/type.

MinValue The least positive/most negative value of the range.

MaxValue The most positive/least negative value of the range.

StepSize The delta between two adjacent values of the range.
e.g. Item2 - Item1 = StepSize;

DefaultValue The device’s “power-on” value for the capability. If the application is
performing a MSG_SET operation and isn’t sure what the default value is, set
this field to TWON_DONTCARE32.

CurrentValue The value to which the device (or its user interface) is currently set to for the
capability.
TWAIN 2.3 Specification 8-55

Chapter 8
TW_RGBRESPONSE
typedef struct {

 ELEMENT8 Response[1];
} TW_RGBRESPONSE, FAR * pTW_RGBRESPONSE;

Used by

DG_IMAGE / DAT_RGBRESPONSE / MSG_RESET
DG_IMAGE / DAT_RGBRESPONSE / MSG_SET

Description

This structure is used by the application to specify a set of mapping values to be applied to RGB
color data. Use this structure for RGB data whose bit depth is up to, and including, 8-bits. The
number of elements in the array is determined by TW_IMAGEINFO.BitsPerPixel—the number of
elements is 2 raised to the power of TW_IMAGEINFO.BitsPerPixel.

This structure is primarily intended for use by applications that bypass the Source’s built-in user
interface.

Field Descriptions

Response[1] Transfer curve descriptors. To minimize color shift problems, writing the
same values into each channel is desirable.
8-56 TWAIN 2.3 Specification

TW_SETUPFILEXFER
typedef struct {

 TW_STR255 FileName;

 TW_UINT16 Format;

 TW_INT16 VRefNum;

} TW_SETUPFILEXFER, FAR * pTW_SETUPFILEXFER;

Used by
DG_CONTROL / DAT_SETUPFILEXFER / MSG_GET
DG_CONTROL / DAT_SETUPFILEXFER / MSG_GETDEFAULT
DG_CONTROL / DAT_SETUPFILEXFER / MSG_RESET
DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET

Description

Describes the file format and file specification information for a transfer through a disk file.

Field Descriptions

FileName A complete file specifier to the target file. On Windows, be sure to include the
complete pathname.

Format The format of the file the Source is to fill. Fill with the correct constant—as
negotiated with the Source—of type TWFF_xxxx.

VRefNum The volume reference number for the file. This applies to Macintosh only. On
Windows and Linux, fill the field with TWON_DONTCARE16.
TWAIN 2.3 Specification 8-57

Chapter 8
TW_SETUPMEMXFER
typedef struct {

 TW_UINT32 MinBufSize;

 TW_UINT32 MaxBufSize;

 TW_UINT32 Preferred;

} TW_SETUPMEMXFER, FAR * pTW_SETUPMEMXFER;

Used by

DG_CONTROL / DAT_SETUPMEMXFER / MSG_GET

Description

Provides the application information about the Source’s requirements and preferences regarding
allocation of transfer buffer(s). The best applications will allocate buffers of the Preferred size. An
application should never allocate a buffer smaller than MinBufSize. Some Sources may not be
able to fill a buffer larger than MaxBufSize so a larger allocation is a waste of RAM (digital
cameras or frame grabbers fit this category).

Sources should fill out all three fields as accurately as possible. If a Source can fill an
indeterminately large buffer (hand scanners might do this), put a -1 in MaxBufSize.

Field Descriptions

MinBufSize The size of the smallest transfer buffer, in bytes, that a Source can be successful
with. This will typically be the number of bytes in an uncompressed row in the
block to be transferred. An application should never allocate a buffer smaller
than this.

MaxBufSize The size of the largest transfer buffer, in bytes, that a Source can fill. If a Source
can fill an arbitrarily large buffer, it might set this field to negative 1 to indicate
this (a hand-held scanner might do this, depending on how long its cord is).
Other Sources, such as frame grabbers, cannot fill a buffer larger than a certain
size. Allocation of a transfer buffer larger than this value is wasteful.

Preferred The size of the optimum transfer buffer, in bytes. A smart application will
allocate transfer buffers of this size, if possible. Buffers of this size will optimize
the Source’s performance. Sources should be careful to put reasonable values in
this field. Buffers that are 10’s of kbytes will be easier for applications to allocate
than buffers that are 100’s or 1000’s of kbytes.
8-58 TWAIN 2.3 Specification

TW_STATUS
typedef struct {

TW_UINT16 ConditionCode; // output
union {

TW_UINT16 Data; // output (TWAIN 2.1 and newer)
TW_UINT16 Reserved; // output (TWAIN 2.0 and older)

};
} TW_STATUS, FAR * pTW_STATUS;

Used by

DG_CONTROL / DAT_STATUS / MSG_GET
DG_CONTROL / DAT_STATUSUTF8 / MSG_GET (as part of TW_STATUSUTF8)

Description

Describes the status of a source.

Field Descriptions

ConditionCode TWCC_xxxx Condition Code describing the status.
Data Valid for TWAIN 2.1 and later. This field contains additional

scanner-specific data. If there is no data, then this value must be zero.
Reserved Only option for TWAIN 2.0 and earlier. If used it must be zero.
TWAIN 2.3 Specification 8-59

Chapter 8
TW_STATUSUTF8
typedef struct {

 TW_STATUS Status;// input
 TW_UINT32 Size;// output
 TW_HANDLE UTF8string;// output

} TW_STATUSUTF8, FAR * pTW_STATUSUTF8;

Used by

DG_CONTROL / DAT_STATUSUTF8 / MSG_GET

Description

Translates the contents of Status into a localized UTF8string, with the total number of bytes in
the string.

Field Descriptions

Status TW_STATUS data received from a previous call to
DG_CONTROL / DAT_STATUS / MSG_GET.

Size Total number of bytes in the UTF8string, plus the terminating NULL byte.
This is not the same as the total number of characters in the string.

UTF8string TW_HANDLE to a UTF-8 encoded localized string (based on
TW_IDENTITY.Language or CAP_LANGUAGE). The Source allocates it, the
Application frees it.
8-60 TWAIN 2.3 Specification

TW_TRANSFORMSTAGE
typedef struct {

 TW_DECODEFUNCTION Decode[3];

 TW_FIX32 Mix[3][3];

} TW_TRANSFORMSTAGE, FAR * pTW_TRANSFORMSTAGE;

Used by

Embedded in the TW_CIECOLOR structure

Description

Specifies the parametrics used for either the ABC or LMN transform stages.

Go to http://www.cie.co.at/ for more information about CIE XYZ Color Space.

Field Descriptions

Decode[3] Channel-specific transform parameters.

Mix[3][3] 3x3 matrix that specifies how channels are mixed in
TWAIN 2.3 Specification 8-61

Chapter 8
TW_USERINTERFACE
typedef struct {

 TW_BOOL ShowUI;

 TW_BOOL ModalUI;

 TW_HANDLE hParent;

} TW_USERINTERFACE, FAR * pTW_USERINTERFACE;

Used by

DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS
DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS

Description

This structure is used to handle the user interface coordination between an application and a
Source.

Field Descriptions

ShowUI Set to TRUE by the application if the Source should activate its built-in user
interface. Otherwise, set to FALSE. Note that not all sources support ShowUI =
FALSE. See the description of DG_CONTROL / DAT_USERINTERFACE /
MSG_ENABLEDS for more information.

ModalUI If ShowUI is TRUE, then an application setting this to TRUE requests the Source to
run Modal (no user access to the application’s windows while the Source is
running).

hParent Microsoft Windows only: Application’s window handle. The Source designates
the hWnd as its parent when creating the Source dialog.

NOTE: Window handle allows Source’s user interface to be a proper child of the
parent application.
8-62 TWAIN 2.3 Specification

TW_VERSION
typedef struct {

 TW_UINT16 MajorNum;

 TW_UINT16 MinorNum;

 TW_UINT16 Language;

 TW_UINT16 Country;

 TW_STR32 Info;

} TW_VERSION, FAR * pTW_VERSION;

Used by

This is embedded in the TW_IDENTITY data structure

Description

A general way to describe the version of software that is running.

Field Descriptions

Data Argument Types that Don’t Have Associated
TW_Structures

Most of the DAT_xxxx components of the TWAIN operation triplets have a corresponding data
structure whose name begins with TW_ and then uses the same suffix as the DAT_name.
However, the following do not use that pattern.

DAT_IMAGEFILEXFER

Acts on NULL data.

DAT_IMAGENATIVEXFER

Uses a TW_HANDLE variable.
On Windows: A handle variable to a DIB (Device Independent Bitmap) located in

memory.
On Macintosh: A handle to a Picture (a PicHandle). It is a QuickDraw picture located in

memory.

MajorNum This refers to your application or Source’s major revision number. e.g. The “2”
in “version 2.1”.

MinorNum The incremental revision number of your application or Source. e.g. The “1” in
“version 2.1”.

Language The primary language for your Source or application. e.g. TWLG_GER.

Country The primary country where your Source or application is intended to be
distributed. e.g. Germany.

Info General information string - fill in as needed. e.g. “1.0b3 Beta release”.
TWAIN 2.3 Specification 8-63

Chapter 8
On Linux: A handle to a TIFF. It is a TIFF image located in memory.

DAT_NULL

Used by the Source to signal the need for an event to announce MSG_XFERREADY,
MSG_CLOSEDSOK, MSG_CLOSEDSREQ, or MSG_DEVICEEVENT.

Mac OS X using TWAIN DSM 1.9 will use MSG_INVOKECALLBACK.

DAT_PARENT

Used by the DG_CONTROL / DAT_PARENT / MSG_OPENDSM and MSG_CLOSEDSM operations.

On Windows: They act on a variable of type TW_HANDLE. Prior to the operation, the
application must write, a window handle to the application’s window that acts as the
“parent” for the Source’s user interface. This must be done whether or not the Source’s
user interface will be used. The Source Manager uses this window handle to signal the
application when data is ready for transfer (MSG_XFERREADY) or the Source needs to be
closed (MSG_CLOSEDSREQ).

On Macintosh: These act on NULL data.
On Linux: These act on NULL data.

DAT_XFERGROUP

Used by the DG_CONTROL / DAT_XFERGROUP / MSG_GET operation. The data acted on by
this operation is a variable of type TW_UINT32. (The same as a DG_xxxx designator.) The
value of this variable is indeterminate prior to the operation. Following the operation, a single
bit is set indicating the Data Group of the transfer.
8-64 TWAIN 2.3 Specification

Constants

Generic Constants

Constants

Flags used in TW_MEMORY

Palette types for TW_PALETTE8

Events for TW_DEVICEEVENT

See “CAP_DEVICEEVENT” on page 8-79.

Version Constant ID Value

1.0

1.0

TWON_PROTOCOLMAJOR

TWON_PROTOCOLMINOR

2

1

1.0
1.0
1.0
1.0

TWON_ARRAY
TWON_ENUMERATION
TWON_ONEVALUE
TWON_RANGE

3
4
5
6

1.0
1.0
1.0

TWON_ICONID
TWON_DSMID
TWON_DSMCODEID

962
461
63

1.0
1.0
1.0

TWON_DONTCARE8
TWON_DONTCARE16
TWON_DONTCARE32

0xff
0xffff
0xffffffff

Version Constant ID Value

1.0
1.0
1.0
1.0
1.0

TWMF_APPOWNS
TWMF_DSMOWNS
TWMF_DSOWNS
TWMF_POINTER
TWMF_HANDLE

0x0001
0x0002
0x0004
0x0008
0x0010

Version Constant ID Value

1.0
1.0
1.0

TWPA_RGB
TWPA_GRAY
TWPA_CMY

0
1
2

TWAIN 2.3 Specification 8-65

Chapter 8
File Types for TW_FILESYSTEM

Query Support Bits

Note: These are bits in a mask.

ConType for Capability Container structures

ItemType for Capability Container structures

Version Constant ID Value

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

TWFY_CAMERA
TWFY_CAMERATOP
TWFY_CAMERABOTTOM
TWFY_CAMERAPREVIEW
TWFY_DOMAIN
TWFY_HOST
TWFY_DIRECTORY
TWFY_IMAGE
TWFY_UNKNOWN

0
1
2
3
4
5
6
7
8

Version Constant ID Value

1.6
1.6
1.6
1.6
1.6
2.2
2.2

TWQC_GET
TWQC_SET
TWQC_GETDEFAULT
TWQC_GETCURRENT
TWQC_RESET
TWQC_SETCONSTRAINT
TWQC_GETHELP
TWQC_GETLABEL
TWQC_GETLABELENUM

0x0001
0x0002
0x0004
0x0008
0x0010
0x0020
0x0100
0x0200
0x0400

Version Constant ID Value

1.0
1.0
1.0
1.0

TWON_ARRAY
TWON_ENUMERATION
TWON_ONEVALUE
TWON_RANGE

3
4
5
6

Version Constant ID Value

1.0
1.0
1.0

TWTY_INT8
TWTY_INT16
TWTY_INT32

0x0000
0x0001
0x0002

1.0
1.0
1.0

TWTY_UINT8
TWTY_UINT16
TWTY_UINT32

0x0003
0x0004
0x0005

1.0 TWTY_BOOL 0x0006
8-66 TWAIN 2.3 Specification

Direction for TW_PASSTHRU

Patch Codes for TW_PENDINGXFERS

Triplet Constants

Data Groups (DG_)

Note: These are bits in a mask.

1.0

1.0

1.0
1.0
1.0
1.0

1.0

TWTY_FIX32

TWTY_FRAME

TWTY_STR32
TWTY_STR64
TWTY_STR128
TWTY_STR255

TWTY_HANDLE

0x0007

0x0008

0x0009
0x000A
0x000B
0x000C

0x000F //
Item is a
TW_HANDLE

Version Constant ID Value

1.8
1.8

TWDR_GET
TWDR_SET

1
2

Version Constant ID Value

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

TWEJ_NONE
TWEJ_MIDSEPERATOR
TWEJ_PATCH1
TWEJ_PATCH2
TWEJ_PATCH3
TWEJ_PATCH4
TWEJ_PATCH6
TWEJ_PATCHT

0x0000
0x0001
0x0002
0x0003
0x0004
0x0005
0x0006
0x0007

Version Data Group (DG_) Numeric ID

1.0

1.0

1.8

2.1

DG_CONTROL

DG_IMAGE

DG_AUDIO

DG_MASK

0x0001L

0x0002L

0x0004L

0xFFFFL

Version Data Flags (DF_) Numeric ID

1.8

1.8

1.8

DF_DSM2

DF_APP2

DF_DS2

0x10000000L

0x20000000L

0x40000000L
TWAIN 2.3 Specification 8-67

Chapter 8
Data Argument Types (DAT_)

Message (MSG_)

Version Data Group (DG_) Numeric ID

1.0

1.0

DAT_NULL

DAT_CUSTOMBASE

0x0000

0x8000

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.8
1.8
1.8

DAT_CAPABILITY
DAT_EVENT
DAT_IDENTITY
DAT_PARENT
DAT_PENDINGXFERS
DAT_SETUPMEMXFER
DAT_SETUPFILEXFER
DAT_STATUS
DAT_USERINTERFACE
DAT_XFERGROUP
DAT_CUSTOMDSDATA
DAT_DEVICEEVENT
DAT_FILESYSTEM
DAT_PASSTHRU

0x0001
0x0002
0x0003
0x0004
0x0005
0x0006
0x0007
0x0008
0x0009
0x000A
0x000C
0x000D
0x000E
0x000F

2.0 DAT_CALLBACK 0x0010

2.1 DAT_STATUSUTF8 0x0011

2.2 DAT_CALLBACK2 0x0012

2.0 DAT_ENTRYPOINT 0x0403

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.7
2.2

DAT_IMAGEINFO
DAT_IMAGELAYOUT
DAT_IMAGEMEMXFER
DAT_IMAGENATIVEXFER
DAT_IMAGEFILEXFER
DAT_CIECOLOR
DAT_GRAYRESPONSE
DAT_RGBRESPONSE
DAT_JPEGCOMPRESSION
DAT_PALETTE8
DAT_EXTIMAGEINFO
DAT_FILTER

0x0101
0x0102
0x0103
0x0104
0x0105
0x0106
0x0107
0x0108
0x0109
0x010A
0x010B
0x010C

1.8
1.8
1.8

DAT_AUDIOFILEXFER
DAT_AUDIOINFO
DAT_AUDIONATIVEXFER

0x0201
0x0202
0x0203

1.91

1.91

DAT_ICCPROFILE

DAT_IMAGEMEMFILEXFER

0x0401

0x0402

Version Data Group (DG_) Numeric ID

1.0
1.0

MSG_NULL
MSG_CUSTOMBASE

0x0000
0x8000
8-68 TWAIN 2.3 Specification

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
2.2

MSG_GET
MSG_GETCURRENT
MSG_GETDEFAULT
MSG_GETFIRST
MSG_GETNEXT
MSG_SET
MSG_RESET
MSG_QUERYSUPPORT
MSG_SETCONSTRAINT

0x0001
0x0002
0x0003
0x0004
0x0005
0x0006
0x0007
0x0008
0x000c

2.1 MSG_GETHELP 0x0009

2.1 MSG_GETLABEL 0x000A

2.1 MSG_GETLABELENUM 0x000B

1.0
1.0
1.0
1.0

MSG_XFERREADY
MSG_CLOSEDSREQ
MSG_CLOSEDSOK
MSG_DEVICEEVENT

0x0101
0x0102
0x0103
0x0104

1.0
1.0

MSG_OPENDSM
MSG_CLOSEDSM

0x0301
0x0302

1.0
1.0
1.0

MSG_OPENDS
MSG_CLOSEDS
MSG_USERSELECT

0x0401
0x0402
0x0403

1.0
1.0
1.0

MSG_DISABLEDS
MSG_ENABLEDS
MSG_ENABLEDSUIONLY

0x0501
0x0502
0x0503

1.0 MSG_PROCESSEVENT 0x0601

1.0
1.0

MSG_ENDXFER
MSG_STOPFEEDER

0x0701
0x0702

1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8

MSG_CHANGEDIRECTORY
MSG_CREATEDIRECTORY
MSG_DELETE
MSG_FORMATMEDIA
MSG_GETCLOSE
MSG_GETFIRSTFILE
MSG_GETINFO
MSG_GETNEXTFILE
MSG_RENAME
MSG_COPY
MSG_AUTOMATICCAPTUREDIRECTORY

0x0801
0x0802
0x0803
0x0804
0x0805
0x0806
0x0807
0x0808
0x0809
0x080A
0x080B

1.0
1.0

MSG_PASSTHRU
MSG_REGISTER_CALLBACK

0x0901
0x0902

1.91 MSG_RESETALL 0x0A01

Version Data Group (DG_) Numeric ID
TWAIN 2.3 Specification 8-69

Chapter 8
Return Code and Condition Code Constants

Return Codes (TWRC_)

Condition Codes (TWCC_)

Version Constant ID Numeric ID

1.0

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
2.2
2.2

TWRC_CUSTOMBASE

TWRC_SUCCESS
TWRC_FAILURE
TWRC_CHECKSTATUS
TWRC_CANCEL
TWRC_DSEVENT
TWRC_NOTDSEVENT
TWRC_XFERDONE
TWRC_ENDOFLIST
TWRC_INFONOTSUPPORTED
TWRC_DATANOTAVAILABLE
TWRC_BUSY
TWRC_SCANNERLOCKED

0x8000

0
1
2
3
4
5
6
7
8
9
10
11

Version Constant ID Numeric ID

1.0 TWCC_CUSTOMBASE 0x8000

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

TWCC_SUCCESS
TWCC_BUMMER
TWCC_LOWMEMORY
TWCC_NODS
TWCC_MAXCONNECTIONS
TWCC_OPERATIONERROR
TWCC_BADCAP
TWCC_BADPROTOCOL
TWCC_BADVALUE
TWCC_SEQERROR
TWCC_BADDEST
TWCC_CAPUNSUPPORTED
TWCC_CAPBADOPERATION
TWCC_CAPSEQERROR

0
1
2
3
4
5
6
9
10
11
12
13
14
15

1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8

TWCC_DENIED
TWCC_FILEEXISTS
TWCC_FILENOTFOUND
TWCC_NOTEMPTY
TWCC_PAPERJAM
TWCC_PAPERDOUBLEFEED
TWCC_FILEWRITEERROR
TWCC_CHECKDEVICEONLINE

16
17
18
19
20
21
22
23
8-70 TWAIN 2.3 Specification

Extended Image Information Constants

TWEI_Codes

2.0
2.0
2.0
2.0
2.0
2.1

TWCC_INTERLOCK
TWCC_DAMAGEDCORNER
TWCC_FOCUSERROR
TWCC_DOCTOOLIGHT
TWCC_DOCTOODARK

TWCC_NOMEDIA

24
25
26
27
28
29

Version Constant ID Numeric ID

1.7
1.7
1.7
1.7

TWEI_BARCODEX
TWEI_BARCODEY
TWEI_BARCODETEXT
TWEI_BARCODETYPE

0x1200
0x1201
0x1202
0x1203

1.7
1.7
1.7
1.7
1.7

TWEI_DESHADETOP
TWEI_DESHADELEFT
TWEI_DESHADEHEIGHT
TWEI_DESHADEWIDTH
TWEI_DESHADESIZE

0x1204
0x1205
0x1206
0x1207
0x1208

1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7

TWEI_SPECKLESREMOVED
TWEI_HORZLINEXCOORD
TWEI_HORZLINEYCOORD
TWEI_HORZLINELENGTH
TWEI_HORZLINETHICKNESS
TWEI_VERTLINEXCOORD
TWEI_VERTLINEYCOORD
TWEI_VERTLINELENGTH
TWEI_VERTLINETHICKNESS

0x1209
0x120A
0x120B
0x120C
0x120D
0x120E
0x120F
0x1210
0x1211

1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7

TWEI_PATCHCODE
TWEI_ENDORSEDTEXT
TWEI_FORMCONFIDENCE
TWEI_FORMTEMPLATEMATCH
TWEI_FORMTEMPLATEPAGEMATCH
TWEI_FORMHORZDOCOFFSET
TWEI_FORMVERTDOCOFFSET
TWEI_BARCODECOUNT
TWEI_BARCODECONFIDENCE
TWEI_BARCODEROTATION
TWEI_BARCODETEXTLENGTH

0x1212
0x1213
0x1214
0x1215
0x1216
0x1217
0x1218
0x1219
0x121A
0x121B
0x121C

1.7
1.7
1.7
1.7
1.7

TWEI_DESHADECOUNT
TWEI_DESHADEBLACKCOUNTOLD
TWEI_DESHADEBLACKCOUNTNEW
TWEI_DESHADEBLACKRLMIN
TWEI_DESHADEBLACKRLMAX

0x121D
0x121E
0x121F
0x1220
0x1221

Version Constant ID Numeric ID
TWAIN 2.3 Specification 8-71

Chapter 8
1.7
1.7
1.7
1.7
1.7

TWEI_DESHADEWHITECOUNTOLD
TWEI_DESHADEWHITECOUNTNEW
TWEI_DESHADEWHITERLMIN
TWEI_DESHADEWHITERLAVE
TWEI_DESHADEWHITERLMAX

0x1222
0x1223
0x1224
0x1225
0x1226

1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7

TWEI_BLACKSPECKLESREMOVED
TWEI_WHITESPECKLESREMOVED
TWEI_HORZLINECOUNT
TWEI_VERTLINECOUNT
TWEI_DESKEWSTATUS
TWEI_SKEWORIGINALANGLE
TWEI_SKEWFINALANGLE
TWEI_SKEWCONFIDENCE
TWEI_SKEWWINDOWX1
TWEI_SKEWWINDOWY1
TWEI_SKEWWINDOWX2
TWEI_SKEWWINDOWY2
TWEI_SKEWWINDOWX3
TWEI_SKEWWINDOWY3
TWEI_SKEWWINDOWX4
TWEI_SKEWWINDOWY4

0x1227
0x1228
0x1229
0x122A
0x122B
0x122C
0x122D
0x122E
0x122F
0x1230
0x1231
0x1232
0x1233
0x1234
0x1235
0x1236

1.9
1.9
1.9
1.9
1.9
1.9
1.9
1.9

TWEI_BOOKNAME
TWEI_CHAPTERNUMBER
TWEI_DOCUMENTNUMBER
TWEI_PAGENUMBER
TWEI_CAMERA
TWEI_FRAMENUMBER
TWEI_FRAME
TWEI_PIXELFLAVOR

0x1238
0x1239
0x123A
0x123B
0x123C
0x123D
0x123E
0x123F

1.91
1.91
1.91

TWEI_ICCPROFILE
TWEI_LASTSEGMENT
TWEI_SEGMENTNUMBER

0x1240
0x1241
0x1242

2.0
2.0
2.0
2.0

TWEI_MAGDATA
TWEI_MAGTYPE
TWEI_PAGESIDE
TWEI_FILESYSTEMSOURCE

0x1243
0x1244
0x1245
0x1246

2.1
2.1
2.2
2.3

TWEI_IMAGEMERGED
TWEI_MAGDATALENGTH
TWEI_PAPERCOUNT
TWEI_PRINTERTEXT

0x1247

0x1248
0x1249
0x124A

Version Constant ID Numeric ID
8-72 TWAIN 2.3 Specification

TWEI_BARCODEROTATION

TWEI_DESKEWSTATUS

TWEI_MAGTYPE

TWEI_PATCHCODE

Capability Constants

Version Constant ID Numeric ID

1.7
1.7
1.7
1.7
1.7

TWBCOR_ROT0
TWBCOR_ROT90
TWBCOR_ROT180
TWBCOR_ROT270
TWBCOR_ROTX

0
1
2
3
4

Version Constant ID Numeric ID

1.7
1.7
1.7
1.7

TWDSK_SUCCESS
TWDSK_REPORTONLY
TWDSK_FAIL
TWDSK_DISABLED

0
1
2
3

Version Constant ID Numeric ID

2.0 TWMD_MICR 0

2.1 TWMD_RAW 1

2.1 TWMD_INVALID 2

Version Constant ID Numeric ID

1.7
1.7
1.7
1.7
1.7
1.7

TWPCH_PATCH1
TWPCH_PATCH2
TWPCH_PATCH3
TWPCH_PATCH4
TWPCH_PATCH6
TWPCH_PATCHT

0
1
2
3
4
5

Version Constant ID Numeric ID

1.0 CAP_CUSTOMBASE 0x8000

1.0 CAP_XFERCOUNT 0x0001

1.0 ICAP_COMPRESSION 0x0100

1.0 ICAP_PIXELTYPE 0x0101

1.0 ICAP_UNITS 0x0102

1.0 ICAP_XFERMECH 0x0103

1.0 CAP_AUTHOR 0x1000
TWAIN 2.3 Specification 8-73

Chapter 8
1.0 CAP_CAPTION 0x1001

1.0 CAP_FEEDERENABLED 0x1002

1.0 CAP_FEEDERLOADED 0x1003

1.0 CAP_TIMEDATE 0x1004

1.0 CAP_SUPPORTEDCAPS 0x1005

1.0 CAP_EXTENDEDCAPS 0x1006

1.0 CAP_AUTOFEED 0x1007

1.0 CAP_CLEARPAGE 0x1008

1.0 CAP_FEEDPAGE 0x1009

1.0 CAP_REWINDPAGE 0x100A

1.1 CAP_INDICATORS 0x100B

1.6 CAP_PAPERDETECTABLE 0x100D

1.6 CAP_UICONTROLLABLE 0x100E

1.6 CAP_DEVICEONLINE 0x100F

1.6 CAP_AUTOSCAN 0x1010

1.7 CAP_THUMBNAILSENABLED 0x1011

1.7 CAP_DUPLEX 0x1012

1.7 CAP_DUPLEXENABLED 0x1013

1.7 CAP_ENABLEDSUIONLY 0x1014

1.7 CAP_CUSTOMDSDATA 0x1015

1.7 CAP_ENDORSER 0x1016

1.7 CAP_JOBCONTROL 0x1017

1.8 CAP_ALARMS 0x1018

1.8 CAP_ALARMVOLUME 0x1019

1.8 CAP_AUTOMATICCAPTURE 0x101A

1.8 CAP_TIMEBEFOREFIRSTCAPTURE 0x101B

1.8 CAP_TIMEBETWEENCAPTURES 0x101C

1.8 CAP_CLEARBUFFERS 0x101D

1.8 CAP_MAXBATCHBUFFERS 0x101E

1.8 CAP_DEVICETIMEDATE 0x101F

1.8 CAP_POWERSUPPLY 0x1020

1.8 CAP_CAMERAPREVIEWUI 0x1021

1.8 CAP_DEVICEEVENT 0x1022

1.8 CAP_SERIALNUMBER 0x1024

Version Constant ID Numeric ID
8-74 TWAIN 2.3 Specification

1.8 CAP_PRINTER 0x1026

1.8 CAP_PRINTERENABLED 0x1027

1.8 CAP_PRINTERINDEX 0x1028

1.8 CAP_PRINTERMODE 0x1029

1.8 CAP_PRINTERSTRING 0x102A

1.8 CAP_PRINTERSUFFIX 0x102B

1.8 CAP_LANGUAGE 0x102C

1.8 CAP_FEEDERALIGNMENT 0x102D

1.8 CAP_FEEDERORDER 0x102E

1.8 CAP_REACQUIREALLOWED 0x1030

1.8 CAP_BATTERYMINUTES 0x1032

1.8 CAP_BATTERYPERCENTAGE 0x1033

1.91 CAP_CAMERASIDE 0x1034

1.91 CAP_SEGMENTED 0x1035

2.0 CAP_CAMERAENABLED 0x1036

2.0 CAP_CAMERAORDER 0x1037

2.0 CAP_MICRENABLED 0x1038

2.0 CAP_FEEDERPREP 0x1039

2.0 CAP_FEEDERPOCKET 0x103A

2.1 CAP_AUTOMATICSENSEMEDIUM 0x103B

2.1 CAP_CUSTOMINTERFACEGUID 0x103C

2.2 CAP_SUPPORTEDCAPSSEGMENTUNIQUE 0x103D

2.2 CAP_SUPPORTEDDATS 0x103E

2.2 CAP_DOUBLEFEEDDETECTION 0x103F

2.2 CAP_DOUBLEFEEDDETECTIONLENGTH 0x1040

2.2 CAP_DOUBLEFEEDDETECTIONSENSITIVITY 0x1041

2.2 CAP_DOUBLEFEEDDETECTIONRESPONSE 0x1042

2.2 CAP_PAPERHANDLING 0x1043

2.2 CAP_INDICATORSMODE 0x1044

2.2 CAP_PRINTERVERTICALOFFSET 0x1045

1.8 CAP_POWERSAVETIME 0x1046

2.3 CAP_PRINTERCHARROTATION 0x1047

2.3 CAP_PRINTERFONTSTYLE 0x1048

2.3 CAP_PRINTERINDEXLEADCHAR 0x1049

Version Constant ID Numeric ID
TWAIN 2.3 Specification 8-75

Chapter 8
2.3 CAP_PRINTERINDEXMAXVALUE 0x104A

2.3 CAP_PRINTERINDEXNUMDIGITS 0x104B

2.3 CAP_PRINTERINDEXSTEP 0x104C

2.3 CAP_PRINTERINDEXTRIGGER 0x104D

2.3 CAP_PRINTERSTRINGPREVIEW 0x104E

1.0 ICAP_AUTOBRIGHT 0x1100

1.0 ICAP_BRIGHTNESS 0x1101

1.0 ICAP_CONTRAST 0x1103

1.0 ICAP_CUSTHALFTONE 0x1104

1.0 ICAP_EXPOSURETIME 0x1105

1.0 ICAP_FILTER 0x1106

1.0 ICAP_FLASHUSED 0x1107

1.0 ICAP_GAMMA 0x1108

1.0 ICAP_HALFTONES 0x1109

1.0 ICAP_HIGHLIGHT 0x110A

1.0 ICAP_IMAGEFILEFORMAT 0x110C

1.0 ICAP_LAMPSTATE 0x110D

1.0 ICAP_LIGHTSOURCE 0x110E

1.0 ICAP_ORIENTATION 0x1110

1.0 ICAP_PHYSICALWIDTH 0x1111

1.0 ICAP_PHYSICALHEIGHT 0x1112

1.0 ICAP_SHADOW 0x1113

1.0 ICAP_FRAMES 0x1114

1.0 ICAP_XNATIVERESOLUTION 0x1116

1.0 ICAP_YNATIVERESOLUTION 0x1117

1.0 ICAP_XRESOLUTION 0x1118

1.0 ICAP_YRESOLUTION 0x1119

1.0 ICAP_MAXFRAMES 0x111A

1.0 ICAP_TILES 0x111B

1.0 ICAP_BITORDER 0x111C

1.0 ICAP_CCITTKFACTOR 0x111D

1.0 ICAP_LIGHTPATH 0x111E

1.0 ICAP_PIXELFLAVOR 0x111F

1.0 ICAP_PLANARCHUNKY 0x1120

Version Constant ID Numeric ID
8-76 TWAIN 2.3 Specification

1.0 ICAP_ROTATION 0x1121

1.0 ICAP_SUPPORTEDSIZES 0x1122

1.0 ICAP_THRESHOLD 0x1123

1.0 ICAP_XSCALING 0x1124

1.0 ICAP_YSCALING 0x1125

1.0 ICAP_BITORDERCODES 0x1126

1.0 ICAP_PIXELFLAVORCODES 0x1127

1.0 ICAP_JPEGPIXELTYPE 0x1128

1.0 ICAP_TIMEFILL 0x112A

1.0 ICAP_BITDEPTH 0x112B

1.5 ICAP_BITDEPTHREDUCTION 0x112C

1.6 ICAP_UNDEFINEDIMAGESIZE 0x112D

1.7 ICAP_IMAGEDATASET 0x112E

1.7 ICAP_EXTIMAGEINFO 0x112F

1.7 ICAP_MINUMUMHEIGHT 0x1130

1.7 ICAP_MINIMUMWIDTH 0x1131

2.0 ICAP_AUTODISCARDBLANKPAGES 0x1134

1.8 ICAP_FLIPROTATION 0x1136

1.8 ICAP_BARCODEDETECTIONENABLED 0x1137

1.8 ICAP_SUPPORTEDBARCODETYPES 0x1138

1.8 ICAP_BARCODEMAXSEARCHPRIORITIES 0x1139

1.8 ICAP_BARCODESEARCHPRIORITIES 0x113A

1.8 ICAP_BARCODESEARCHMODE 0x113B

1.8 ICAP_BARCODEMAXRETRIES 0x113C

1.8 ICAP_BARCODETIMEOUT 0x113D

1.8 ICAP_ZOOMFACTOR 0x113E

1.8 ICAP_PATCHCODEDETECTIONENABLED 0x113F

1.8 ICAP_SUPPORTEDPATCHCODETYPES 0x1140

1.8 ICAP_PATCHCODEMAXSEARCHPRIORITIES 0x1141

1.8 ICAP_PATCHCODESEARCHPRIORITIES 0x1142

1.8 ICAP_PATCHCODESEARCHMODE 0x1143

1.8 ICAP_PATCHCODEMAXRETRIES 0x1144

1.8 ICAP_PATCHCODETIMEOUT 0x1145

1.8 ICAP_FLASHUSED2 0x1146

Version Constant ID Numeric ID
TWAIN 2.3 Specification 8-77

Chapter 8
CAP_ALARMS

1.8 ICAP_IMAGEFILTER 0x1147

1.8 ICAP_NOISEFILTER 0x1148

1.8 ICAP_OVERSCAN 0x1149

1.8 ICAP_AUTOMATICBORDERDETECTION 0x1150

1.8 ICAP_AUTOMATICDESKEW 0x1151

1.8 ICAP_AUTOMATICROTATE 0x1152

1.9 ICAP_JPEGQUALITY 0x1153

1.91 ICAP_FEEDERTYPE 0x1154

1.91 ICAP_ICCPROFILE 0x1155

2.0 ICAP_AUTOSIZE 0x1156

2.1 ICAP_AUTOMATICCROPUSESFRAME 0x1157

2.1 ICAP_AUTOMATICLENGTHDETECTION 0x1158

2.1 ICAP_AUTOMATICCOLORENABLED 0x1159

2.1 ICAP_AUTOMATICCOLORNONCOLORPIXELTYPE 0x115A

2.1 ICAP_COLORMANAGEMENTENABLED 0x115B

2.1 ICAP_IMAGEMERGE 0x115C

2.1 ICAP_IMAGEMERGEHEIGHTTHRESHOLD 0x115D

2.1 ICAP_SUPPORTEDEXTIMAGEINFO 0x115E

2.2 ICAP_FILMTYPE 0x115F

2.2 ICAP_MIRROR 0x1160

2.2 ICAP_JPEGSUBSAMPLING 0x1161

1.8 ACAP_XFERMECH 0x1202

Version Constant ID Numeric ID

1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8

TWAL_ALARM
TWAL_FEEDERERROR
TWAL_FEEDERWARNING
TWAL_BARCODE
TWAL_DOUBLEFEED
TWAL_JAM
TWAL_PATCHCODE
TWAL_POWER
TWAL_SKEW

0
1
2
3
4
5
6
7
8

Version Constant ID Numeric ID
8-78 TWAIN 2.3 Specification

CAP_CAMERASIDE

CAP_CLEARBUFFERS

CAP_DEVICEEVENT

CAP_DOUBLEFEEDDETECTION

Version Constant ID Numeric ID

1.91
1.91
1.91

TWCS_BOTH
TWCS_TOP
TWCS_BOTTOM

0
1
2

Version Constant ID Numeric ID

1.8
1.8
1.8

TWCB_AUTO
TWCB_CLEAR
TWCB_NOCLEAR

0
1
2

Version Constant ID Numeric ID

1.8
1.8
1.8
1.8

TWDE_CUSTOMEVENTS
TWDE_CHECKAUTOMATICCAPTURE
TWDE_CHECKBATTERY
TWDE_CHECKDEVICEONLINE

0x8000
0
1
2

1.8
1.8
1.8

TWDE_CHECKFLASH
TWDE_CHECKPOWERSUPPLY
TWDE_CHECKRESOLUTION

3
4
5

1.8
1.8
1.8
1.8

TWDE_DEVICEADDED
TWDE_DEVICEOFFLINE
TWDE_DEVICEREADY
TWDE_DEVICEREMOVED

6
7
8
9

1.8
1.8
1.8
1.8
1.8
1.8
1.8

TWDE_IMAGECAPTURED
TWDE_IMAGEDELETED
TWDE_PAPERDOUBLEFEED
TWDE_PAPERJAM
TWDE_LAMPFAILURE
TWDE_POWERSAVE
TWDE_POWERSAVENOTIFY

10
11
12
13
14
15
16

Version Constant ID Numeric ID

2.2
2.2
2.2

TWDF_ULTRASONIC
TWDF_BYLENGTH
TWDF_INFRARED

0
1
2

TWAIN 2.3 Specification 8-79

Chapter 8
CAP_DOUBLEFEEDDETECTIONRESPONSE

Refer to CAP_DOUBLEFEEDDETECTIONRESPONSE in Chapter 10.

CAP_DOUBLEFEEDDETECTIONSENSITIVITY

CAP_DUPLEX

CAP_FEEDERALIGNMENT

CAP_FEEDERORDER

Version Constant ID Numeric ID

2.2
2.2
2.2
2.2

TWDP_STOP
TWDP_STOPANDWAIT
TWDP_SOUND
TWDP_DONOTIMPRINT

0
1
2
3

Version Constant ID Numeric ID

2.2
2.2
2.2

TWUS_LOW
TWUS_MEDIUM
TWUS_HIGH

0
1
2

Version Constant ID Numeric ID

1.7
1.7
1.7

TWDX_NONE
TWDX_1PASSDUPLEX
TWDX_2PASSDUPLEX

0
1
2

Version Constant ID Numeric ID

1.8
1.8
1.8
1.8

TWFA_NONE
TWFA_LEFT
TWFA_CENTER
TWFA_RIGHT

0
1
2
3

Version Constant ID Numeric ID

1.8
1.8

TWFO_FIRSTPAGEFIRST
TWFO_LASTPAGEFIRST

0
1

8-80 TWAIN 2.3 Specification

CAP_FEEDERPOCKET

CAP_INDICATORSMODE

CAP_JOBCONTROL

CAP_LANGUAGE

See “Language Constants” on page 8-91.

CAP_PAPERHANDLING

Version Constant ID Numeric ID

2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0

TWFP_POCKETERROR
TWFP_POCKET1
TWFP_POCKET2
TWFP_POCKET3
TWFP_POCKET4
TWFP_POCKET5
TWFP_POCKET6
TWFP_POCKET7
TWFP_POCKET8
TWFP_POCKET9
TWFP_POCKET10
TWFP_POCKET11
TWFP_POCKET12
TWFP_POCKET13
TWFP_POCKET14
TWFP_POCKET15
TWFP_POCKET16

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Version Constant ID Numeric ID

2.0
2.0
2.0
2.0

TWCI_INFO
TWCI_WARNING
TWCI_ERROR
TWCI_WARMUP

0
1
2
3

Version Constant ID Numeric ID

1.7
1.7
1.7
1.7
1.7

TWJC_NONE
TWJC_JSIC
TWJC_JSIS
TWJC_JSXC
TWJC_JSXS

0
1
2
3
4

Version Constant ID Numeric ID

2.0
2.0
2.0
2.0
2.0

TWPH_NORMAL
TWPH_FRAGILE
TWPH_THICK
TWPH_TRIFOLD
TWPH_PHOTOGRAPH

0
1
2
3
4

TWAIN 2.3 Specification 8-81

Chapter 8
CAP_POWERSUPPLY

CAP_PRINTER

CAP_PRINTERMODE

CAP_PRINTERFONTSTYLE

CAP_PRINTERINDEXTRIGGER

Version Constant ID Numeric ID

1.0
1.0

TWPS_EXTERNAL
TWPS_BATTERY

0
1

Version Constant ID Numeric ID

1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8

TWPR_IMPRINTERTOPBEFORE
TWPR_IMPRINTERTOPAFTER
TWPR_IMPRINTERBOTTOMBEFORE
TWPR_IMPRINTERBOTTOMAFTER
TWPR_ENDORSERTOPBEFORE
TWPR_ENDORSERTOPAFTER
TWPR_ENDORSERBOTTOMBEFORE
TWPR_ENDORSERBOTTOMAFTER

0
1
2
3
4
5
6
7

Version Constant ID Numeric ID

1.8
1.8
1.8

TWPM_SINGLESTRING
TWPM_MULTISTRING
TWPM_COMPOUNDSTRING

0
1
2

Version Constant ID Numeric ID

2.3
2.3
2.3
2.3
2.3

TWPF_NORMAL
TWPF_BOLD
TWPF_ITALIC
TWPF_LARGESIZE
TWPF_SMALLSIZE

0
1
2
3
4

Version Constant ID Numeric ID

2.3
2.3
2.3
2.3
2.3
2.3
2.3

TWCT_PAGE
TWCT_PATCH1
TWCT_PATCH2
TWCT_PATCH3
TWCT_PATCH4
TWCT_PATCHT
TWCT_PATCH6

0
1
2
3
4
5
6

8-82 TWAIN 2.3 Specification

CAP_SEGMENTED

ICAP_AUTODISCARDBLANKPAGES

ICAP_AUTOSIZE

ICAP_BARCODESEARCHMODE

ICAP_SUPPORTEDBARCODETYPES

Version Constant ID Numeric ID

1.91
1.91
2.2

TWSG_NONE
TWSG_AUTO
TWSG_MANUAL

0
1
2

Version Constant ID Numeric ID

2.0
2.0

TWBP_DISABLE
TWBP_AUTO

-2
-1

Version Constant ID Numeric ID

2.0
2.0
2.0

TWAS_NONE
TWAS_AUTO
TWAS_CURRENT

0
1
2

Version Constant ID Numeric ID

1.8
1.8
1.8
1.8

TWBD_HORZ
TWBD_VERT
TWBD_HORZVERT
TWBD_VERTHORZ

0
1
2
3

Version Constant ID Numeric ID

1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7

TWBT_3OF9
TWBT_2OF5INTERLEAVED
TWBT_2OF5NONINTERLEAVED
TWBT_CODE93
TWBT_CODE128
TWBT_UCC128
TWBT_CODABAR
TWBT_UPCA
TWBT_UPCE
TWBT_EAN8
TWBT_EAN13
TWBT_POSTNET
TWBT_PDF417

0
1
2
3
4
5
6
7
8
9
10
11
12
TWAIN 2.3 Specification 8-83

Chapter 8
ICAP_BITDEPTHREDUCTION

ICAP_BITORDER

ICAP_COMPRESSION

ICAP_FEEDERTYPE

1.8
1.8
1.8
1.8
1.8
1.8
1.8
2.2

TWBT_2OF5INDUSTRIAL
TWBT_2OF5MATRIX
TWBT_2OF5DATALOGIC
TWBT_2OF5IATA
TWBT_3OF9FULLASCII
TWBT_CODABARWITHSTARTSTOP
TWBT_MAXICODE
TWBT_QRCODE

13
14
15
16
17
18
19
20

Version Constant ID Numeric ID

1.5
1.5
1.5
1.5
2.2

TWBR_THRESHOLD
TWBR_HALFTONE
TWBR_CUSTHALFTONE
TWBR_DIFFUSION
TWBR_DYNAMICTHRESHOLD

0
1
2
3
4

Version Constant ID Numeric ID

1.0
1.0

TWBO_LSBFIRST
TWBO_MSBFIRST

0

1

Version Constant ID Numeric ID

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.7
1.8
1.8
1.8
1.8
2.2
2.2

TWCP_NONE
TWCP_PACKBITS
TWCP_GROUP31D
TWCP_GROUP31DEOL
TWCP_GROUP32D
TWCP_GROUP4
TWCP_JPEG
TWCP_LZW
TWCP_JBIG
TWCP_PNG
TWCP_RLE4
TWCP_RLE8
TWCP_BITFIELDS
TWCP_ZIP
TWCP_JPEG2000

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Version Constant ID Numeric ID

1.91
1.91

TWFE_GENERAL
TWFE_PHOTO

0
1

Version Constant ID Numeric ID
8-84 TWAIN 2.3 Specification

ICAP_FILTER

ICAP_FLASHUSED2

ICAP_FILMTYPE

ICAP_FLIPROTATION

ICAP_ICCPROFILE

Version Constant ID Numeric ID

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

TWFT_RED
TWFT_GREEN
TWFT_BLUE
TWFT_NONE
TWFT_WHITE
TWFT_CYAN
TWFT_MAGENTA
TWFT_YELLOW
TWFT_BLACK

0
1
2
3
4
5
6
7
8

Version Constant ID Numeric ID

1.0
1.0
1.0
1.0
1.0

TWFL_NONE
TWFL_OFF
TWFL_ON
TWFL_AUTO
TWFL_REDEYE

0
1
2
3
4

Version Constant ID Numeric ID

2.2
2.2

TWFM_POSITIVE
TWFM_NEGATIVE

0
1

Version Constant ID Numeric ID

1.8
1.8

TWFR_BOOK
TWFR_FANFOLD

0
1

Version Constant ID Numeric ID

1.91
1.91
1.91

TWIC_NONE
TWIC_LINK
TWIC_EMBED

0
1
2

TWAIN 2.3 Specification 8-85

Chapter 8
ICAP_IMAGEFILEFORMAT

ICAP_IMAGEFILTER

ICAP_IMAGEMERGE

ICAP_JPEGQUALITY

Version Constant ID Numeric ID

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.91
1.91

1.91
1.91
2.0

2.1

TWFF_TIFF
TWFF_PICT
TWFF_BMP
TWFF_XBM
TWFF_JFIF
TWFF_FPX
TWFF_TIFFMULTI
TWFF_PNG
TWFF_SPIFF
TWFF_EXIF
TWFF_PDF
TWFF_JP2
removed
TWFF_JPX
TWFF_DEJAVU
TWFF_PDFA
TWFF_PDFA2

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Version Constant ID Numeric ID

1.8
1.8
1.8
1.8
1.8
1.8
1.8

TWIF_NONE
TWIF_AUTO
TWIF_LOWPASS
TWIF_BANDPASS
TWIF_HIGHPASS
TWIF_TEXT
TWIF_FINELINE

0
1
2
3
4
TWIF_BANDPASS
TWIF_HIGHPASS

Version Constant ID Numeric ID

2.1
2.1
2.1
2.1
2.1

TWIM_NONE
TWIM_FRONTONTOP
TWIM_FRONTONBOTTOM
TWIM_FRONTONLEFT
TWIM_FRONTONRIGHT

0
1
2
3
4

Version Constant ID Numeric ID

1.9
1.9
1.9
1.9

TWJQ_UNKNOWN
TWJQ_LOW
TWJQ_MEDIUM
TWJQ_HIGH

-4
-3
-2
-1
8-86 TWAIN 2.3 Specification

ICAP_JPEGSUBSAMPLING

ICAP_LIGHTPATH

ICAP_LIGHTSOURCE

ICAP_MIRROR

ICAP_NOISEFILTER

Version Constant ID Numeric ID

2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2

TWJS_444YCBCR
TWJS_444RGB
TWJS_422
TWJS_421
TWJS_411
TWJS_420
TWJS_410
TWJS_311

0
1
2
3
4
5
6
7

Version Constant ID Numeric ID

1.0
1.0

TWLP_REFLECTIVE
TWLP_TRANSMISSIVE

0
1

Version Constant ID Numeric ID

1.0
1.0
1.0
1.0
1.0
1.0
1.0

TWLS_RED
TWLS_GREEN
TWLS_BLUE
TWLS_NONE
TWLS_WHITE
TWLS_UV
TWLS_IR

0
1
2
3
4
5
6

Version Constant ID Numeric ID

2.2
2.2
2.2

TWMR_NONE
TWMR_VERTICAL
TWMR_HORIZONTAL

0
1
2

Version Constant ID Numeric ID

1.8
1.8
1.8
1.8

TWNF_NONE
TWNF_AUTO
TWNF_LONEPIXEL
TWNF_MAJORITYRULE

0
1
2
3

TWAIN 2.3 Specification 8-87

Chapter 8
ICAP_ORIENTATION

ICAP_OVERSCAN

ICAP_PLANARCHUNKY

ICAP_PIXELFLAVOR

ICAP_PIXELTYPE

Version Constant ID Numeric ID

1.0
1.0
1.0
1.0
1.0
1.0
2.0
2.0
2.0

TWOR_ROT0
TWOR_ROT90
TWOR_ROT180
TWOR_ROT270
TWOR_PORTRAIT
TWOR_LANDSCAPE
TWOR_AUTO
TWOR_AUTOTEXT
TWOR_AUTOPICTURE

0
1
2
3
TWOR_ROT0
TWOR_ROT270
4
5
6

Version Constant ID Numeric ID

1.8
1.8
1.8
1.8
1.8

TWOV_NONE
TWOV_AUTO
TWOV_TOPBOTTOM
TWOV_LEFTRIGHT
TWOV_ALL

0
1
2
3
4

Version Constant ID Numeric ID

1.0
1.0

TWPC_CHUNKY
TWPC_PLANAR

0
1

Version Constant ID Numeric ID

1.0
1.0

TWPF_CHOCOLATE
TWPF_VANILLA

0
1

Version Constant ID Numeric ID

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

TWPT_BW
TWPT_GRAY
TWPT_RGB
TWPT_PALETTE
TWPT_CMY
TWPT_CMYK
TWPT_YUV
TWPT_YUVK
TWPT_CIEXYZ
TWPT_LAB

0
1
2
3
4
5
6
7
8
9

8-88 TWAIN 2.3 Specification

ICAP_SUPPORTEDSIZES

1.91
1.91
2.0

TWPT_SRGB
TWPT_SCRGB
TWPT_INFRARED

10
11
16

Version Constant ID Numeric ID

1.0
1.0
1.0
1.0
1.0
1.5
1.5
1.5

TWSS_NONE
TWSS_A4
TWSS_JISB5
TWSS_USLETTER
TWSS_USLEGAL
TWSS_A5
TWSS_ISOB4
TWSS_ISOB6

0
1
2
3
4
5
6
7

1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7

// removed
TWSS_USLEDGER
TWSS_USEXECUTIVE
TWSS_A3
TWSS_ISOB3
TWSS_A6
TWSS_C4
TWSS_C5
TWSS_C6

9
10
11
12
13
14
15
16

1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8

TWSS_4A0
TWSS_2A0
TWSS_A0
TWSS_A1
TWSS_A2
TWSS_A7
TWSS_A8
TWSS_A9
TWSS_A10

17
18
19
20
21
22
23
24
25

1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8

TWSS_ISOB0
TWSS_ISOB1
TWSS_ISOB2
TWSS_ISOB5
TWSS_ISOB7
TWSS_ISOB8
TWSS_ISOB9
TWSS_ISOB10

26
27
28
29
30
31
32
33

1.8
1.8
1.8
1.8
1.8
1.8
1.8

TWSS_JISB0
TWSS_JISB1
TWSS_JISB2
TWSS_JISB3
TWSS_JISB4
TWSS_JISB6
TWSS_JISB7

34
35
36
37
38
39
40

Version Constant ID Numeric ID
TWAIN 2.3 Specification 8-89

Chapter 8
ICAP_XFERMECH

ICAP_UNITS

1.8
1.8
1.8

TWSS_JISB8
TWSS_JISB9
TWSS_JISB10

41
42
43

1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8

TWSS_C0
TWSS_C1
TWSS_C2
TWSS_C3
TWSS_C7
TWSS_C8
TWSS_C9
TWSS_C10
TWSS_USSTATEMENT
TWSS_BUSINESSCARD

44
45
46
47
48
49
50
51
52
53

2.1 TWSS_MAXSIZE 54

Version Constant ID Numeric ID

1.0
1.0
1.0

1.91

TWSX_NATIVE
TWSX_FILE
TWSX_MEMORY
//removed
TWSX_MEMFILE

0
1
2

4

Version Constant ID Numeric ID

1.0
1.0
1.0
1.0
1.0
1.0
1.91

TWUN_INCHES
TWUN_CENTIMETERS
TWUN_PICAS
TWUN_POINTS
TWUN_TWIPS
TWUN_PIXELS
TWUN_MILLIMETERS

0
1
2
3
4
5
6

Version Constant ID Numeric ID
8-90 TWAIN 2.3 Specification

Language Constants

Language

Version Constant ID Numeric ID

1.8
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

TWLG_USERLOCALE
TWLG_DAN
TWLG_DUT
TWLG_ENG
TWLG_FCF
TWLG_FIN
TWLG_FRN
TWLG_GER
TWLG_ICE
TWLG_ITN
TWLG_NOR
TWLG_POR
TWLG_SPA
TWLG_SWE
TWLG_USA

-1
0
1
2
3
4
5
6
7
8
9
10
11
12
13

1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8

TWLG_AFRIKAANS
TWLG_ALBANIA
TWLG_ARABIC
TWLG_ARABIC_ALGERIA
TWLG_ARABIC_BAHRAIN
TWLG_ARABIC_EGYPT
TWLG_ARABIC_IRAQ
TWLG_ARABIC_JORDAN
TWLG_ARABIC_KUWAIT
TWLG_ARABIC_LEBANON
TWLG_ARABIC_LIBYA
TWLG_ARABIC_MOROCCO

14
15
16
17
18
19
20
21
22
23
24
25

1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8

TWLG_ARABIC_OMAN
TWLG_ARABIC_QATAR
TWLG_ARABIC_SAUDIARABIA
TWLG_ARABIC_SYRIA
TWLG_ARABIC_TUNISIA
TWLG_ARABIC_UAE
TWLG_ARABIC_YEMEN
TWLG_BASQUE
TWLG_BYELORUSSIAN
TWLG_BULGARIAN
TWLG_CATALAN
TWLG_CHINESE

26
27
28
29
30
31
32
33
34
35
36
37

1.8
1.8
1.8
1.8
1.8
1.8

TWLG_CHINESE_HONGKONG
TWLG_CHINESE_PRC
TWLG_CHINESE_SINGAPORE
TWLG_CHINESE_SIMPLIFIED
TWLG_CHINESE_TAIWAN
TWLG_CHINESE_TRADITIONAL

38
39
40
41
42
43
TWAIN 2.3 Specification 8-91

Chapter 8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8

TWLG_CROATIA
TWLG_CZECH
TWLG_DANISH
TWLG_DUTCH
TWLG_DUTCH_BELGIAN
TWLG_ENGLISH
TWLG_ENGLISH_AUSTRALIAN
TWLG_ENGLISH_CANADIAN
TWLG_ENGLISH_IRELAND
TWLG_ENGLISH_NEWZEALAND

44
45
TWLG_DAN
TWLG_DUT
46
TWLG_ENG
47
48
49
50

1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8

TWLG_ENGLISH_SOUTHAFRICA
TWLG_ENGLISH_UK
TWLG_ENGLISH_USA
TWLG_ESTONIAN
TWLG_FAEROESE
TWLG_FARSI
TWLG_FINNISH
TWLG_FRENCH
TWLG_FRENCH_BELGIAN
TWLG_FRENCH_CANADIAN
TWLG_FRENCH_LUXEMBOURG
TWLG_FRENCH_SWISS
TWLG_GERMAN
TWLG_GERMAN_AUSTRIAN
TWLG_GERMAN_LUXEMBOURG
TWLG_GERMAN_LIECHTENSTEIN
TWLG_GERMAN_SWISS
TWLG_GREEK
TWLG_HEBREW
TWLG_HUNGARIAN
TWLG_ICELANDIC
TWLG_INDONESIAN
TWLG_ITALIAN
TWLG_ITALIAN_SWISS

51
52
TWLG_USA
53
54
55
TWLG_FIN
TWLG_FRN
56
TWLG_FCF
57
58
TWLG_GER
59
60
61
62
63
64
65
TWLG_ICE
66
TWLG_ITN
67

1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8

TWLG_JAPANESE
TWLG_KOREAN
TWLG_KOREAN_JOHAB
TWLG_LATVIAN
TWLG_LITHUANIAN
TWLG_NORWEGIAN
TWLG_NORWEGIAN_BOKMAL
TWLG_NORWEGIAN_NYNORSK
TWLG_POLISH

68
69
70
71
72
TWLG_NOR
73
74
75

1.8
1.8
1.8
1.8
1.8
1.8
1.8

TWLG_PORTUGUESE
TWLG_PORTUGUESE_BRAZIL
TWLG_ROMANIAN
TWLG_RUSSIAN
TWLG_SERBIAN_LATIN
TWLG_SLOVAK
TWLG_SLOVENIAN

TWLG_POR
76
77
78
79
80
81

Version Constant ID Numeric ID
8-92 TWAIN 2.3 Specification

Country [TWCY_]

1.8
1.8
1.8
1.8
1.8
1.8

TWLG_SPANISH
TWLG_SPANISH_MEXICAN
TWLG_SPANISH_MODERN
TWLG_SWEDISH
TWLG_THAI
TWLG_TURKISH

TWLG_SPA
82
83
TWLG_SWE
84
85

1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8

TWLG_UKRANIAN
TWLG_ASSAMESE
TWLG_BENGALI
TWLG_BIHARI
TWLG_BODO
TWLG_DOGRI
TWLG_GUJARATI
TWLG_HARYANVI
TWLG_HINDI
TWLG_KANNADA
TWLG_KASHMIRI
TWLG_MALAYALAM
TWLG_MARATHI
TWLG_MARWARI
TWLG_MEGHALAYAN

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8

TWLG_MIZO
TWLG_NAGA
TWLG_ORISSI
TWLG_PUNJABI
TWLG_PUSHTU
TWLG_SERBIAN_CYRILLIC
TWLG_SIKKIMI
TWLG_SWEDISH_FINLAND
TWLG_TAMIL
TWLG_TELUGU
TWLG_TRIPURI
TWLG_URDU
TWLG_VIETNAMESE

101
102
103
104
105
106
107
108
109
110
111
112
113

Version Constant ID Numeric ID

1.0
1.0
1.0
1.0
1.0

TWCY_AFGHANISTAN
TWCY_ALGERIA
TWCY_AMERICANSAMOA
TWCY_ANDORRA
TWCY_ANGOLA

1001
213
684
33
1002

1.0
1.0
1.0
1.0
1.0
1.0

TWCY_ANGUILLA
TWCY_ANTIGUA
TWCY_ARGENTINA
TWCY_ARUBA
TWCY_ASCENSIONI
TWCY_AUSTRALIA

8090
8091
54
297
247
61

Version Constant ID Numeric ID
TWAIN 2.3 Specification 8-93

Chapter 8
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

TWCY_AUSTRIA
TWCY_BAHAMAS
TWCY_BAHRAIN
TWCY_BANGLADESH
TWCY_BARBADOS
TWCY_BELGIUM
TWCY_BELIZE
TWCY_BENIN
TWCY_BERMUDA
TWCY_BHUTAN
TWCY_BOLIVIA
TWCY_BOTSWANA
TWCY_BRITAIN
TWCY_BRITVIRGINIS
TWCY_BRAZIL

43
8092
973
880
8093
32
501
229
8094
1003
591
267
6
8095
55

1.0
1.0
1.0
1.0
1.0

TWCY_BRUNEI
TWCY_BULGARIA
TWCY_BURKINAFASO
TWCY_BURMA
TWCY_BURUNDI

673
359
1004
1005
1006

1.0
1.0
1.0
1.0
1.0

TWCY_CAMAROON
TWCY_CANADA
TWCY_CAPEVERDEIS
TWCY_CAYMANIS
TWCY_CENTRALAFREP

237
2
238
8096
1007

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

TWCY_CHAD
TWCY_CHILE
TWCY_CHINA
TWCY_CHRISTMASIS
TWCY_COCOSIS
TWCY_COLOMBIA
TWCY_COMOROS
TWCY_CONGO

1008
56
86
1009
1009
57
1010
1011

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

TWCY_COOKIS
TWCY_COSTARICA
TWCY_CUBA
TWCY_CYPRUS
TWCY_CZECHOSLOVAKIA
TWCY_DENMARK
TWCY_DJIBOUTI
TWCY_DOMINICA
TWCY_DOMINCANREP

1012
506
5
357
42
45
1013
8097
8098

1.0
1.0
1.0
1.0
1.0
1.0

TWCY_EASTERIS
TWCY_ECUADOR
TWCY_EGYPT
TWCY_ELSALVADOR
TWCY_EQGUINEA
TWCY_ETHIOPIA

1014
593
20
503
1015
251

Version Constant ID Numeric ID
8-94 TWAIN 2.3 Specification

1.0
1.0
1.0
1.0

TWCY_FALKLANDIS
TWCY_FAEROEIS
TWCY_FIJIISLANDS
TWCY_FINLAND

1016
298
679
358

1.0
1.0
1.0
1.0
1.0

TWCY_FRANCE
TWCY_FRANTILLES
TWCY_FRGUIANA
TWCY_FRPOLYNEISA
TWCY_FUTANAIS

33
596
594
689
1043

1.0
1.0
1.0
1.0
1.0
1.0

TWCY_GABON
TWCY_GAMBIA
TWCY_GERMANY
TWCY_GHANA
TWCY_GIBRALTER
TWCY_GREECE

241
220
49
233
350
30

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

TWCY_GREENLAND
TWCY_GRENADA
TWCY_GRENEDINES
TWCY_GUADELOUPE
TWCY_GUAM
TWCY_GUANTANAMOBAY
TWCY_GUATEMALA
TWCY_GUINEA
TWCY_GUINEABISSAU
TWCY_GUYANA
TWCY_HAITI
TWCY_HONDURAS

299
8099
8015
590
671
5399
502
224
1017
592
509
504

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

TWCY_HONGKONG
TWCY_HUNGARY
TWCY_ICELAND
TWCY_INDIA
TWCY_INDONESIA
TWCY_IRAN
TWCY_IRAQ
TWCY_IRELAND
TWCY_ISRAEL
TWCY_ITALY
TWCY_IVORYCOAST
TWCY_JAMAICA
TWCY_JAPAN
TWCY_JORDAN
TWCY_KENYA
TWCY_KIRIBATI
TWCY_KOREA

852
36
354
91
62
98
964
353
972
39
225
8010
81
962
254
1018
82

1.0
1.0
1.0
1.0

TWCY_KUWAIT
TWCY_LAOS
TWCY_LEBANON
TWCY_LIBERIA

965
1019
1020
231

Version Constant ID Numeric ID
TWAIN 2.3 Specification 8-95

Chapter 8
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

TWCY_LIBYA
TWCY_LIECHTENSTEIN
TWCY_LUXENBOURG
TWCY_MACAO
TWCY_MADAGASCAR
TWCY_MALAWI
TWCY_MALAYSIA
TWCY_MALDIVES
TWCY_MALI
TWCY_MALTA
TWCY_MARSHALLIS
TWCY_MAURITANIA
TWCY_MAURITIUS
TWCY_MEXICO

218
41
352
853
1021
265
60
960
1022
356
692
1023
230
3

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

TWCY_MICRONESIA
TWCY_MIQUELON
TWCY_MONACO
TWCY_MONGOLIA
TWCY_MONTSERRAT
TWCY_MOROCCO
TWCY_MOZAMBIQUE
TWCY_NAMIBIA
TWCY_NAURU
TWCY_NEPAL

691
508
33
1024
8011
212
1025
264
1026
977

1.0
1.0
1.0
1.0
1.0

TWCY_NETHERLANDS
TWCY_NETHANTILLES
TWCY_NEVIS
TWCY_NEWCALEDONIA
TWCY_NEWZEALAND

31
599
8012
687
64

1.0
1.0
1.0
1.0
1.0
1.0

TWCY_NICARAGUA
TWCY_NIGER
TWCY_NIGERIA
TWCY_NIUE
TWCY_NORFOLKI
TWCY_NORWAY

505
227
234
1027
1028
47

1.0
1.0
1.0
1.0

TWCY_OMAN
TWCY_PAKISTAN
TWCY_PALAU
TWCY_PANAMA

968
92
1029
507

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

TWCY_PARAGUAY
TWCY_PERU
TWCY_PHILLIPPINES
TWCY_PITCAIRNIS
TWCY_PNEWGUINEA
TWCY_POLAND
TWCY_PORTUGAL
TWCY_QATAR

595
51
63
1030
675
48
351
974

Version Constant ID Numeric ID
8-96 TWAIN 2.3 Specification

1.0
1.0
1.0

TWCY_REUNIONI
TWCY_ROMANIA
TWCY_RWANDA

1031
40
250

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

TWCY_SAIPAN
TWCY_SANMARINO
TWCY_SAOTOME
TWCY_SAUDIARABIA
TWCY_SENEGAL
TWCY_SEYCHELLESIS
TWCY_SIERRALEONE
TWCY_SINGAPORE
TWCY_SOLOMONIS
TWCY_SOMALI
TWCY_SOUTHAFRICA
TWCY_SPAIN

670
39
1033
966
221
1034
1035
65
1036
1037
27
34

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

TWCY_SRILANKA
TWCY_STHELENA
TWCY_STKITTS
TWCY_STLUCIA
TWCY_STPIERRE
TWCY_STVINCENT
TWCY_SUDAN
TWCY_SURINAME
TWCY_SWAZILAND
TWCY_SWEDEN

94
1032
8013
8014
508
8015
1038
597
268
46

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

TWCY_SWITZERLAND
TWCY_SYRIA
TWCY_TAIWAN
TWCY_TANZANIA
TWCY_THAILAND
TWCY_TOBAGO
TWCY_TOGO
TWCY_TONGAIS
TWCY_TRINIDAD
TWCY_TUNISIA
TWCY_TURKEY
TWCY_TURKSCAICOS
TWCY_TUVALU
TWCY_UGANDA
TWCY_USSR

41
1039
886
255
66
8016
228
676
8016
216
90
8017
1040
256
7

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

TWCY_UAEMIRATES
TWCY_UNITEDKINGDOM
TWCY_USA
TWCY_URUGUAY
TWCY_VANUATU
TWCY_VATICANCITY
TWCY_VENEZUELA
TWCY_WAKE

971
44
1
598
1041
39
58
1042

Version Constant ID Numeric ID
TWAIN 2.3 Specification 8-97

Chapter 8
Deprecated Items
These items are maintained because after something is added to TWAIN both its name and
numeric id (if any) cannot be reused for any other purpose. However, even though they should
not be used in applications and drivers, they must be included in a deprecated section in any
compliant TWAIN include file. This helps ensure compatibility among all versions of TWAIN
drivers and applications, and prevents collisions as new names and numbers are added to the
Specification.

1.0
1.0
1.0
1.0
1.0

TWCY_WALLISIS
TWCY_WESTERNSAHARA
TWCY_WESTERNSAMOA
TWCY_YEMEN
TWCY_YUGOSLAVIA

1043
1044
1045
1046
38

1.0
1.0
1.0

TWCY_ZAIRE
TWCY_ZAMBIA
TWCY_ZIMBABWE

243
260
263

1.8
1.8
1.8

TWCY_ALBANIA
TWCY_ARMENIA
TWCY_AZERBAIJAN

355
374
994

1.8
1.8
1.8
1.8

TWCY_BELARUS
TWCY_BOSNIAHERZGO
TWCY_CAMBODIA
TWCY_CROATIA

375
387
855
385

1.8
1.8
1.8

TWCY_CZECHREPUBLIC
TWCY_DIEGOGARCIA
TWCY_ERITREA

420
246
291

1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8

TWCY_ESTONIA
TWCY_GEORGIA
TWCY_LATVIA
TWCY_LESOTHO
TWCY_LITHUANIA
TWCY_MACEDONIA
TWCY_MAYOTTEIS
TWCY_MOLDOVA
TWCY_MYANMAR
TWCY_NORTHKOREA
TWCY_PUERTORICO
TWCY_RUSSIA
TWCY_SERBIA
TWCY_SLOVAKIA
TWCY_SLOVENIA
TWCY_SOUTHKOREA
TWCY_UKRAINE
TWCY_USVIRGINIS
TWCY_VIETNAM

372
995
371
266
370
389
269
373
95
850
787
7
381
421
386
82
380
340
84

Version Constant ID Numeric ID
8-98 TWAIN 2.3 Specification

At this time the most notable depreciation is the DAT_SETUPFILEXFER2 and all related items.
These were added in 1.9 to help with the Macintosh. It was subsequently decided that it wasn’t
very useful (and no one was using it), so to cut down on confusion it’s been removed.

Platform Dependent Definitions and Typedefs
#ifdef WIN32

#define TW_HUGE

#else

#define TW_HUGE huge

#endif

typedef BYTE TW_HUGE * HPBYTE;

typedef void TW_HUGE * HPVOID;

String types
typedef unsigned char TW_STR1024[1026], FAR *pTW_STR1026,

 FAR *pTW_STR1024;
typedef wchar_t TW_UNI512[512], FAR *pTW_UNI512;

Constants

Note: For a description of these constants see the previous version of the TWAIN specification.

Capability Argument Constants

ACAP_AUDIOFILEFORMAT

Constant ID Numeric ID

TWAF_WAV
TWAF_AIFF
TWAF_AU
TWAF_SND

0
1
2
3

Section (defined as)

Data Argument
Types (DAT_)

DAT_SETUPFILEXFER2
DAT_TWUNKIDENTITY

0x301
Ox000B

ItemTypes for
Capability
Container
structures

TWTY_STR1024
TWTY_UNI512

0x000d
0x000e
TWAIN 2.3 Specification 8-99

Chapter 8
Structures
typedef struct {

 TW_MEMREF FileName;

 TW_UINT16 FileNameType;

 TW_UINT16 Format;

 TW_INT16 VRefNum;

 TW_UINT32 parID;

} TW_SETUPFILEXFER2, FAR * pTW_SETUPFILEXFER2;

Capabilities CAP_SUPPORTEDCAPSEXT
CAP_FILESYSTEM
CAP_PAGEMULTIPLEACQUIRE
CAP_PAPERBINDING
CAP_PASSTHRU
CAP_POWERDOWNTIME

0x100c
0x????
0x1023 /* Added 1.8 */
0x102f /* Added 1.8 */
0x1031 /* Added 1.8 */
0x1034 /* Added 1.8, deprecated */
 /* 0x1034 has been reused */
 /* by CAP_CAMERASIDE */

Messages MSG_INVOKE_CALLBACK
MSG_CHECKSTATUS

0x0903
0x0201

Query Support TWQC_CONSTRAINABLE 0x0040

Capability values TWSX_FILE2
TWFS_FILESYSTEM
TWFS_RECURSIVEDELETE
TWPT_BGR
TWPT_CIELAB
TWPT_CIELUV
TWPT_YCBCR
TWSS_B
TWSS_B5LETTER
TWSS_A4LETTER
TWSS_B3
TWSS_B4
TWSS_B6
TWLG_DAN
TWLG_DUT
TWLG_ENG
TWLG_USA
TWLG_FIN
TWLG_FRN
TWLG_FCF
TWLG_GER
TWLG_ICE
TWLG_ITN
TWLG_NOR
TWLG_POR
TWLG_SPA
TWLG_SWE

3
0
1
12
13
14
15
8
TWSS_JISB5
TWSS_A4
TWSS_ISOB3
TWSS_ISOB4
TWSS_ISOB6
TWLG_DANISH
TWLG_DUTCH
TWLG_ENGLISH
TWLG_ENGLISH_USA
TWLG_FINNISH
TWLG_FRENCH
TWLG_FRENCH_CANADIAN
TWLG_GERMAN
TWLG_ICELANDIC
TWLG_ITALIAN
TWLG_NORWEGIAN
TWLG_PORTUGUESE
TWLG_SPANISH
TWLG_SWEDISH
8-100 TWAIN 2.3 Specification

typedef struct {

 TW_IDENTITY identity;

 TW_STR255 dsPath;

} TW_TWUNKIDENTITY, FAR * pTW_TWUNKIDENTITY;

typedef struct {

 TW_INT8 destFlag;

 TW_IDENTITY dest;

 TW_INT32 dataGroup;

 TW_INT16 dataArgType;

 TW_INT16 message;

 TW_INT32 pDataSize;

} TW_TWUNKDSENTRYPARAMS, FAR * pTW_TWUNKDSENTRYPARAMS;

typedef struct {

 TW_UINT16 returnCode;

 TW_UINT16 conditionCode;

 TW_INT32 pDataSize;

} TW_TWUNKDSENTRYRETURN, FAR * pTW_TWUNKDSENTRYRETURN;

typedef struct {

 TW_UINT16 Cap;

 TW_UINT16 Properties;

} TW_CAPEXT, FAR * pTW_CAPEXT;

typedef struct {

 TW_STR255 FileName;

 TW_UINT16 Format;

 TW_INT16 VRefNum;

} TW_SETUPAUDIOFILEXFER, FAR * pTW_SETUPAUDIOFILEXFER;
TWAIN 2.3 Specification 8-101

Chapter 8
8-102 TWAIN 2.3 Specification

9
Extended Image Information

Definitions

Chapter Contents

TWAIN 1.7 Extended Image Attribute Capabilities. 9-1

TWAIN 1.9 Extended Image Attribute Capabilities. 9-11

TWAIN 1.91 Extended Image Attribute Capabilities. 9-14

TWAIN 2.0 Extended Image Attribute Capabilities. 9-16

TWAIN 2.1 Extended Image Attribute Capabilities. 9-16

The following sections contain information about extended image attributes.

TWAIN 1.7 Extended Image Attribute Capabilities
The following extended image attribute capabilities have been defined. If a data source wishes to
create additional custom image attribute capabilities, it should define its TWEI_CUSTOMxxx
identifiers with a base starting ID of TWEI_CUSTOM+(x) where x is a unique positive number
defined by the data source.

For all extended image attributes see: DG_IMAGE/DAT_EXTIMAGEINFO/MSG_GET

Bar Code Recognition

TWEI_BARCODECOUNT

Description: Returns the number of bar codes found on the document image. A
value of 0 means the bar code engine was enabled but that no bar codes
were found. A value of -1 means the bar code engine was not enabled.

Value Type: TWTY_UINT32

Allowed Values: >=0
TWAIN 2.3 Specification 9-1

Chapter 9
TWEI_BARCODECONFIDENCE

TWEI_BARCODEROTATION

TWEI_BARCODETEXTLENGTH

TWEI_BARCODETEXT

TWEI_BARCODEX

TWEI_BARCODEY

Description: This number reflects the degree of certainty the bar code engine has in
the accuracy of the information obtained from the scanned image and
ranges from 0 (no confidence) to 100 (supreme confidence). The Source
may return a value of -1 if it does not support confidence reporting.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The bar code’s orientation on the scanned image is described in
reference to a Western-style interpretation of the image.

Value Type: TWTY_UINT32

Allowed Values: TWBCOR_ROT0 Normal reading orientation
TWBCOR_ROT90 Rotated 90 degrees clockwise
TWBCOR_ROT180 Rotated 180 degrees clockwise
TWBCOR_ROT270 Rotated 270 degrees clockwise
TWBCOR_ROTX The orientation is not known.

Description: The number of ASCII characters derived from the bar code.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The text of a bar code found on a page.

Value Type: TWTY_HANDLE

Allowed Values: Any handle to a string

Description: The X coordinate in pixels of a bar code found on a page.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The Y coordinate in pixels of a bar code found on a page.

Value Type: TWTY_UINT32

Allowed Values: >=0
9-2 TWAIN 2.3 Specification

TWEI_BARCODETYPE

Shaded Area Detection and Removal

TWEI_DESHADECOUNT

TWEI_DESHADETOP

TWEI_DESHADELEFT

TWEI_DESHADEHEIGHT

TWEI_DESHADEWIDTH

Description: The type of bar code found on a page.

Value Type: TWTY_UINT32

Allowed Values: Any of TWBT_xxxx

Description: Returns the number of shaded regions found and erased in the
document image. A value of 0 means the deshade engine was enabled
but that no regions were processed. A value of -1 means the deshade
engine was not enabled.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The top coordinate in pixels of a shaded region found on a page.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The left coordinate in pixels of a shaded region found on a page.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The height in pixels of a shaded region found on a page.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The width in pixels of a shaded region found on a page.

Value Type: TWTY_UINT32

Allowed Values: >=0
TWAIN 2.3 Specification 9-3

Chapter 9
TWEI_DESHADESIZE

TWEI_DESHADEBLACKCOUNTOLD

TWEI_DESHADEBLACKCOUNTNEW

TWEI_DESHADEBLACKRLMIN

TWEI_DESHADEBLACKRLMAX

TWEI_DESHADEWHITECOUNTOLD

Description: The width in pixels of the dots within the shade region.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The total number of black pixels in the region prior to deshading. If
this value is unknown the Source returns -1.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The total number of black pixels in the region after deshading. If this
value is unknown the Source returns -1.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The shortest black pixel run-length in the region prior to deshading. If
this value is unknown the Source returns -1.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The longest black pixel run-length in the region prior to deshading. If
this value is unknown the Source returns -1.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The total number of white pixels in the region prior to deshading. If
this value is unknown the Source returns -1.

Value Type: TWTY_UINT32

Allowed Values: >=0
9-4 TWAIN 2.3 Specification

TWEI_DESHADEWHITECOUNTNEW

TWEI_DESHADEWHITERLMIN

TWEI_DESHADEWHITERLAVE

TWEI_DESHADEWHITERLMAX

Speckle Removal

TWEI_SPECKLESREMOVED

TWEI_BLACKSPECKLESREMOVED

Description: The total number of white pixels in the region after deshading. If this
value is unknown the Source returns -1.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The shortest white pixel run-length in the region prior to deshading. If
this value is unknown the Source returns -1.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The average length of all white pixel run-lengths in the region prior to
deshading. If this value is unknown the Source returns -1.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The longest white pixel run-length in the region prior to deshading. If
this value is unknown the Source returns -1.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The number of speckles removed from the image when de-speckle is
enabled.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The number of black speckles removed from the image when
despeckle is enabled.

Value Type: TWTY_UINT32

Allowed Values: >=0
TWAIN 2.3 Specification 9-5

Chapter 9
TWEI_WHITESPECKLESREMOVED

Horizontal Line Detection and Removal

TWEI_HORZLINECOUNT

TWEI_HORZLINEXCOORD

TWEI_HORZLINEYCOORD

TWEI_HORZLINELENGTH

TWEI_HORZLINETHICKNESS

Description: The number of white speckles removed (black speckles added) from
the image when despeckle is enabled.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: Returns the number of horizontal lines found and erased in the
document image. A value of 0 means the line removal engine was
enabled but that no lines were found. A value of -1 means the line
engine was not enabled.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The X coordinate in pixels of a horizontal line detected in the image.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The Y coordinate in pixels of a horizontal line detected in the image

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The length in pixels of a horizontal line detected in the image.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The thickness (height) in pixels of a horizontal line detected in the
image.

Value Type: TWTY_UINT32

Allowed Values: >=0
9-6 TWAIN 2.3 Specification

Vertical Line Detection and Removal

TWEI_VERTLINECOUNT

TWEI_VERTLINEXCOORD

TWEI_VERTLINEYCOORD

TWEI_VERTLINELENGTH

TWEI_VERTLINETHICKNESS

Patch Code Detection (Job Separation)

TWEI_PATCHCODE

Description: Returns the number of vertical lines found and erased in the document
image. A value of 0 means the line removal engine was enabled but
that no lines were found. A value of -1 means the line engine was not
enabled.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The X coordinate in pixels of a vertical line detected in the image.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The Y coordinate in pixels of a vertical line detected in the image.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The length in pixels of a vertical line detected in the image.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The thickness (width) in pixels of a vertical line detected in the image.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The patch code detected.

Value Type: TWTY_UINT32

Allowed Values: TWPCH_PATCH1, TWPCH_PATCH2, TWPCH_PATCH3,
TWPCH_PATCH4, TWP= CH_PATCH6, TWPCH_PATCHT
TWAIN 2.3 Specification 9-7

Chapter 9
Skew detection and Removal

TWEI_DESKEWSTATUS

TWEI_SKEWORIGINALANGLE

TWEI_SKEWFINALANGLE

TWEI_SKEWCONFIDENCE

TWEI_SKEWWINDOWX1

Description: Returns the status of the deskew operation.

Value Type: TWTY_UINT32

Allowed Values: TWDSK_SUCCESS Image successfully deskewed
TWDSK_REPORTONLY Deskew information only
TWDSK_FAIL Deskew failed
TWDSK_DISABLED Deskew engine not enabled

Description: The amount of skew in the original image.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The amount of skew in the deskewed image. This number may not be
zero.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: This number reflects the degree of certainty the deskew engine has in
the accuracy of the deskewing of the current image and ranges from 0
(no confidence) to 100 (supreme confidence). The Source may return a
value of -1 if it does not support confidence reporting.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: This is the X image coordinate in pixels of the upper left corner of the
virtual deskewed image. It may be negative indicating the deskewed
corner is not represented by actual pixels.

Value Type: TWTY_UINT32

Allowed Values: >=0
9-8 TWAIN 2.3 Specification

TWEI_SKEWWINDOWY1

TWEI_SKEWWINDOWX2

TWEI_SKEWWINDOWY2

TWEI_SKEWWINDOWX3

TWEI_SKEWWINDOWY3

TWEI_SKEWWINDOWX4

Description: The Y image coordinate in pixels of the upper left corner of the virtual
deskewed image. It may be negative indicating the deskewed corner is
not represented by actual pixels.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The X image coordinate in pixels of the upper right corner of the
virtual deskewed image.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The Y image coordinate in pixels of the upper right corner of the
virtual deskewed image.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: This is the X image coordinate in pixels of the lower left corner of the
virtual deskewed image. It may be negative indicating the deskewed
corner is not represented by actual pixels.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The Y image coordinate in pixels of the lower left corner of the virtual
deskewed image.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The X image coordinate in pixels of the lower right corner of the virtual
deskewed image.

Value Type: TWTY_UINT32

Allowed Values: >=0
TWAIN 2.3 Specification 9-9

Chapter 9
TWEI_SKEWWINDOWY4

Endorsed / Imprinted Text

TWEI_ENDORSEDTEXT

Forms Recognition

TWEI_FORMCONFIDENCE

TWEI_FORMTEMPLATEMATCH

TWEI_FORMTEMPLATEPAGEMATCH

Description: The Y image coordinate in pixels of the lower right corner of the
deskewed image.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: The text that was endorsed on the paper by the scanner.

Value Type: TWTY_STR255

Allowed Values: Any string

Description: The confidence that the specified form was detected. This is an array
property with a confidence factor for each form In the data set with 0
meaning no match and 100 meaning absolute certainty. Typically
values over 70 imply a good form match with the template.

Value Type: TWTY_UINT32

Allowed Values: 0 to 100

Description: The array of file names for the master forms matched against a form. If
multi-page master forms are used, the associated page numbers are
contained in the FORMTEMPLATEPAGEMATCH capability array.

Value Type: TWTY_STR255

Allowed Values: Any string

Description: An array containing the number of the page from a multi-page master
form matched against a form image. It is useful when matching a form
image against the pages of a multi-page master form. The file name of
the master form is contained in the FORMTEMPLATEMATCH capability.

Value Type: TWTY_UINT32

Allowed Values: >=0
9-10 TWAIN 2.3 Specification

TWEI_FORMHORZDOCOFFSET

TWEI_FORMVERTDOCOFFSET

TWAIN 1.9 Extended Image Attribute Capabilities
These next items, taken together, provide a way to unambiguously identify the physical source of
an image. Applications can use this information to associate scanned images from the same side
of a sheet of paper, the sheet of paper itself, or a set of sheets comprising a document. While much
of this information is available using DAT_IMAGELAYOUT, it is provided here for performance
reasons; to allow an Application to glean as much information about the image as possible
through a single call.

These items are mandatory, if a Source supports DAT_EXTIMAGEINFO, then these items must be
present in the data returned by the Source.

TWEI_BOOKNAME

Description: An array containing the perceived horizontal offsets in pixels of the
form image being matched against a set of master forms. This is useful
for page registration once the form has been recognized.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: An array containing the perceived vertical offsets in pixels of the form
image being matched against a set of master forms. This is useful for
page registration once the form has been recognized.

Value Type: TWTY_UINT32

Allowed Values: >= 0

Description: This is new with TWAIN 1.9, expanding on the document/page/frame
numbers described by previous versions of TWAIN in the
TW_IMAGELAYOUT structure. The ordering is book/chapter/
document/page(camera)/frame, and increases the detail of image
addressing that a Source can provide for an Application. TWAIN 1.9
Sources that support extended image info must provide this
information, even if the value is always fixed at 1.

Value Type: TWTY_STR255

Allowed Values: Any valid string data.

See Also: DAT_IMAGELAYOUT
TW_IMAGELAYOUT
TWAIN 2.3 Specification 9-11

Chapter 9
TWEI_CHAPTERNUMBER

TWEI_DOCUMENTNUMBER

TWEI_PAGENUMBER

Description: This is new with TWAIN 1.9, expanding on the document/page/frame
numbers described by previous versions of TWAIN in the
TW_IMAGELAYOUT structure. The ordering is book/chapter/
document/page(camera)/frame, and increases the detail of image
addressing that a Source can provide for an Application. TWAIN 1.9
Sources that support extended image info must provide this
information, even if the value is always fixed at 1.

Value Type: TWTY_UINT32

Allowed Values: 1 to 232-1

See Also: DAT_IMAGELAYOUT
TW_IMAGELAYOUT

Description: This must be the same value returned by a call to DG_CONTROL /
DAT_IMAGELAYOUT / MSG_GET. The ordering is book/chapter/
document/page(camera)/frame, and increases the amount of image
addressing that a Source can provide for an Application. TWAIN 1.9
Sources that support extended image info must provide this
information, even if the value is always fixed at 1.

Value Type: TWTY_UINT32

Allowed Values: 1 to 232-1

See Also: DAT_IMAGELAYOUT
TW_IMAGELAYOUT

Description: This must be the same value returned by a call to DG_CONTROL /
DAT_IMAGELAYOUT / MSG_GET. The ordering is book/chapter/
document/page(camera)/frame, and increases the amount of image
addressing that a Source can provide for an Application. TWAIN 1.9
Sources that support extended image info must provide this information, even
if the value is always fixed at 1.

Value Type: TWTY_UINT32

Allowed Values: 1 to 232-1

See Also: DAT_IMAGELAYOUT
TW_IMAGELAYOUT
9-12 TWAIN 2.3 Specification

TWEI_CAMERA

TWEI_FRAMENUMBER

Description: The primary use of this value is to determine if the image is from the
top or the bottom side of a sheet of paper. This is accomplished by
naming the camera that was used to obtain the image. For Sources that
support DAT_FILESYSTEM, the Application can use the string to
determine if the camera is capturing images from the top or bottom
side of the paper.

Applications should browse the available camera devices in State 4 to
create a lookup table mapping the various camera filenames to the side
they represent. DAT_FILESYSTEM is not supported, then the
Application should watch for the strings “TOP” and “BOTTOM”.

Value Type: TWTY_STR255

Allowed Values: TWFY_CAMERA, TWFY_CAMERATOP and TWFY_CAMERABOTTOM
filenames maintained by the Source and accessible using the
DAT_FILESYSTEM triplet. This string must be exactly the same as that
supplied by the Source when the Application issues a
DAT_FILESYSTEM / MSG_GETINFO (or related command).

The Source must identify the exact camera used. This means that even
if the Source has been set to use a TWFY_CAMERA device, it must report
the TWFY_CAMERATOP or TWFY_CAMERABOTTOM device as
appropriate.

If the Source does not support the use of DAT_FILESYSTEM, then it
must return the string “TOP” for images from the top side of the sheet
of paper, and “BOTTOM” for images on the bottom side of the sheet of
paper.

Description: This must be the same value returned by a call to DG_CONTROL /
DAT_IMAGELAYOUT / MSG_GET. TWAIN 1.9 Sources that support
extended image info must provide this information.

Value Type: TWTY_UINT32

Allowed Values: 1 to 232-1

See Also: DAT_IMAGELAYOUT
TW_IMAGELAYOUT
TWAIN 2.3 Specification 9-13

Chapter 9
TWEI_FRAME

TWEI_PIXELFLAVOR

TWAIN 1.91 Extended Image Attribute Capabilities
These next items add image segmentation and ICC Profile metadata returns.

TWEI_ICCPROFILE

Description: Returns the coordinates of the current segment within the current
document in pixels. Since segments may be acquired at various
resolutions, the physical location must be calculated using the
resolution reported by DAT_IMAGEINFO for the current segment. The
top left coordinate in pixels stored in the FRAME is relative to the top
left of the scanned document.

Value Type: TWTY_FRAME

Allowed Values: Any valid FRAME describing a segment within the boundaries of the
current document

See Also: TWEI_SEGMENTNUMBER

DAT_IMAGELAYOUT
TW_IMAGELAYOUT
ICAP_FRAMES

Description: This value must correctly describe the pixel flavor of the current image,
the same data that is available through ICAP_PIXELFLAVOR. TWAIN
1.9 Sources that support extended image info must provide this
information.

Value Type: TWTY_UINT16

Allowed Values: TWPF_CHOCOLATE
TWPF_VANILLA

See Also: ICAP_PIXELFLAVOR

Description: Returns the name of the ICC profile that was used to render the current
image. This may be a fully qualified path indicating the exact location
of the ICC profile.

If this is not a fully qualified path, then the default location is operating
system dependant.
Windows default location: <windows path>\system32\spool

Value Type: TWTY_STR255

Allowed Values: Any valid ICC profile file name or fully qualified path
9-14 TWAIN 2.3 Specification

TWEI_LASTSEGMENT

TWEI_SEGMENTNUMBER

Description: Returns TRUE if the current segment is the last segment of a page.

Value Type: TWTY_BOOL

Allowed Values: TRUE or FALSE

See Also:

Description: Returns a number identifying the segment of an image. Segments
allow independent image processing strategies on a document for
more accurate document reproduction and smaller file sizes. For
instance, a document containing text with a picture may be segmented
into a high resolution bitonal image consisting of the text and a lower
resolution color image consisting of the picture.
Sources that support this item must support TWEI_FRAME, and must
specify a left and top value to position the segment in the final image.
Segments may overlap.

Value Type: TWTY_UINT32

Allowed Values: >=0

See Also: TWEI_FRAME
DAT_IMAGELAYOUT
TW_IMAGELAYOUT
ICAP_FRAMES
TWAIN 2.3 Specification 9-15

Chapter 9
TWAIN 2.0 Extended Image Attribute Capabilities
These next items provide support for MICR.

TWEI_MAGTYPE

TWAIN 2.1 Extended Image Attribute Capabilities
TWEI_FILESYSTEMSOURCE

TWEI_IMAGEMERGED

TWEI_MAGDATA

Description: Reports back that magnetic data was found and it is of a string. Data
may contain placeholders for unrecognized characters.

Value Type: TWTY_UINT16

Allowed Values: TWMD_MICR, TWMD_RAW, or TWMD_INVALID

Description: Returns a DAT_FILESYSTEM string describing the camera that
captured the image data.

Value Type: TWTY_STR255

Allowed Values: Any of the camera values returned by
DAT_FILESYSTEM / MSG_GETFIRSTFILE or MSG_GETNEXTFILE

Description: Indicates that the current image is the result of a merger between the
front and rear images of a duplex capture. See ICAP_IMAGEMERGE for
more information.

Value Type: TWTY_BOOL

Allowed Values: TRUE if the front and rear images were merged.

Description: This is a “blob” of data with a byte count retrieved from the driver/
device. The interpretation of the data comes from TWEI_MAGTYPE.

Value Type: TWTY_HANDLE, or TWTY_STR255

Allowed Values: Any handle to a blob of data
9-16 TWAIN 2.3 Specification

TWEI_MAGDATALENGTH

TWEI_PAGESIDE

TWAIN 2.2 Extended Image Attribute Capabilities
TWEI_PAPERCOUNT

TWAIN 2.3 Extended Image Attribute Capabilities
TWEI_PRINTERTEXT

Description: This describes the length of the magnetic data. Either in bytes for
“blob” or data or characters for string data.

Value Type: TWTY_UINT32

Allowed Values: >=0

Description: Returns a value indicating if the image represents the front or rear of
the sheet of paper.

Value Type: TWTY_UINT16

Allowed Values: TWCS_TOP (front of sheet)
TWCS_BOTTOM (rear of sheet)

Description: This is the number of sheets of paper passed through the ADF for the
current batch. TWAIN 2.2 Sources that support extended image info
must provide this information.

Value Type: TWTY_UINT32

Allowed Values: 1 to 232-1

See Also: TWEI_PAGENUMBER

Description: The text printed on the document; use TW_INFO[].NumItems to
specify the number of lines.

Value Type: TWTY_STR255

Allowed Values: Any string
TWAIN 2.3 Specification 9-17

Chapter 9
9-18 TWAIN 2.3 Specification

10
Capabilities

Chapter Contents

Overview . 10-1

Required Capabilities . 10-3

Capabilities in Categories of Functionality . 10-3

The Capability Listings. 10-12

Overview
Sources may support a large number of capabilities but are required to support very few. To
determine if a capability is supported by a Source, the application can query the Source using a
DG_CONTROL / DAT_CAPABILITY / MSG_GET, MSG_GETCURRENT, or MSG_GETDEFAULT
operation. The application specifies the particular capability by storing its identifier in the Cap
field of the TW_CAPABILITY structure. This is the structure pointed to by the pData parameter in
the DSM_Entry() call.

DG_CONTROL / DAT_CAPABILITY operations for capability negotiation include:

MSG_GET Returns the Current, Default and Available settings for a capability.

MSG_GETCURRENT Returns the Current setting for a capability.

MSG_GETDEFAULT Returns the value of the Source’s preferred Default values.

MSG_RESET Returns the capability to its TWAIN Default (power-on) condition
(i.e. all previous negotiation is ignored).

MSG_RESETALL Returns all of the current values to the default settings used when the
driver was first installed.

MSG_SET Allows the application to set the Current value of a capability.

MSG_SETCONSTRAINT Allows the application to set the Current and Default value(s) and
restrict the Available values to some subset of the Source’s power-on
set of values. Sources are strongly encouraged to allow the
application to set as many of its capabilities as possible, and further to
reflect these changes in the Source’s user interface. This will ensure
that the user can only select images with characteristics that are
useful to the consuming application.
TWAIN 2.3 Specification 10-1

Chapter 10
Best Practices

The content in the next two sections applies to all TWAIN Capabilities. It’s been centralized in
this spot to make it easier to find, and to guarantee that it’s consistent across the entire TWAIN
Specification.

Best Practices for Applications

• Use DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT whenever possible; only use
DG_CONTROL / DAT_CAPABILITY / MSG_GET when there is a need to understand a
capability’s possible values, or prior to setting constraints.

• If the value reported by DG_CONTROL / DAT_CAPABILITY / MSG_GETCURRENT is the
desired value, avoid doing a MSG_SET on it.

• Use a MSG_GETCURRENT / MSG_SET combination whenever possible. If MSG_GETCURRENT
returns TW_ONEVALUE container that has been generated by the data source, it can be
examined, updated with the new value, and then sent back to the data source with MSG_SET.
This reduces the likelihood of mismatches in container and/or data types. This can’t be done
with TW_ARRAY containers, because the new array may be larger than the old array, and the
data source may not have allocated enough memory to re-use the container.

• There is no good reason to ever use MSG_GETDEFAULT.

• Accept TWRC_CHECKSTATUS as an indication of a successful DG_CONTROL /
DAT_CAPABILITY / MSG_* operation, unless after further examination the current contents
of the capability cannot be supported by the application.

• Check that CAP_XFERCOUNT is set to -1 for batch scans, values of 1 (single image) or 2 (front
and rear) may be supported.

• Set ICAP_XFERMECH to indicate the DG_IMAGE / DAT_IMAGE*XFER / MSG_GET operation
that will be used.

• Set ICAP_UNITS to TWUN_INCHES, unless there is a need to show a different unit on the
driver’s GUI, or have different units reported by TW_IMAGEINFO and TW_EXTIMAGEINFO
(typically for the resolution).

• Check the value of ICAP_COMPRESSION. If possible, constrain it to values supported by the
application. If this cannot be done, or if DG_IMAGE / DAT_IMAGEINFO / MSG_GET reports
an unsupported TW_IMAGEINFO.Compression value in State 7 after receiving
TWRC_XFERDONE, then gracefully abort the image capture session using DG_CONTROL /
DAT_PENDINGXFERS / MSG_RESET, if DG_CONTROL / DAT_PENDINGXFERS /
MSG_ENDXFER returns a non-zero value for TW_PENDINGXFERS.Count.

Best Practices for Data Sources

• If the requested capability isn’t supported, return TWRC_FAILURE /
TWCC_CAPUNSUPPORTED.

• If the capability is supported but the requested MSG_ operation isn’t, return TWRC_FAILURE
/ TWCC_CAPBADOPERATION.

• If the capability cannot be accessed due to the setting of a related capability, return
TWRC_FAILURE / TWCC_CAPSEQERROR.

• If a capability is supported, but if accessed would return TWCC_CAPSEQERROR, then a call to
DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT returns a value of 0.
10-2 TWAIN 2.3 Specification

• Calls to DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT for any capability
never fail, they return 0 if the capability is unsupported or inaccessible.

• Read only capabilities must support MSG_GET, MSG_GETCURRENT, MSG_GETDEFAULT and
MSG_QUERYSUPPORT. The three get operations must return the same container type and
value.

• Writeable capabilities must support MSG_GET, MSG_GETCURRENT, MSG_GETDEFAULT,
MSG_SET, MSG_RESET and MSG_QUERYSUPPORT, even if only one array value, one
enumeration or one value in a range is supported.

• If the value in a MSG_SET cannot be exactly matched, but there is a reasonable alternative
(usually near misses with TW_RANGE capabilities or TW_FIX32 data types), then set the
alternate value and return TWRC_CHECKSTATUS.

Required Capabilities
The list of required capabilities can be found in Chapter 5, "Source Implementation".

Sources must implement and make available to TWAIN applications the advertised features of the
devices they support. This is especially true in “no-UI mode.” A Source must support a capability
if its device supports it, even if the capability is listed as required by none.

Capabilities in Categories of Functionality

Asynchronous Device Events

Audible Alarms

Audio

CAP_DEVICEEVENT MSG_SET selects which events the application wants the source
to report; MSG_RESET resets the capability to the empty array
(no events set).

CAP_ALARMS Turns specific audible alarms on and off.

CAP_ALARMVOLUME Controls the volume of a device’s audible alarm.

ACAP_XFERMECH Allows application and source to identify which audio transfer
mechanisms they have in common.
TWAIN 2.3 Specification 10-3

Chapter 10
Automatic Adjustments

Automatic Capture

Automatic Scanning

CAP_AUTOMATICSENSEMEDIUM Configures a Source to check for paper in the Automatic
Document Feeder.

ICAP_AUTODISCARDBLANKPAGES Discards blank pages.

ICAP_AUTOMATICBORDERDETECTION Turns automatic border detection on and off.

ICAP_AUTOMATICCOLORENABLED Detects the pixel type of the image and returns either a color
image or a non-color image specified by
ICAP_AUTOMATICCOLORNONCOLORPIXELTYPE.

ICAP_AUTOMATICCOLORNONCOLORPIXELTYPE Specifies the non-color pixel type to use when automatic color
is enabled.

ICAP_AUTOMATICCROPUSESFRAME Reduces the amount of data captured from the device,
potentially improving the performance of the driver.

ICAP_AUTOMATICDESKEW Turns automatic skew correction on and off.

ICAP_AUTOMATICLENGTHDETECTION Controls the automatic detection of the length of a document,
this is intended for use with an Automatic Document Feeder.

ICAP_AUTOMATICROTATE When TRUE, depends on source to automatically rotate the
image.

ICAP_AUTOSIZE Force the output image dimensions to match either the current
value of ICAP_SUPPORTEDSIZES or any of its current allowed
values.

ICAP_FLIPROTATION Orients images that flip orientation every other image.

ICAP_IMAGEMERGE Merges the front and rear image of a document in one of four
orientations: front on the top.

ICAP_IMAGEMERGEHEIGHTTHRESHOLD Specifies a Y-Offset in ICAP_UNITS units.

CAP_AUTOMATICCAPTURE Specifies the number of images to automatically capture.

CAP_TIMEBEFOREFIRSTCAPTURE Selects the number of seconds before the first picture taken.

CAP_TIMEBETWEENCAPTURES Selects the hundredths of a second to wait between pictures
taken.

CAP_AUTOSCAN Enables the source’s automatic document scanning process.

CAP_CAMERAENABLED Delivers images from the current camera.
10-4 TWAIN 2.3 Specification

Bar Code Detection Search Parameters

Capability Negotiation Parameters

Color

CAP_CAMERAORDER Selects the order of output for Single Document Multiple Image
mode.

CAP_CAMERASIDE Sets the top and bottom values of cameras in a scanning device.

CAP_CLEARBUFFERS MSG_GET reports presence of data in scanner’s buffers;
MSG_SET clears the buffers.

CAP_MAXBATCHBUFFERS Describes the number of pages that the scanner can buffer when
CAP_AUTOSCAN is enabled.

ICAP_BARCODEDETECTIONENABLED Turns bar code detection on and off.

ICAP_SUPPORTEDBARCODETYPES Provides a list of bar code types that can be detected by current
data source.

ICAP_BARCODEMAXRETRIES Restricts the number of times a search will be retried if no bar
codes are found.

ICAP_BARCODEMAXSEARCHPRIORITIES Specifies the maximum number of supported search priorities.

ICAP_BARCODESEARCHMODE Restricts bar code searching to certain orientations, or
prioritizes one orientation over another.

ICAP_BARCODESEARCHPRIORITIES A prioritized list of bar code types dictating the order in which
they will be sought.

ICAP_BARCODETIMEOUT Restricts the total time spent on searching for bar codes on a
page.

CAP_EXTENDEDCAPS Capabilities negotiated in States 5, 6 and 7

CAP_SUPPORTEDCAPS Inquire Source’s capabilities valid for MSG_GET

CAP_SUPPORTEDDATS Inquire Source’s DAT messages that are valid.

ICAP_COLORMANAGEMENTENABLED Disables the Source’s color and gamma tables for color and
grayscale images, resulting in output that that could be termed
“raw”.

ICAP_FILTER Color characteristics of the subtractive filter applied to the
image data

ICAP_GAMMA Gamma correction value for the image data

ICAP_ICCPROFILE Embeds or links ICC profiles into files

ICAP_PLANARCHUNKY Color data format - Planar or Chunky
TWAIN 2.3 Specification 10-5

Chapter 10
Compression

Device Parameters

ICAP_BITORDERCODES CCITT Compression

ICAP_CCITTKFACTOR CCITT Compression

ICAP_COMPRESSION Compression method for Buffered Memory Transfers

ICAP_JPEGPIXELTYPE JPEG Compression

ICAP_JPEGQUALITY JPEG quality

ICAP_JPEGSUBSAMPLING JPEG subsampling

ICAP_PIXELFLAVORCODES CCITT Compression

ICAP_TIMEFILL CCITT Compression

CAP_DEVICEONLINE Determines if hardware is on and ready

CAP_DEVICETIMEDATE Date and time of a device’s clock.

CAP_SERIALNUMBER The serial number of the currently selected source device.

ICAP_MINIMUMHEIGHT Allows the source to define the minimum height (Y-axis) that
the source can acquire.

ICAP_MINIMUMWIDTH Allows the source to define the minimum width (X-axis) that
the source can acquire.

ICAP_EXPOSURETIME Exposure time used to capture the image, in seconds

ICAP_FLASHUSED2 For devices that support a flash, MSG_SET selects the flash to be
used; MSG_GET reports the current setting.

ICAP_IMAGEFILTER For devices that support image filtering, selects the algorithm to
be used.

ICAP_LAMPSTATE Is the lamp on?

ICAP_LIGHTPATH Image was captured transmissively or reflectively

ICAP_LIGHTSOURCE Describes the color characteristic of the light source used to
acquire the image

ICAP_NOISEFILTER For devices that support noise filtering, selects the algorithm to
be used.

ICAP_OVERSCAN For devices that support overscanning, controls whether
additional rows or columns are appended to the image.

ICAP_PHYSICALHEIGHT Maximum height Source can acquire (in ICAP_UNITS)

ICAP_PHYSICALWIDTH Maximum width Source can acquire (in ICAP_UNITS)

ICAP_UNITS Unit of measure (inches, centimeters, etc.)

ICAP_ZOOMFACTOR With MSG_GET, returns all camera supported lens zooming
range.
10-6 TWAIN 2.3 Specification

Doublefeed Detection

Imprinter/Endorser Functionality

Image Information

CAP_DOUBLEFEEDDETECTION Control DFD functionality

CAP_DOUBLEFEEDDETECTIONLENGTH Set the minimum length

CAP_DOUBLEFEEDDETECTIONSENSITIVITY Set detector sensitivity

CAP_DOUBLEFEEDDETECTIONRESPONSE Describe Source behavior in case of DFD

CAP_ENDORSER Allows the application to specify the starting endorser /
imprinter number.

CAP_PRINTER MSG_GET returns current list of available printer devices;
MSG_SET selects the device for negotiation.

CAP_PRINTERCHARROTATION Orientation of each character in the font

CAP_PRINTERENABLED Turns the current CAP_PRINTER device on or off.

CAP_PRINTERFONTSTYLE Style (ex: bold, italic…)

CAP_PRINTERINDEX Starting number for the CAP_PRINTER device.

CAP_PRINTERINDEXLEADCHAR Lead character for padding

CAP_PRINTERINDEXMAXVALUE Maximum allowed printer index value

CAP_PRINTERINDEXNUMDIGITS Maximum allowed digits in printer index value

CAP_PRINTERINDEXSTEP Increment between printer index values

CAP_PRINTERINDEXTRIGGER Triggers for incrementing the printer index value

CAP_PRINTERMODE Specifies appropriate current CAP_PRINTER device mode.

CAP_PRINTERSTRING String(s) to be used in the string component when
CAP_PRINTER device is enabled.

CAP_PRINTERSTRINGPREVIEW Preview of what a printer string will look like

CAP_PRINTERSUFFIX String to be used as current CAP_PRINTER device’s suffix.

CAP_PRINTERVERTICALOFFSET Y-Offset for current CAP_PRINTER device

CAP_AUTHOR Author of acquired image (may include a copyright string)

CAP_CAPTION General note about acquired image

CAP_TIMEDATE Date and Time the image was acquired (entered State 7)

ICAP_EXTIMAGEINFO Allows the application to query the data source to see if it
supports the new operation triplet DG_IMAGE/
DAT_EXTIMAGEINFO/ MSG_GET.
TWAIN 2.3 Specification 10-7

Chapter 10
Image Parameters for Acquire

Image Type

Language Support

ICAP_SUPPORTEDEXTIMAGEINFO Lists all of the information that the Source is capable of
returning from a call to DAT_EXTIMAGEINFO.

CAP_THUMBNAILSENABLED Allows an application to request the delivery of thumbnail
representations for the set of images that are to be delivered.

ICAP_AUTOBRIGHT Enable Source’s Auto-brightness function

ICAP_BRIGHTNESS Source brightness values

ICAP_CONTRAST Source contrast values

ICAP_HIGHLIGHT Lightest highlight, values lighter than this value will be set to
this value

ICAP_IMAGEDATASET Gets or sets the image indices that will be delivered during the
standard image transfer done in States 6 and 7.

ICAP_MIRROR Source can, or should, mirror image.

ICAP_ORIENTATION Defines which edge of the paper is the top: Portrait or
Landscape

ICAP_ROTATION Source can, or should, rotate image this number of degrees

ICAP_SHADOW Darkest shadow, values darker than this value will be set to this
value

ICAP_XSCALING Source Scaling value (1.0 = 100%) for x-axis

ICAP_YSCALING Source Scaling value (1.0 = 100%) for y-axis

ICAP_BITDEPTH Pixel bit depth for Current value of ICAP_PIXELTYPE

ICAP_BITDEPTHREDUCTION Allows a choice of the reduction method for bit depth loss

ICAP_BITORDER Specifies how the bytes in an image are filled by the Source

ICAP_CUSTHALFTONE Square-cell halftone (dithering) matrix to be used

ICAP_HALFTONES Source halftone patterns

ICAP_PIXELFLAVOR Sense of the pixel whose numeric value is zero

ICAP_PIXELTYPE The type of pixel data (B/W, gray, color, etc.)

ICAP_THRESHOLD Specifies the dividing line between black and white values

CAP_LANGUAGE Allows application and source to identify which languages they
have in common.
10-8 TWAIN 2.3 Specification

MICR

Pages

Paper Handling

CAP_MICRENABLED Enables actions needed to support check scanning.

CAP_SEGMENTED Describes the segmentation setting for captured images

ICAP_FRAMES Size and location of frames on page

ICAP_MAXFRAMES Maximum number of frames possible per page

ICAP_SUPPORTEDSIZES Fixed frame sizes for typical page sizes

CAP_AUTOFEED MSG_SET to TRUE to enable Source’s automatic feeding

CAP_CLEARPAGE MSG_SET to TRUE to eject current page and leave acquire area
empty

CAP_DUPLEX Indicates whether the scanner supports duplex.

CAP_DUPLEXENABLED Enables the user to set the duplex option to be TRUE or FALSE.

CAP_FEEDERALIGNMENT Indicates the alignment of the document feeder.

CAP_FEEDERENABLED If TRUE, Source’s feeder is available

CAP_FEEDERLOADED If TRUE, Source has documents loaded in feeder (MSG_GET
only)

CAP_FEEDERORDER Specifies whether feeder starts with top of first or last page.

CAP_FEEDERPOCKET Report what pockets are available as paper leaves a device.

CAP_FEEDERPREP Improve the movement of paper through a scanner ADF.

CAP_FEEDPAGE MSG_SET to TRUE to eject current page and feed next page

CAP_PAPERDETECTABLE Determines whether source can detect documents on the ADF
or flatbed.

CAP_PAPERHANDLING Control paper handling

CAP_REACQUIREALLOWED Capable of acquring muliple images of the same page wihtout
changing the physical registraion of that page.

CAP_REWINDPAGE MSG_SET to TRUE to do a reverse feed

ICAP_FEEDERTYPE Allows application to set scan parameters depending on the
type of feeder being used.
TWAIN 2.3 Specification 10-9

Chapter 10
Patch Code Detection

Power Monitoring

Resolution

Transfers

ICAP_PATCHCODEDETECTIONENABLED Turns patch code detection on and off.

ICAP_SUPPORTEDPATCHCODETYPES List of patch code types that can be detected by current data
source.

ICAP_PATCHCODEMAXSEARCHPRIORITIES Maximum number of search priorities.

ICAP_PATCHCODESEARCHPRIORITIES List of patch code types dictating the order in which patch
codes will be sought.

ICAP_PATCHCODESEARCHMODE Restricts patch code searching to certain orientations, or
prioritizes one orientation over another.

ICAP_PATCHCODEMAXRETRIES Restricts the number of times a search will be retried if none are
found on a page.

ICAP_PATCHCODETIMEOUT Restricts total time for searching for a patch code on a page.

CAP_BATTERYMINUTES The minutes of battery power remaining on a device.

CAP_BATTERYPERCENTAGE With MSG_GET, indicates battery power status.

CAP_POWERSAVETIME With MSG_SET, sets the camera power down timer in seconds;
with MSG_GET, returns the current setting of the power down
time.

CAP_POWERSUPPLY MSG_GET reports the kinds of power available;
MSG_GETCURRENT reports the current power supply to use.

ICAP_XNATIVERESOLUTION Native optical resolution of device for x-axis

ICAP_XRESOLUTION Current/Available optical resolutions for x-axis

ICAP_YNATIVERESOLUTION Native optical resolution of device for y-axis

ICAP_YRESOLUTION Current/Available optical resolutions for y-axis

CAP_JOBCONTROL Allows multiple jobs in batch mode.

CAP_XFERCOUNT Number of images the application is willing to accept this
session

ICAP_COMPRESSION Buffered Memory transfer compression schemes

ICAP_IMAGEFILEFORMAT File formats for file transfers

ICAP_TILES Tiled image data
10-10 TWAIN 2.3 Specification

User Interface

ICAP_UNDEFINEDIMAGESIZE The application will accept undefined image size

ICAP_XFERMECH Transfer mechanism - used to learn options and set-up for
upcoming transfer

CAP_CAMERAPREVIEWUI Queries the source for UI support for preview mode.

CAP_CUSTOMDSDATA Allows the application to query the data source to see if it
supports the new operation triplets DG_CONTROL/
DAT_CUSTOMDSDATA / MSG_GET and DG_CONTROL/
DAT_CUSTOMDSDATA / MSG_SET.

CAP_CUSTOMINTERFACEGUID Uniquely identifies an interface for a Data Source.

CAP_ENABLEDSUIONLY Queries an application to see if it implements the new user
interface settings dialog.

CAP_INDICATORS Use the Source’s progress indicator? (valid only when
ShowUI==FALSE)

CAP_INDICATORSMODE List of messages types that can be display if
ICAP_INDICATORS is TRUE

CAP_UICONTROLLABLE Indicates that Source supports acquisitions with UI disabled
TWAIN 2.3 Specification 10-11

Chapter 10
The Capability Listings
The following section lists descriptions of all TWAIN capabilities in alphabetical order. The
format of each capability entry is:

NAME OF CAPABILITY

Description

Description of the capability

Application

(Optional) Information for the application

Source

(Optional) Information for the Source

Values

Type: Data structure for the capability.

Value after MSG_OPENDS: Indicates the value that the data source has for this
capability immediately after being opened.

After MSG_RESET/MSG_RESETALL: Indicates the value that the data source has for this
 capability after being reset.

Allowed Values: Definition of the values allowed for this capability.

Containers

MSG_GET Acceptable containers for use on MSG_GET operations.

MSG_GETCURRENT Acceptable containers for use on MSG_GETCURRENT operations.

MSG_GETDEFAULT Acceptable containers for use on MSG_GETDEFAULT operations.

MSG_SET Acceptable containers for use on MSG_SET operations.

MSG_RESET Acceptable containers for use on MSG_RESET operations, and remove
any constraints.

MSG_SETCONSTRAINT Acceptable containers for use on MSG_SETCONSTRAINT operations.

Required By

If a Source or application is required to support the capability.

TWAIN Version Introduced

Version x.x

See Also

Associated capabilities and data structures.
10-12 TWAIN 2.3 Specification

ACAP_XFERMECH

Description

Allows the Application and Source to identify which audio transfer mechanisms they have in
common.

Application

The current setting of ACAP_XFERMECH must match the constant used by the application to
specify the audio transfer mechanism when starting the transfer using the triplet: DG_AUDIO /
DAT_AUDIOxxxxXFER / MSG_GET.

Values

Type: TW_UINT16

Value after MSG_OPENDS: TWSX_NATIVE

After MSG_RESET/MSG_RESETALL: TWSX_NATIVE

Allowed Values: TWSX_NATIVE
TWSX_FILE

Containers

MSG_GET TW_ENUMERATION
TW_ONEVALUE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Audio Sources

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

DG_AUDIO / DAT_AUDIOFILEXFER / MSG_GET
TWAIN 2.3 Specification 10-13

Chapter 10
CAP_ALARMS

Description

Turns specific audible alarms on and off.

Application

Note that an application may opt to turn off all alarms by issuing a MSG_SET with no data.
Therefore, an application should also be prepared to receive an empty array from a Source with an
MSG_GET. (i.e., pTW_ARRAY->NumItems == 0)

The easiest way to test for allowed values is to try to set them all with MSG_SET. If not all are
allowed, the Source will return TWRC_CHECKSTATUS with those values that it supports.

Source

It is worth noting that the alarms do not have to be present in the device for a Source to make use
of this capability. If the device is capable of alerting the Source to these various kinds of
conditions, but is unable to generate the alarms, itself; then the Source may opt to generate them
on its behalf.

TWAL_ALARM is a catchall for alarms not explicitly listed. It is also used where a device only
provides control over a single, multi-use alarm. For instance, if a device beeps for both jams and
bar-codes, but doesn’t allow independent control of the alarms, then it should report
TWAL_ALARM to cover them, and not TWAL_BARCODE, TWAL_JAM.

TWAL_FEEDERERROR covers paper handling errors such as jams, double-feeds, skewing and the
like; conditions that most likely stop scanning.

TWAL_FEEDERWARNING covers non-fatal events, such as feeder empty.

TWAL_DOUBLEFEED, TWAL_JAM and TWALSKEW cover paper handling errors.

TWAL_BARCODE and TWAL_PATCHCODE generate alarms when an image with this kind of data is
recognized.

TWAL_POWER generates alarms for any changes in power to the device.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a pervious session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWAL_ALARM
TWAL_FEEDERERROR
TWAL_FEEDERWARNING
TWAL_BARCODE
TWAL_DOUBLEFEED
TWAL_JAM
TWAL_PATCHCODE
TWAL_POWER
TWAL_SKEW

Containers

MSG_GET TW_ARRAY

MSG_GETCURRENT TW_ARRAY

MSG_GETDEFAULT TW_ARRAY
10-14 TWAIN 2.3 Specification

MSG_SET TW_ONEVALUE
TW_ARRAY

MSG_RESET TW_ARRAY

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ARRAY

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

CAP_ALARMVOLUME
TWAIN 2.3 Specification 10-15

Chapter 10
CAP_ALARMVOLUME

Description

The volume of a device’s audible alarm. Note that this control affects the volume of all alarms; no
specific volume control for individual types of alarms is provided.

Application

Take note of the range step, some Sources may only offer a step of 100, which turns the alarm on
or off.

Source

If 0, the audible alarm is turned off. All other values control the volume of the alarm.

Windows only - If the alarm is managed in the Source, as opposed to the device, then it should be
consistent with the control panel Accessibility Options (i.e., the user should get visual notification
if that is the current setting for the desktop).

Values

Type: TW_INT32

Value after MSG_OPENDS: (may be remembered from a pervious session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: 0 - 100

Containers

MSG_GET TW_ONEVALUE
TW_RANGE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

CAP_ALARMS
10-16 TWAIN 2.3 Specification

CAP_AUTHOR

Description

The name or other identifying information about the Author of the image. It may include a
copyright string.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_STR128

Value after MSG_OPENDS: “\0” (empty string)

After MSG_RESET/MSG_RESETALL: “\0” (empty string)

Allowed Values: Any string

Containers

MSG_GET TW_ONEVALUE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

CAP_CAPTION
CAP_TIMEDATE
TWAIN 2.3 Specification 10-17

Chapter 10
CAP_AUTOFEED

Description

If TRUE, the Source will automatically feed the next page from the document feeder after the
number of frames negotiated for capture from each page are acquired. CAP_FEEDERENABLED
must be TRUE to use this capability.

Application

Set the capability to TRUE to enable the Source’s automatic feed process, or FALSE to disable it.
After the completion of each transfer, check TW_PENDINGXFERS. Count to determine if the Source
has more images to transfer. A -1 means there are more images to transfer but the exact number is
not known.

CAP_FEEDERLOADED indicates whether the Source’s feeder is loaded. (The automatic feed process
continues whenever this capability is TRUE.)

Source

If CAP_FEEDERENABLED equals FALSE, return TWRC_FAILURE / TWCC_CAPSEQERROR
(capability is not supported in current settings).

If it is supported, return TWRC_SUCCESS and enable the device’s automatic feed process: After all
frames negotiated for capture from each page are acquired, put the current document in the
output area and advance the next document from the input area to the feeder image acquisition
area. If the feeder input area is empty, the automatic feeding process is suspended but should
continue when the feeder is reloaded.

Values

Type: TW_BOOL

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: TRUE

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Sources with Feeder Devices

TWAIN Version Introduced

Version 1.0
10-18 TWAIN 2.3 Specification

See Also

Best Practices

CAP_CLEARPAGE
CAP_FEEDERENABLED
CAP_FEEDERLOADED
CAP_FEEDPAGE
CAP_REWINDPAGE
TWAIN 2.3 Specification 10-19

Chapter 10
CAP_AUTOMATICCAPTURE

Description

The number of images to automatically capture. This does not refer to the number of images to be
sent to the Application, use CAP_XFERCOUNT for that.

Source

When 0, Automatic Capture is disabled. When 1 or greater, that number of images is captured by
the device.

Automatic capture implies that the device is capable of capturing images without the presence of
the Application. This means that it must be possible for the Application to close the Source and
reopen it later, after the images have been captured.

Values

Type: TW_INT32

Value after MSG_OPENDS: 0

After MSG_RESET/MSG_RESETALL: 0

Allowed Values: 0 or greater

Containers

MSG_GET TW_ONEVALUE
TW_RANGE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

CAP_TIMEBEFOREFIRSTCAPTURE
CAP_TIMEBETWEENCAPTURES
CAP_XFERCOUNT
DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY
10-20 TWAIN 2.3 Specification

CAP_AUTOMATICSENSEMEDIUM

Description

Configures a Source to check for paper in the Automatic Document Feeder, and if it finds any,
then automatically capture all of its images from the Feeder. If the Feeder is empty when
acquisition starts, then all images are automatically captured from the Flatbed.

Application

This capability offers a less complex method to let the Source automatically choose whether to
acquire images from the Automatic Document Feeder or from the Flatbed.

Note: If this capability is not supported, Applications can simulate this behavior by examining
CAP_FEEDERLOADED. If it is TRUE, set CAP_FEEDERENABLED to TRUE. If it is FALSE, set
CAP_FEEDERENABLED to FALSE. And after that begin to acquire images.

Source

If the Source supports CAP_PAPERDETECTABLE, and it has both an Automatic Document Feeder
and a Flatbed, then it should support this capability.

When this capability is set to TRUE the Source ignores the value of CAP_FEEDERENABLED. It
always attempts to acquire its first image from the Automatic Document Feeder. If paper is not
present, then images are acquired from the Flatbed.

When this capability is set to FALSE the source of images is determined by
CAP_FEEDERENABLED.

Values

Type: TW_BOOL

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All ADF/Flatbed combo scanners.

Source Operations

MSG_GET / MSG_GETCURRENT / MSG_GETDEFAULT
MSG_SET / MSG_RESET
MSG_QUERYSUPPORT
TWAIN 2.3 Specification 10-21

Chapter 10
TWAIN Version Introduced

Version 2.1

See Also

Best Practices

CAP_FEEDERENABLED
CAP_FEEDERLOADED
10-22 TWAIN 2.3 Specification

CAP_AUTOSCAN

Description

This capability is intended to boost the performance of a Source. The fundamental assumption
behind AutoScan is that the device is able to capture the number of images indicated by the value
of CAP_XFERCOUNT without waiting for the Application to request the image transfers. This is
only possible if the device has internal buffers capable of caching the images it captures.

The default behavior is undefined, because some high volume devices are incapable of anything
but CAP_AUTOSCAN being equal to TRUE. However, if a Source supports FALSE, it should use it
as the mandatory default, since this best describes the behavior of pre-1.8 TWAIN Applications.

Application

The application should check the TW_PENDINGXFERS.Count, and continue to scan until it
becomes 0.

When AutoScan is set to TRUE, the Application should not rely on just the paper sensors (for
example, CAP_FEEDERLOADED) to determine if there are images to be transferred. The latency
between the Source and the Application makes it very likely that at the time the sensor
reports FALSE, there may be more than one image waiting for the transfer inside of the device’s
buffers. Applications should use the TW_PENDINGXFERS.Count returned from DG_CONTROL /
DAT_PENDINGXFERS / MSG_ENDXFER to determine whether or not there are more images to be
transferred.

Values

Type: TW_BOOL

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: TRUE

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

When a mid- to high-volume Source supports transfer of multiple images ahead of retrieval.

TWAIN Version Introduced

Version 1.6

See Also

Best Practices
TWAIN 2.3 Specification 10-23

Chapter 10
CAP_AUTOFEED
CAP_CLEARBUFFERS
CAP_MAXBATCHBUFFERS

DG_CONTROL / DAT_PENDINGXFERS / MSG_STOPFEEDER
10-24 TWAIN 2.3 Specification

CAP_BATTERYMINUTES

Description

The minutes of battery power remaining to the device.

This is a read only capability.

Source

-2 indicates that the available power is infinite.

-1 indicates that the device cannot report the remaining battery power.

0 and greater indicates the minutes of battery life remaining.

Values

Type: TW_INT32

Allowed Values: -2, -1, 0, and greater

Containers

MSG_GET TW_ONEVALUE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

CAP_BATTERYPERCENTAGE
CAP_POWERSUPPLY
TWAIN 2.3 Specification 10-25

Chapter 10
CAP_BATTERYPERCENTAGE

Description

When used with MSG_GET, return the percentage of battery power level on camera. If -1 is
returned, it indicates that the battery is not present.

This is a read only capability.

Application

Use this capability with MSG_GET to indicate to the user about the battery power status. It is
recommended to use CAP_POWERSUPPLY to identify the power source first.

Source

-2 indicates that the available power is infinite.

-1 indicates that the device cannot report the remaining battery power.

0 to 100 indicates the percentage of battery life remaining.

Values

Type: TW_INT16

Allowed Values: -2, -1, 0 to 100.

Containers

MSG_GET TW_ONEVALUE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None. Highly recommended for digital cameras that are equipped with batteries.

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

CAP_BATTERYMINUTES
CAP_POWERSUPPLY
10-26 TWAIN 2.3 Specification

CAP_CAMERAENABLED

Description

This feature depends on “camera addressing”, which is the ability to address elements in the
device responsible for the color space or location. TWAIN offers DAT_FILESYSTEM and
CAP_CAMERASIDE to do this.

When set to TRUE the device will deliver images from the current camera. The Current Camera
can be selected with either CAP_CAMERASIDE or DAT_FILESYSTEM. With CAP_CAMERASIDE it
is possible to enable bottom (rear) only scanning, or have different settings for top and bottom.
With DAT_FILESYSTEM it is possible to enter a Single Document Multiple Images (SDMI) mode
in addition to enabling different settings for top and bottom.

Application

CAP_CAMERASIDE is easier to use, but cannot be used for SDMI. To enable bottom only scanning,
set CAP_CAMERASIDE to TWCS_BOTTOM and set CAP_CAMERAENABLED to TRUE, then set
CAP_CAMERASIDE to TWCS_TOP and set CAP_CAMERAENABLED to FALSE.

With DAT_FILESYSTEM an application can traverse and control all cameras individually.

An application should not use both CAP_CAMERASIDE and DAT_FILESYSTEM to address a
camera.

Avoid using ICAP_PIXELTYPE after setting CAP_CAMERAENABLED. ICAP_PIXELTYPE
implicitly sets CAP_CAMERAENABLED to TRUE for both sides of the current pixel type, and sets all
other cameras to false. This supports legacy behavior. An application can always reasonably
expect that setting ICAP_PIXELTYPE to TWPT_RGB and then scanning (simples or duplex) will
result in getting color images.

The application is not allowed to turn off CAP_CAMERAENABLED for all cameras.

Source

A Source that supports CAP_CAMERAENABLED must support DAT_FILESYSTEM or
CAP_CAMERASIDE or both.

If CAP_CAMERASIDE is supported, the application can use it to set the driver up for bottom (rear)
only scanning. Set CAP_CAMERASIDE to TWCS_BOTTOM and set CAP_CAMERAENABLED to TRUE,
then set CAP_CAMERASIDE to TWCS_TOP and set CAP_CAMERAENABLED to FALSE.

If DAT_FILESYSTEM is supported, then the application may be able to enter Single Document
Multiple Images (SDMI) mode. In this mode the application can independently address the color,
grayscale, bitonal, top and bottom cameras as supported by the driver. If the application sets
CAP_CAMERAENABLED to TRUE for more than one “pixel type” on the same camera side, (for
instance, color and bitonal on the front) then the driver will output multiple images for that side of
the document.

When ICAP_PIXELTYPE is set or reset and CAP_CAMERASIDE is set to TWCS_BOTH, the source
sets the current camera(s) to TRUE and sets all others to FALSE.

If the application attempts to set all CAP_CAMERAENABLED values to FALSE, the source returns a
status of TWRC_FAILURE / TWCC_CAPSEQERROR. At least one camera must be enabled at all
times.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Note: It is not recommended that applications mix the use of ICAP_PIXELTYPE with
DAT_FILESYSTEM or CAP_CAMERASIDE. ICAP_PIXELTYPE is intended for simple
applications that only want to choose color, grayscale or bitonal. Applications that want to
TWAIN 2.3 Specification 10-27

Chapter 10
provide bottom (rear) only scanning should use DAT_FILESYSTEM or CAP_CAMERASIDE.
Applications that want to provide Single Document Multiple Images should use
DAT_FILESYSTEM.

Values

Type: TW_BOOL

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (dependent on ICAP_PIXELTYPE)

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.0

See Also

Best Practices

CAP_CAMERAORDER
CAP_CAMERASIDE

DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
10-28 TWAIN 2.3 Specification

CAP_CAMERAORDER

Description

This capability selects the order of output for Single Document Multiple Image (SDMI) mode
based on an array of pixel types; it does not constrain the allowed pixel types.

For example, if the scanner is set up to deliver color and bitonal documents on the top (front)
camera, then an array of {TWPT_RGB, TWPT_BW} will deliver first the color image, then the bitonal
image, while an array of {TWPT_BW, TWPT_RGB} will deliver first the bitonal image, then the color
image.

Application

Some sources support independent ordering of color, grayscale and bitonal, while other sources
may link color and grayscale together. This can be detected by setting CAP_CAMERAORDER to all
of the available ICAP_PIXELTYPE values {ex: TWPT_RGB, TWPT_GRAY, TWPT_BW} followed by a
MSG_GET to examine the result. In this example a source that supports full, independent control
will return back exactly the same list it was set to, while a source that links pixel types together
will return a reduced list, such as {TWPT_RGB, TWPT_BW}.

Source

Camera ordering only applies if CAP_CAMERAENABLED is set for more than one pixel type on the
same camera, putting the scanner into Single Document Multiple Images mode.
DAT_FILESYSTEM is required to perform the proper addressing. DAT_FILESYSTEM is used to
address each camera.

The setting applies to both the top (front) and the bottom (rear), it is not allowed to have one
ordering for the top and another for the bottom.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: All applicable ICAP_PIXELTYPE values

Containers

MSG_GET TW_ARRAY

MSG_GETCURRENT TW_ARRAY

MSG_GETDEFAULT TW_ARRAY

MSG_SET TW_ONEVALUE
TW_ARRAY

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ARRAY

MSG_RESET TW_ARRAY

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None
TWAIN 2.3 Specification 10-29

Chapter 10
TWAIN Version Introduced

Version 2.0

See Also

Best Practices

CAP_CAMERAENABLED

DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
10-30 TWAIN 2.3 Specification

CAP_CAMERAPREVIEWUI

Description

This capability queries the Source for UI support for preview mode. If TRUE, the Source supports
preview UI.

This is a read only capability.

Application

Use this capability to query the preview UI support by the Source. However, the application can
choose to use the Source’s UI or not even if the Source supports it.

Values

Type: TW_BOOL

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None. Highly recommended for digital cameras.

TWAIN Version Introduced

Version 1.8

See Also

Best Practices
TWAIN 2.3 Specification 10-31

Chapter 10
CAP_CAMERASIDE

Description

TWAIN models a duplex scanner as conceptually having two 'cameras' - a 'top' camera that
captures the front of each page, and a 'bottom' camera that captures the back. Some devices allow
these two logical cameras to operate with different settings for certain capabilities.
CAP_CAMERASIDE provides a simple way to address the cameras individually: The value of
CAP_CAMERASIDE determines whether subsequent capability negotiation is directed to one
camera or the other, or to both.

Application

The application sets which camera it wishes to address with CAP_CAMERASIDE. The application
then sets any capability that allows independent values for the top and bottom.

There is no easy way to determine if a capability supports independent values for the top and
bottom, though as a general rule the ICAP_ capabilities are more likely to allow this. An
application can determine support by setting one side, then testing the other side to see if it has
changed.

Mixing camera selection using DAT_FILESYSTEM and CAP_CAMERASIDE is not recommended,
and may produce unexpected results.

Source

If set to TWCS_BOTH (the default) then DAT_CAPABILITY / MSG_SET and MSG_RESET operations
apply to the top and bottom. MSG_GET operations get their data from the top camera.

If set to TWCS_TOP or TWCS_BOTTOM, and if the capability being negotiated allows separate values
for the top and bottom, then only the side addressed by this capability will be changed as part of a
MSG_SET or MSG_RESET, or returned as part of a MSG_GET.

If a capability does not allow separate values for the top and bottom (for instance
CAP_DUPLEXENABLED), then the current value of CAP_CAMERASIDE has no impact on how it is
negotiated.

CAP_CAMERASIDE and CAP_DUPLEXENABLED are independent and have no effect on each other.
That is, if CAP_DUPLEXENABLED is FALSE, CAP_CAMERASIDE can still be set to TWCS_BOTTOM.

If DAT_FILESYSTEM is also supported by the source, it must keep it in sync with the current value
of this capability.

Consider the following sequence:

CAP_CAMERASIDE set to TWCS_TOP
ICAP_XRESOLUTION set to 200
CAP_CAMERASIDE set to TWCS_BOTTOM
ICAP_XRESOLUTION set to 300
CAP_CAMERASIDE set to TWCS_BOTH

At this point getting the value of ICAP_XRESOLUTION will return a value of 200, even though the
bottom is currently set to 300. This is acceptable behavior. It is up to the application to correctly
use CAP_CAMERASIDE.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: TWCS_BOTH
10-32 TWAIN 2.3 Specification

Allowed Values: TWCS_BOTH
TWCS_TOP
TWCS_BOTTOM

Containers

MSG_GET TW_ENUMERATION
TW_ONEVALUE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.91

See Also

Best Practices

DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY
TWAIN 2.3 Specification 10-33

Chapter 10
CAP_CAPTION

Description

A general note about the acquired image.

Source

If not supported, the Source should return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_STR255

Value after MSG_OPENDS: “\0” (empty string)

After MSG_RESET/MSG_RESETALL: “\0” (empty string)

Allowed Values: Any string

Containers

MSG_GET TW_ONEVALUE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

CAP_AUTHOR
CAP_TIMEDATE
10-34 TWAIN 2.3 Specification

CAP_CLEARBUFFERS

Description

MSG_GET reports the presence of data in the scanner’s buffers. MSG_SET with a value of
TWCB_CLEAR immediately clears the buffers.

Source

MSG_SET: TWCB_AUTO causes the Source to automatically clear the buffers when it transitions
from state 4 to state 5, or from state 5 to state 4.

MSG_SET: TWCB_CLEAR causes the Source to immediately clear its buffers.

MSG_SET: TWCB_NOCLEAR causes the Source to preserve images in the buffers. If the Source
transitions from state 4 to state 5 with images in its buffer, it will immediately report
MSG_XFERREADY, and deliver those images before any new images scanned by the user.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: TWCB_AUTO

Allowed Values: TWCB_AUTO
TWCB_CLEAR
TWCB_NOCLEAR

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION // 2.3 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

When a mid- to high-volume Source supports transfer of multiple images ahead of retrieval.

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

CAP_AUTOSCAN
CAP_MAXBATCHBUFFERS
TWAIN 2.3 Specification 10-35

Chapter 10
CAP_CLEARPAGE

Description

If TRUE, the Source will eject the current page being acquired from and will leave the feeder
acquire area empty.

If CAP_AUTOFEED is TRUE, a fresh page will be advanced.

CAP_FEEDERENABLED must equal TRUE to use this capability.

This capability must have been negotiated as an extended capability to be used in States 5 and 6.

Application

Do a MSG_SET on this capability to advance the document in the feeder acquire area to the output
area and abort all transfers pending on this page.

This capability is used in States 5 and 6 by applications controlling the Source’s feeder (usually
without the Source user interface).

This capability can also be used while CAP_AUTOFEED equals TRUE to abort all remaining
transfers on this page and continue with the next page.

Source

If CAP_FEEDERENABLED equals FALSE, return TWRC_FAILURE / TWCC_CAPSEQERROR
(capability is not supported in current settings).

If supported, advance the document in the feeder-acquire area to the output area and abort all
pending transfers from this page.

The Source will perform this action once whenever the capability is MSG_SET to TRUE. The Source
should then revert the Current value to FALSE.

Values

Type: TW_BOOL

Value after MSG_OPENDS: FALSE

After MSG_RESET/MSG_RESETALL: FALSE

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None
10-36 TWAIN 2.3 Specification

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

CAP_AUTOFEED
CAP_EXTENDEDCAPS
CAP_FEEDERENABLED

CAP_FEEDERLOADED
CAP_FEEDPAGE
CAP_REWINDPAGE
TWAIN 2.3 Specification 10-37

Chapter 10
CAP_CUSTOMDSDATA

Description

Allows the application to query the data source to see if it supports the new operation triplets
DG_CONTROL/ DAT_CUSTOMDSDATA / MSG_GET and DG_CONTROL/ DAT_CUSTOMDSDATA /
MSG_SET.

If TRUE, the source will support the DG_CONTROL/ DAT_CUSTOMDSDATA/MSG_GET message.

This is a read only capability.

Source

If not supported, return TWRC_FAILURE/ TWCC_CAPUNSUPPORTED.

Values

Type: TW_BOOL

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.7

See Also

Best Practices

DG_CONTROL / DAT_CUSTOMDSDATA / MSG_GET
10-38 TWAIN 2.3 Specification

CAP_CUSTOMINTERFACEGUID

Description

Uniquely identifies an interface for a Data Source, so that an Application can properly interpret its
custom content.

This is a read only capability.

Application

Use the value from this capability to interpret all of the numeric values referenced in the See Also
section below.

Consider the following example, which results in three GUID’s, one for Vendor ABC and two for
Vendor XYZ:

• Vendor ABC’s Scanner models Fred and Wilma have a custom capability called
CAP_MYFEATURE with a numeric value of 0x8001.

• Vendor XYZ’s Scanner model Barney has a custom capability CAP_OURFEATURE with a
numeric value of 0x8001, but their Scanner Model Betty has a different custom capability
CAP_BETTERFEATURE with a numeric value of 0x8001.

The challenge for the Application is to know what 0x8001 means. Historically, this has been
determined from the Source’s TW_IDENTITY structure. But this is hard to maintain, and requires
the Application to constantly update its recognition code, even in the case of Vendor ABC whose
interface stays the same from one model to the next.

Using CAP_CUSTOMINTERFACEGUID the Application can immediately identity Vendor ABC’s
unique interface, without having to check its TW_IDENTITY structure.

Source

The Source writer is responsible for creating a GUID. This GUID guarantees that the custom
numeric values have exactly the same meaning for any Source that reports that GUID.

If you need to create a GUID, but don’t know how, go to the TWAIN Working Group website and
click on FAQ.

Values

Type: TW_STR255

Allowed Values: A string in GUID format

{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}

Containers

MSG_GET TW_ONEVALUE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET Not Allowed

MSG_RESET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE
TWAIN 2.3 Specification 10-39

Chapter 10
Required By

Sources that support Custom Content.

TWAIN Version Introduced

Version 2.1

See Also

Best Practices

Chapter 6, "Custom Data Argument Types" (DAT_CUSTOMBASE)

Chapter 6, "Custom Messages" (MSG_CUSTOMBASE)

Chapter 8, "Capability Constants" (CAP_CUSTOMBASE)

Chapter 8, "CAP_DEVICEEVENT" (TWDE_CUSTOMEVENTS)

Chapter 8, "Return Codes (TWRC_)" (TWRC_CUSTOMBASE)

Chapter 8, "Condition Codes (TWCC_)" (TWCC_CUSTOMBASE)
10-40 TWAIN 2.3 Specification

CAP_DEVICEEVENT

Description

MSG_SET selects which events the Application wants the Source to report. MSG_GET and
MSG_GETCURRENT gets the current setting. MSG_RESET resets the capability to the empty array
(no events set).

TWDE_CHECKAUTOMATICCAPTURE: The automatic capture settings on the device have been
changed by the user.

TWDE_CHECKBATTERY: The status of the battery has changed.

TWDE_CHECKFLASH: The flash setting on the device has been changed by the user.

TWDE_CHECKPOWERSUPPLY:The power supply has been changed (for instance, the user may have
just connected AC to a device that was running on battery power).

TWDE_CHECKRESOLUTION: The x/y resolution setting on the device has been changed by the
user.

TWDE_DEVICEADDED: The user has added a device (for instance a memory card in a digital
camera).

TWDE_DEVICEOFFLINE: A device has become unavailable, but has not been removed.

TWDE_DEVICEREADY: The device is ready to capture an image.

TWDE_DEVICEREMOVED: The user has removed a device.

TWDE_IMAGECAPTURED: The user has captured an image to the device’s internal storage.

TWDE_IMAGEDELETED: The user has removed an image from the device’s internal storage.

TWDE_PAPERDOUBLEFEED: Two or more sheets of paper have been fed together.

TWDE_PAPERJAM: The device’s document feeder has jammed.

TWDE_LAMPFAILURE: The device’s light source has failed.

TWDE_CHECKDEVICEONLINE:The device has been turned off and on.

TWDE_POWERSAVE: The device has powered down to save energy.

TWDE_POWERSAVENOTIFY: The device is about to power down to save energy.

TWDE_CUSTOMEVENTS: Baseline for events specific to a given Source.

Application

Set all values and process the TWRC_CHECKSTATUS (if returned) to identify those items supported
by the Source. MSG_GET and MSG_GETCURRENT to get a list of currently enabled items.

Source

The startup default must be an empty array. Generate TWRC_CHECKSTATUS and remove
unsupported events when an Application requests events not supported by the Source.

Please note that the actions of an Application must never directly generate a device event. For
instance, if the user deletes an image using the controls on the device, then the Source should
generate an event. If, however, an Application deletes an image in the device (using DG_CONTROL
/ DAT_FILESYSTEM / MSG_DELETE), then the Source must not generate an event.

Values

Type: TW_UINT16
TWAIN 2.3 Specification 10-41

Chapter 10
Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (empty array)

Allowed Values: TWDE_CHECKAUTOMATICCAPTURE
TWDE_CHECKBATTERY
TWDE_CHECKDEVICEONLINE
TWDE_CHECKFLASH
TWDE_CHECKPOWERSUPPLY
TWDE_CHECKRESOLUTION
TWDE_DEVICEADDED
TWDE_DEVICEOFFLINE
TWDE_DEVICEREADY
TWDE_DEVICEREMOVED
TWDE_IMAGECAPTURED
TWDE_IMAGEDELETED
TWDE_PAPERDOUBLEFEED
TWDE_PAPERJAM
TWDE_LAMPFAILURE
TWDE_POWERSAVE
TWDE_POWERSAVENOTIFY
TWDE_CUSTOMEVENTS
0x8000

Containers

MSG_GET TW_ARRAY

MSG_GETCURRENT TW_ARRAY

MSG_GETDEFAULT TW_ARRAY

MSG_SET TW_ONEVALUE
TW_ARRAY

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ARRAY

MSG_RESET TW_ARRAY

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

DG_CONTROL / DAT_NULL / MSG_DEVICEEVENT (from Source to Application)
DG_CONTROL / DAT_DEVICEEVENT / MSG_GET

Device Events Article
10-42 TWAIN 2.3 Specification

CAP_DEVICEONLINE

Description

If TRUE, the physical hardware (e.g., scanner, digital camera, image database, etc.) that represents
the image source is attached, powered on, and communicating.

This is a read only capability.

Application

This capability can be issued at any time to determine the availability of the image source
hardware.

Source

The receipt of this capability request should trigger a test of the status of the physical link to the
image source. The source should not assume that the link is still active since the last transaction,
but should issue a transaction that actively tests this condition.

Values

Type: TW_BOOL

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All image Sources

TWAIN Version Introduced

Version 1.6

See Also

Best Practices
TWAIN 2.3 Specification 10-43

Chapter 10
CAP_DEVICETIMEDATE

Description

The date and time of the device’s clock.

Managed in the form “YYYY/MM/DD HH:mm:SS:sss” where YYYY is the year, MM is the
numerical month, DD is the numerical day, HH is the hour, mm is the minute, SS is the second,
and sss is the millisecond.

Source

The internal date and time of the device. Be sure to leave the space between the ending of the date
and the beginning of the time fields. All fields must be specified for MSG_SET.

Values

Type: TW_STR32

Value after MSG_OPENDS: (selected by the data source writer)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: Any date

Containers

MSG_GET TW_ONEVALUE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

CAP_TIMEDATE
10-44 TWAIN 2.3 Specification

CAP_DOUBLEFEEDDETECTION

Description

Enables or disables double feed detection.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (empty array)

Allowed Values: TWDF_ULTRASONIC
TWDF_BYLENGTH
TWDF_INFRARED

Containers

MSG_GET TW_ARRAY

MSG_GETCURRENT TW_ARRAY

MSG_GETDEFAULT TW_ARRAY

MSG_SET TW_ONEVALUE
TW_ARRAY

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ARRAY

MSG_RESET TW_ARRAY

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.2

See Also

Best Practices

CAP_DOUBLEFEEDDETECTIONLENGTH
CAP_DOUBLEFEEDDETECTIONRESPONSE
CAP_DOUBLEFEEDDETECTIONSENSITIVITY
TWAIN 2.3 Specification 10-45

Chapter 10
CAP_DOUBLEFEEDDETECTIONLENGTH

Description

When CAP_DOUBLEFEEDDETECTION includes TWDF_BYLENGTH, it allows an Application to set
the minimum length for detecting double feed documents. A value of zero always means “off”.

Source

The current value of this setting specifies the differences of paper length.

If value is not support, return TWRC_CHECKSTATUS and set to the closed value.

Values

Type: TW_FIX32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: 0 to 32767 in ICAP_UNITS

Containers

MSG_GET TW_RANGE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.2

See Also

Best Practices

CAP_DOUBLEFEEDDETECTION
ICAP_UNITS
10-46 TWAIN 2.3 Specification

CAP_DOUBLEFEEDDETECTIONRESPONSE

Description

When CAP_DOUBLEFEEDDETECTION is set to anything but Disabled, it allows an Application to
set how the source will respond to detecting a double feed.

• TWDP_STOP – when a multi-feed is detected the driver must end the scanner session,
returning TWCC_PAPERDOUBLEFEED for the an DAT_IMAGE*XFER call that applied to the bad
image.

• TWDP_STOPANDWAIT – the driver/device will manage the multi-feed; the application is not
notified; after the problem is fixed by the operator, image capture is continued as if no multi-
feed occurred.

• TWDP_SOUND – the driver/device will generate an audible alert when a multi-feed is detected

• TWDP_DONOTIMPRINT – the device will not print on multi-fed documents. All combinations
are valid, excluding TWDP_STOP and TWDP_STOPANDWAIT as only one of those can appear at
a time. If the driver is asked for both, it may pick one and return TWRC_CHECKSTATUS.

Application

The Application cannot ask for TWDP_STOP and TWDP_STOPANDWAIT at the same time.

After it receives TWCC_PAPERDOUBLEFEED, the Application can use DAT_PENDINGXFERS /
MSG_GET to see if it can resume the current session or if it must start a new one. If
TWDP_STOPANDWAIT is in the list, then Application should not expect any errors to be returned if
double-feed occurs.

Source

Application cannot ask for TWDP_STOP and TWDP_STOPANDWAIT at the same time. If an
Application sends TWDP_STOP and TWDP_STOPANDWAIT at the same time, then pick more
suitable one and return TWRC_CHECKSTATUS.

If the Source UI and Indicators are disabled, or TWDP_STOP is in the list, then return
TWRC_FAILURE/TWCC_PAPERDOUBLEFEED.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWDP_STOP
TWDP_STOPANDWAIT
TWDP_SOUND
TWDP_DONOTIMPRINT

Containers

MSG_GET TW_ARRAY

MSG_GETCURRENT TW_ARRAY

MSG_GETDEFAULT TW_ARRAY

MSG_SET TW_ONEVALUE
TW_ARRAY
TWAIN 2.3 Specification 10-47

Chapter 10
MSG_SETCONSTRAINT TW_ONEVALUE
TW_ARRAY

MSG_RESET TW_ARRAY

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.2

See Also

Best Practices

CAP_DOUBLEFEEDDETECTION
10-48 TWAIN 2.3 Specification

CAP_DOUBLEFEEDDETECTIONSENSITIVITY

Description

When CAP_DOUBLEFEEDDETECTION includes TWDF_ULTRASONIC, allows an Application to set
how sensitive the double feed detection is.

Source

The Source has to remap the scanner’s sensor sensitivity to the TWAIN defined sensitivity. See
allowed values.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWUS_LOW
TWUS_MEDIUM
TWUS_HIGH

Containers

MSG_GET TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.2

See Also

Best Practices

CAP_DOUBLEFEEDDETECTION
TWAIN 2.3 Specification 10-49

Chapter 10
CAP_DUPLEX

Description

This indicates whether the scanner supports duplex. If so, it further indicates whether one-path or
two-path duplex is supported.

This is a read only capability.

Application

Application can send MSG_GET to find out whether the scanner supports duplex.

Source

Source should determine level of duplex support returning the values accordingly.

Values

Type: TW_UINT16

Allowed Values: TWDX_NONE
TWDX_1PASSDUPLEX
TWDX_2PASSDUPLEX

Containers

MSG_GET TW_ONEVALUE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Sources that support Duplex scanning.

TWAIN Version Introduced

Version 1.7

See Also

Best Practices

CAP_DUPLEXENABLED
10-50 TWAIN 2.3 Specification

CAP_DUPLEXENABLED

Description

The user can set the duplex option to be TRUE or FALSE. If TRUE, the scanner scans both sides of a
paper; otherwise, the scanner will scan only one side of the image.

Application

The Application should send MSG_GET or MSG_GETCURRENT to determine if the duplex option is
enabled or not.

Source

Source should return TRUE or FALSE based on the level of duplex support; otherwise, return
TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_BOOL

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Sources that support Duplex scanning.

TWAIN Version Introduced

Version 1.7

See Also

Best Practices

CAP_DUPLEX
TWAIN 2.3 Specification 10-51

Chapter 10
CAP_ENABLEDSUIONLY

Description

Allows an application to query a source to see if it implements the new user interface settings
dialog. If a source reports that it has the capability CAP_ENABLEDSUIONLY, then it must
implement the operation triplet DG_CONTROL/ DAT_USERINTERFACE/ MSG_ENABLEDSUIONLY
to display the source user interface without acquiring an image.

If TRUE, the source will support the DG_CONTROL/ DAT_USERINTERFACE /
MSG_ENABLEDSUIONLY message.

This is a read only capability.

Source

If not supported, return TWRC_FAILURE/ TWCC_CAPUNSUPPORTED.

Values

Type: TW_BOOL

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None.

TWAIN Version Introduced

Version 1.7

See Also

Best Practices

DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDSUIONLY
10-52 TWAIN 2.3 Specification

CAP_ENDORSER

Description

Allows the application to specify the scanner’s starting endorser / imprinter number.

When available, use CAP_PRINTERINDEX, instead. See the Legacy Issues section on
CAP_ENDORSER vs CAP_PRINTER for more information.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: 1

Allowed Values: Any value

Containers

MSG_GET TW_ONEVALUE
TW_RANGE // 2.3 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

Sources that control an Endorser.

TWAIN Version Introduced

Version 1.7

See Also

Best Practices

CAP_PRINTERINDEX
TWAIN 2.3 Specification 10-53

Chapter 10
CAP_EXTENDEDCAPS

Description

Allows the application and Source to negotiate capabilities to be used in States 5 and 6.

Application

MSG_GET and MSG_GETCURRENT return an array of the capabilities the Source supports in States
5, 6 and 7. If either the Source or the application is older than TWAIN 2.3, use MSG_GET to get the
list of allowed capabilities, and MSG_GETCURRENT to check the capabilities currently set.

MSG_SET is only needed with Sources older than TWAIN 2.3, to set the capabilities the application
wants to negotiate in States 5, 6 and 7.

Stated another way, beginning with TWAIN 2.3 CAP_EXTENDEDCAPS works more like
CAP_SUPPORTEDCAPS; it should be treated as a read only array, but data sources must still permit
MSG_SET and MSG_RESET operations for legacy applications.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (all values supported by the data source)

After MSG_RESET/MSG_RESETALL: (all values supported by the data source)

Allowed Values: Any xCAP_xxxx

Containers

MSG_GET TW_ARRAY

MSG_GETCURRENT TW_ARRAY

MSG_GETDEFAULT TW_ARRAY

MSG_SET TW_ONEVALUE
TW_ARRAY

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ARRAY

MSG_RESET TW_ARRAY

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

CAP_SUPPORTEDCAPS
10-54 TWAIN 2.3 Specification

CAP_FEEDERALIGNMENT

Description

Helps the Application determine any special actions it may need to take when negotiating frames
with the Source.
• TWFA_NONE: The alignment is free-floating. Applications should assume that the origin for

frames is on the left.
• TWFA_LEFT: The alignment is to the left.
• TWFA_CENTER: The alignment is centered. This means that the paper will be fed in the middle

of the ICAP_PHYSICALWIDTH of the device. If this is set, then the Application should
calculate any frames with a left offset.

• TWFA_RIGHT: The alignment is to the right. If this is set, then the Application should calculate
any frames with a left offset.

Application

The Application can use this to determine if it must center the framing information sent to the
Source. With some Sources it might be possible for the Application to select whether the paper is
center fed or not.

Source

Use this capability to report the state of the feeder. If not supported, return TWRC_FAILURE /
TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWFA_NONE
TWFA_LEFT
TWFA_CENTER
TWFA_RIGHT

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION // 2.3 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE if supported

MSG_SETCONSTRAINT TW_ONEVALUE if supported

MSG_RESET TW_ONEVALUE if supported

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices
TWAIN 2.3 Specification 10-55

Chapter 10
CAP_FEEDERENABLED

Description

If TRUE, Source must acquire data from the document feeder acquire area and other feeder
capabilities can be used. If FALSE, Source must acquire data from the non-feeder acquire area and
no other feeder capabilities can be used.

Application

The application should MSG_SET this capability to TRUE before attempting to use any other feeder
capabilities. This sets the current acquire area to the feeder area (it may not be a different physical
area on some Sources).

The application can MSG_SET this capability to FALSE to use the Source’s non-feeder acquisition
area and disallow the further use of feeder capabilities.

Source

This setting should reflect the current acquire area:

If TRUE, feeder acquire area should be used

If FALSE, use non-feeder acquire area

Usually, the feeder acquire area and non-feeder acquire area of the Source will be the same. For
example, a flatbed scanner may feed a page onto the flatbed platen then scanning always takes
place from the platen.

The counter example is a flatbed scanner that moves the scan bar over the platen when
CAP_FEEDERENABLED is FALSE, but moves the paper over the scan bar when it is TRUE.

Default Support Guidelines for Sources

• Flatbed scanner (without an optional ADF installed) - Default to FALSE. Do not allow setting
to TRUE (return TWRC_FAILURE / TWCC_BADVALUE) but support the capability (never return
TWRC_FAILURE / TWCC_CAPUNSUPPORTED).

• A device that uses the same acquire area for feeder and non-feeder, and has a feeder installed
- Default to TRUE and allow settings to TRUE or FALSE (meaning allow or don’t allow other
feeder capabilities).

• A device that operates differently when acquiring from the feeder and non-feeder areas (for
example, physical pages sizes are different) - Default to preferred area and allow setting to
either TRUE or FALSE.

• A sheet feed scanner or image database - Default to TRUE (meaning there is only one acquire
area - the feeder area) and do not allow setting to FALSE (return TWRC_FAILURE /
TWCC_BADVALUE).

• A handheld scanner would not support this capability (return TWRC_FAILURE /
TWCC_CAPUNSUPPORTED).

Values

Type: TW_BOOL

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TRUE or FALSE
10-56 TWAIN 2.3 Specification

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Sources with feeder devices

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

CAP_AUTOFEED
CAP_CLEARPAGE
CAP_FEEDERLOADED
CAP_FEEDERPOCKET

CAP_FEEDERPREP
CAP_FEEDPAGE
CAP_REWINDPAGE
TWAIN 2.3 Specification 10-57

Chapter 10
CAP_FEEDERLOADED

Description

Reflect whether there are documents loaded in the Source’s feeder.

This is a read only capability.

Application

CAP_FEEDERENABLED must equal TRUE to use this capability. Used by application to inquire
whether there are documents loaded in the Source’s feeder.

Source

If CAP_FEEDERENABLED equals FALSE, return TWRC_FAILURE / TWCC_CAPSEQERROR
(capability is not supported in current settings).

If CAP_FEEDERENABLED equals TRUE, return the status of the feeder (documents loaded = TRUE;
no documents loaded = FALSE).

The Source is responsible for reporting instructions to users on using the device. This includes
instructing the user to place documents in the feeder when CAP_FEEDERLOADED equals FALSE
and the application has requested a feed page (manually or automatically).

Values

Type: TW_BOOL

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Sources with feeder devices

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

CAP_AUTOFEED
CAP_CLEARPAGE
CAP_FEEDERENABLED

CAP_FEEDPAGE
CAP_REWINDPAGE
10-58 TWAIN 2.3 Specification

CAP_FEEDERORDER

Description

TWFO_FIRSTPAGEFIRST if the feeder starts with the top of the first page.
TWFO_LASTPAGEFIRST is the feeder starts with the top of the last page.

Application

An Application can use this to determine if it should reorganize the stream of images received
from a Source.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWFO_FIRSTPAGEFIRST
TWFO_LASTPAGEFIRST

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION (if MSG_Set is supported)

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE if supported

MSG_SETCONSTRAINT TW_ONEVALUE if supported

MSG_RESET TW_ONEVALUE if supported

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

CAP_FEEDERENABLED
TWAIN 2.3 Specification 10-59

Chapter 10
CAP_FEEDERPOCKET

Description

Report what pockets are available to receive paper as it exits from the device..

Source

This capability enumerates the available output or collation pockets on the device.
TWFP_POCKET1 - TWFP_POCKET16 are organized from top to bottom and left to right, facing in
the direction of the motion of the paper.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWFP_POCKET1 - TWFP_POCKET16
TWFP_POCKETERROR

Containers

MSG_GET TW_ARRAY

MSG_GETCURRENT TW_ARRAY

MSG_GETDEFAULT TW_ARRAY

MSG_SET TW_ONEVALUE
TW_ARRAY

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ARRAY

MSG_RESET TW_ARRAY

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.0

See Also

Best Practices

CAP_FEEDERENABLED
CAP_MICRENABLED
10-60 TWAIN 2.3 Specification

CAP_FEEDERPREP

Description

Improve the movement of paper through a scanner ADF.

Source

If CAP_FEEDERENABLED is TRUE, and CAP_FEEDERPREP is TRUE, then the scanner will perform
any action needed to improve the movement of paper through the transport.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_BOOL

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: FALSE

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.0

See Also

Best Practices

CAP_FEEDERENABLED
CAP_MICRENABLED
TWAIN 2.3 Specification 10-61

Chapter 10
CAP_FEEDPAGE

Description

If TRUE, the Source will eject the current page and advance the next page in the document feeder
into the feeder acquire area.

If CAP_AUTOFEED is TRUE, the same action just described will occur and CAP_AUTOFEED will
remain active.

CAP_FEEDERENABLED must equal TRUE to use this capability.

This capability must have been negotiated as an extended capability to be used in States 5 and 6.

Application

Do a MSG_SET to TRUE on this capability to advance the next document in the feeder to the feeder
acquire area.

This capability is used in States 5 and 6 by applications controlling the Source’s feeder (usually
without the Source’s user interface).

This capability can also be used while CAP_AUTOFEED equals TRUE to abort all remaining
transfers on this page and continue with the next page.

Source

If CAP_FEEDERENABLED equals FALSE, return TWRC_FAILURE / TWCC_CAPSEQERROR
(capability is not supported in current settings).

If supported, advance the document in the feeder-acquire area to the output area and abort all
pending transfers from this page.

Advance the next page in the input area to the feeder acquire area. If there are no documents in
the input area, return: TWRC_FAILURE / TWCC_BADVALUE.

The Source will perform this action once whenever the capability is MSG_SET to TRUE. The Source
should then revert the Current value to FALSE.

Values

Type: TW_BOOL

Value after MSG_OPENDS: FALSE

After MSG_RESET/MSG_RESETALL: FALSE

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE
10-62 TWAIN 2.3 Specification

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

CAP_AUTOFEED
CAP_CLEARPAGE
CAP_EXTENDEDCAPS

CAP_FEEDERENABLED
CAP_FEEDERLOADED
CAP_REWINDPAGE
TWAIN 2.3 Specification 10-63

Chapter 10
CAP_INDICATORS

Description

If TRUE, the Source displays a progress indicator during acquisition and transfer, regardless of
whether the Source's user interface is active. If FALSE, the progress indicator is suppressed if the
Source's user interface is inactive.

The Source displays device-specific instructions and error messages if either the user interface or
progress indicator is turned on. In this case it returns TWCC_OPERATIONERROR to alert the
application that it handled the error, and communicated the problem to the user.

If both the user interface and progress indicator are turned off, then the Source never displays any
message to the user, even if TWCC_OPERATIONERROR is returned. Messages to the user are under
the sole control of the Application.

Application

If the application plans to enable the Source with TW_USERINTERFACE. ShowUI = FALSE, it can
also suppress the Source’s progress indicator by using this capability.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_BOOL

Value after MSG_OPENDS: TRUE

After MSG_RESET/MSG_RESETALL: TRUE

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.1

See Also

Best Practices

CAP_INDICATORSMODE
DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS
10-64 TWAIN 2.3 Specification

CAP_INDICATORSMODE

Description

Specify what messages can be displayed if ICAP_INDICATORS is TRUE.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Default value must include all supported by the source modes.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (all values supported by the data source)

After MSG_RESET/MSG_RESETALL: (all values supported by the data source)

Allowed Values: TWCI_INFO
TWCI_WARNING
TWCI_ERROR
TWCI_WARMUP

Containers

MSG_GET TW_ARRAY

MSG_GETCURRENT TW_ARRAY

MSG_GETDEFAULT TW_ARRAY

MSG_SET TW_ONEVALUE
TW_ARRAY

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ARRAY

MSG_RESET TW_ARRAY

MSG_SETCONSTRAINT TW_ARRAY

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.2

See Also

Best Practices

CAP_INDICATORS
TWAIN 2.3 Specification 10-65

Chapter 10
CAP_JOBCONTROL

Description

Allows multiple jobs in batch mode. The application can decide how the job can be processed,
according to the flags listed below.

TWJC_NONE No job control.

TWJC_JSIC Detect and include job separator and continue scanning.

TWJC_JSIS Detect and include job separator and stop scanning.

TWJC_JSXC Detect and exclude job separator and continue scanning.

TWJC_JSXS Detect and exclude job separator and stop scanning.

If the application selects options other than none, it should check the EOJ field for one of the
TWEJ_xxx patch codes of the PENDINGXFERS data.

To distinguish between jobs, a job separator sheet containing patch code can be inserted. If the
application knows the how to save different jobs, the TWJC_JSIC or TWJC_JSXC can be used.
When this job separator is detected, the application will give a separate name for each job. If the
application does not know how to save different jobs, it can use TWJC_JSIS or TWJC_JSXS to
stop scanning and ask the user for different job name.

Source

If not supported, return TWRC_FAILURE/ TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: TWJC_NONE

Allowed Values: TWJC_NONE
TWJC_JSIC
TWJC_JSIS
TWJC_JSXC
TWJC_JSXS

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None
10-66 TWAIN 2.3 Specification

TWAIN Version Introduced

Version 1.7

See Also

Best Practices

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER
DG_CONTROL / DAT_PENDINGXFERS / MSG_GET
DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET
DG_CONTROL / DAT_PENDINGXFERS / MSG_STOPFEEDER
TWAIN 2.3 Specification 10-67

Chapter 10
CAP_LANGUAGE

Description

Allows Application and Source to identify which languages they have in common for the
exchange of string data, and to select the language of the internal UI.

Note: Since the TWLG_xxxx codes include language and country data, there is no separate
capability for selecting the country.

Application

In multi-lingual environments, it is the responsibility of the Application to recall the last selected
language for a given User.

Source

The current value of this setting specifies the language used by the Source (and possibly the
device). The Source must first default to the Application’s current language. If that fails then it
must default to the User’s Locale (c.f., the Win32 call GetLocaleInfo()). If that fails then the Source
should make the best choice it can, preferably using a common secondary language (i.e., English,
French…).

Note:

• TWLG_ARABIC_UAE is for the United Arabic Emirates.

• TWLG_CHINESE_PRC is for the People’s Republic of China

Values

Type: TW_UINT16

Default Value: In order of priority:
1) appIdentity->Version.Language
2) TWLG_USERLOCALE
3) Source’s choice

Allowed Values: TWLG_USERLOCALE
// pre 1.8 values…
TWLG_DAN
TWLG_DUT
TWLG_ENG
TWLG_FCF
TWLG_FIN
TWLG_FRN
TWLG_GER
TWLG_ICE
TWLG_ITN
TWLG_NOR
TWLG_POR
TWLG_SPA
TWLG_SWE
TWLG_USA
10-68 TWAIN 2.3 Specification

// 1.8 should use these…

TWLG_AFRIKAANS
TWLG_ALBANIA
TWLG_ARABIC
TWLG_ARABIC_ALGERIA
TWLG_ARABIC_BAHRAIN
TWLG_ARABIC_EGYPT
TWLG_ARABIC_IRAQ
TWLG_ARABIC_JORDAN
TWLG_ARABIC_KUWAIT
TWLG_ARABIC_LEBANON
TWLG_ARABIC_LIBYA
TWLG_ARABIC_MOROCCO
TWLG_ARABIC_OMAN
TWLG_ARABIC_QATAR
TWLG_ARABIC_SAUDIARABIA
TWLG_ARABIC_SYRIA
TWLG_ARABIC_TUNISIA
TWLG_ARABIC_UAE
TWLG_ARABIC_YEMEN
TWLG_BASQUE
TWLG_BYELORUSSIAN
TWLG_BULGARIAN
TWLG_CATALAN
TWLG_CHINESE
TWLG_CHINESE_HONGKONG
TWLG_CHINESE_PRC
TWLG_CHINESE_SINGAPORE
TWLG_CHINESE_SIMPLIFIED
TWLG_CHINESE_TAIWAN
TWLG_CHINESE_TRADITIONAL
TWLG_CROATIA
TWLG_CZECH
TWLG_DANISH
TWLG_DUTCH
TWLG_DUTCH_BELGIAN
TWLG_ENGLISH
TWLG_ENGLISH_AUSTRALIAN
TWLG_ENGLISH_CANADIAN
TWLG_ENGLISH_IRELAND
TWLG_ENGLISH_NEWZEALAND
TWLG_ENGLISH_SOUTHAFRICA
TWLG_ENGLISH_UK
TWLG_ENGLISH_USA
TWLG_ESTONIAN
TWLG_FAEROESE
TWLG_FARSI
TWLG_FINNISH
TWLG_FRENCH
TWLG_FRENCH_BELGIAN
TWLG_FRENCH_CANADIAN

TWLG_FRENCH_LUXEMBOURG
TWLG_FRENCH_SWISS
TWLG_GERMAN
TWLG_GERMAN_AUSTRIAN
TWLG_GERMAN_LUXEMBOURG
TWLG_GERMAN_LIECHTENSTEIN
TWLG_GERMAN_SWISS
TWLG_GREEK
TWLG_HEBREW
TWLG_HUNGARIAN
TWLG_ICELANDIC
TWLG_INDONESIAN
TWLG_ITALIAN
TWLG_ITALIAN_SWISS
TWLG_JAPANESE
TWLG_KOREAN
TWLG_KOREAN_JOHAB
TWLG_LATVIAN
TWLG_LITHUANIAN
TWLG_NORWEGIAN
TWLG_NORWEGIAN_BOKMAL
TWLG_NORWEGIAN_NYNORSK
TWLG_POLISH
TWLG_PORTUGUESE
TWLG_PORTUGUESE_BRAZIL
TWLG_ROMANIAN
TWLG_RUSSIAN
TWLG_SERBIAN_LATIN
TWLG_SLOVAK
TWLG_SLOVENIAN
TWLG_SPANISH
TWLG_SPANISH_MEXICAN
TWLG_SPANISH_MODER
TWLG_SWEDISH
TWLG_THAI
TWLG_TURKISH
TWLG_UKRANIAN
TWLG_ASSAMESE
TWLG_BENGALI
TWLG_BIHARI
TWLG_BODO
TWLG_DOGRI
TWLG_GUJARATI
TWLG_HARYANVI
TWLG_HINDI
TWLG_KANNADA
TWLG_KASHMIRI
TWLG_MALAYALAM
TWLG_MARATHI
TWAIN 2.3 Specification 10-69

Chapter 10
Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

TWLG_MARWARI
TWLG_MEGHALAYAN
TWLG_MIZO
TWLG_NAGA
TWLG_ORISSI
TWLG_PUNJABI
TWLG_PUSHTU
TWLG_SERBIAN_CYRILLIC

TWLG_SIKKIMI
TWLG_SWEDISH_FINLAND
TWLG_TAMIL
TWLG_TELUGU
TWLG_TRIPURI
TWLG_URDU
TWLG_VIETNAMESE
10-70 TWAIN 2.3 Specification

CAP_MAXBATCHBUFFERS

Description

Describes the number of pages that the scanner can buffer when CAP_AUTOSCAN is enabled.

Application

MSG_GET returns the supported values

MSG_SET sets the current number pages to be buffered (if the Source allows this to be set)

Source

If supported, report the maximum batch buffer settings during MSG_GET. If MSG_SET is
supported, limit batch buffers to the requested value for future transfers.

Values

Type: TW_UINT32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: 1 to 232 –1

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION
TW_RANGE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION
TW_RANGE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

When a mid- to high-volume Source supports transfer of multiple images ahead of retrieval.

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

CAP_AUTOSCAN
CAP_CLEARBUFFERS
TWAIN 2.3 Specification 10-71

Chapter 10
CAP_MICRENABLED

Description

Get this capability to determine if the Source supports check scanning. If set to TRUE check
scanning is enabled, if set to FALSE check scanning is disabled.

Source

When disabled the scanner ignores all related capabilities (refer to the See Also section).

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_BOOL

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: FALSE

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.0

See Also

Best Practices

CAP_FEEDERPREP
CAP_FEEDERPOCKET

DG_IMAGE / DAT_EXTIMAGEINFO / MSG_GET
10-72 TWAIN 2.3 Specification

CAP_PAPERDETECTABLE

Description

This capability determines whether the device has a paper sensor that can detect documents on
the ADF or Flatbed.

This is a read only capability.

Application

If the source returns FALSE, the application should not rely on values such as
CAP_FEEDERLOADED, and continue as if the paper is loaded.

Source

If supported, the source is responsible for detecting whether document is loaded or not.

Values

Type: TW_BOOL

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Sources with feeder devices

TWAIN Version Introduced

Version 1.6

See Also

Best Practices

CAP_FEEDERLOADED
TWAIN 2.3 Specification 10-73

Chapter 10
CAP_PAPERHANDLING

Description

Use this capability to control paper handling. This capability may affect scanning speed.

Application

Use it to improve paper handling.

The Source may not support all combinations of values it returns in MSG_GET, so check the current
value if the Source returns TWRC_CHECKSTATUS.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If the Source does not support a combination of values, then it should pick the most suitable
values and return TWRC_CHECKSTATUS.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: TWPH_NORMAL

Allowed Values: TWPH_NORMAL
TWPH_FRAGILE
TWPH_THICK
TWPH_TRIFOLD
TWPH_PHOTOGRAPH

Containers

MSG_GET TW_ARRAY

MSG_GETCURRENT TW_ARRAY

MSG_GETDEFAULT TW_ARRAY

MSG_SET TW_ONEVALUE
TW_ARRAY

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ARRAY

MSG_RESET TW_ARRAY

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.2

See Also

Best Practices
10-74 TWAIN 2.3 Specification

CAP_POWERSAVETIME

Description

When used with MSG_SET, set the camera power down timer in seconds. When used with
MSG_GET, return the current setting of the power down time.

Application

Use this capability with MSG_SET to set the user selected camera power down time, when no
activity is detected by the camera. The default value of -1 means no power down, power is always
on.

Values

Type: TW_INT32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: >= -1

Containers

MSG_GET TW_ONEVALUE
TW_RANGE // 2.3 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None. Highly recommended for digital cameras.

MSG_GET
MSG_SET / MSG_RESET

TWAIN Version Introduced

Version 1.8

See Also

Best Practices
TWAIN 2.3 Specification 10-75

Chapter 10
CAP_POWERSUPPLY

Description

MSG_GET reports the kinds of power available to the device. MSG_GETCURRENT reports the
current power supply in use.

This is a read only capability.

Values

Type: TW_UINT16

Allowed Values: TWPS_EXTERNAL
TWPS_BATTERY

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices
10-76 TWAIN 2.3 Specification

CAP_PRINTER

Description

MSG_GET returns the current list of available printer devices, along with the one currently being
used for negotiation. MSG_SET selects the current device for negotiation, and optionally
constrains the list. MSG_RESET restores all the available devices (useful after MSG_SET has been
used to constrain the list).

Top/Bottom refer to duplex devices, and indicate if the printer is writing on the top or the bottom
of the sheet of paper. Simplex devices use the top settings.

Before/After indicates whether printing occurs before or after the sheet of paper has been
scanned.

Application

Use this capability to determine which printers are available for negotiation, and to select a
specific printer prior to negotiation.

Source

Imprinters are used to print data on documents at the time of scanning, and may be used for any
purpose. Endorsers are more specific in nature, stamping some kind of proof of scanning on the
document. Applications may opt to use imprinters for endorsing documents.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWPR_IMPRINTERTOPBEFORE
TWPR_IMPRINTERTOPAFTER
TWPR_IMPRINTERBOTTOMBEFORE
TWPR_IMPRINTERBOTTOMAFTER
TWPR_ENDORSERTOPBEFORE
TWPR_ENDORSERTOPAFTER
TWPR_ENDORSERBOTTOMBEFORE
TWPR_ENDORSERBOTTOMAFTER

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Sources that control a printer type device.
TWAIN 2.3 Specification 10-77

Chapter 10
TWAIN Version Introduced

Version 1.8

See Also

Best Practices

CAP_PRINTERCHARROTATION
CAP_PRINTERENABLED
CAP_PRINTERFONTSTYLE
CAP_PRINTERINDEX
CAP_PRINTERINDEXLEADCHAR
CAP_PRINTERINDEXMAXVALUE
CAP_PRINTERINDEXNUMDIGITS

CAP_PRINTERINDEXSTEP
CAP_PRINTERINDEXTRIGGER
CAP_PRINTERMODE
CAP_PRINTERSTRING
CAP_PRINTERSTRINGPREVIEW
CAP_PRINTERSUFFIX
CAP_PRINTERVERTICALOFFSET
10-78 TWAIN 2.3 Specification

CAP_PRINTERENABLED

Description

Turns the current CAP_PRINTER device on or off.

Values

Type: TW_BOOL

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: FALSE

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Sources that control a printer type device.

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

CAP_PRINTER
CAP_PRINTERCHARROTATION
CAP_PRINTERFONTSTYLE
CAP_PRINTERINDEX
CAP_PRINTERINDEXLEADCHAR
CAP_PRINTERINDEXMAXVALUE
CAP_PRINTERINDEXNUMDIGITS

CAP_PRINTERINDEXSTEP
CAP_PRINTERINDEXTRIGGER
CAP_PRINTERMODE
CAP_PRINTERSTRING
CAP_PRINTERSTRINGPREVIEW
CAP_PRINTERSUFFIX
CAP_PRINTERVERTICALOFFSET
TWAIN 2.3 Specification 10-79

Chapter 10
CAP_PRINTERCHARROTATION

Description

Specify the amount of in-place character rotation for the next acquisition. The rotation is in
degrees, and moves clockwise. Zero means normal in relation to the leading edge for a document
feeder.

Application

Specify the printer's font orientation for string or strings that will be printed on the page during
the next acquisition.

Source

Set the printer's font orientation for string or strings that will be printed on the page during next
acquisition. The font’s orientation is in relation to the leading edge for a document feeder.

Values

Type: TW_UINT32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: 0

Allowed Values: 0 to 359

Containers

MSG_GET TW_ONEVALUE, TW_ENUMERATION, TW_RANGE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE, TW_ENUMERATION, TW_RANGE

MSG_SETCONSTRAINT TW_ONEVALUE, TW_ENUMERATION, TW_RANGE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.3

See Also

Best Practices

CAP_PRINTER
CAP_PRINTERENABLED
CAP_PRINTERFONTSTYLE
CAP_PRINTERINDEX
CAP_PRINTERINDEXLEADCHAR
CAP_PRINTERINDEXMAXVALUE
CAP_PRINTERINDEXNUMDIGITS

CAP_PRINTERINDEXSTEP
CAP_PRINTERINDEXTRIGGER
CAP_PRINTERMODE
CAP_PRINTERSTRING
CAP_PRINTERSTRINGPREVIEW
CAP_PRINTERSUFFIX
CAP_PRINTERVERTICALOFFSET
10-80 TWAIN 2.3 Specification

CAP_PRINTERFONTSTYLE

Description

Which printer font styles to be used during the next acquisition.

Application

Specify the printer's font style for all of the string data that will be printed on the page during the
next acquisition.

Source

Set the printer's font style for all strings that will be printed on the page during the next
acquisition.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: TWPF_NORMAL

Allowed Values: TWPF_NORMAL
TWPF_ITALIC
TWPF_BOLD
TWPF_SMALLSIZE
TWPF_LARGESIZE

Containers

MSG_GET TW_ARRAY

MSG_GETCURRENT TW_ARRAY

MSG_GETDEFAULT TW_ARRAY

MSG_SET TW_ARRAY

MSG_SETCONSTRAINT TW_ARRAY

MSG_RESET TW_ARRAY

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.3

See Also

Best Practices

CAP_PRINTER
CAP_PRINTERCHARROTATION
CAP_PRINTERENABLED
CAP_PRINTERINDEX
CAP_PRINTERINDEXLEADCHAR
CAP_PRINTERINDEXMAXVALUE
CAP_PRINTERINDEXNUMDIGITS

CAP_PRINTERINDEXSTEP
CAP_PRINTERINDEXTRIGGER
CAP_PRINTERMODE
CAP_PRINTERSTRING
CAP_PRINTERSTRINGPREVIEW
CAP_PRINTERSUFFIX
CAP_PRINTERVERTICALOFFSET
TWAIN 2.3 Specification 10-81

Chapter 10
CAP_PRINTERINDEX

Description

The User can set the starting number for the current CAP_PRINTER device.

Source

This value allows the user to set the starting page number for the current CAP_PRINTER device.

Values

Type: TW_UINT32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: 1

Allowed Values: Any values.

Containers

MSG_GET TW_ONEVALUE
TW_RANGE // 2.3 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

CAP_PRINTER
CAP_PRINTERCHARROTATION
CAP_PRINTERENABLED
CAP_PRINTERFONTSTYLE
CAP_PRINTERINDEXLEADCHAR
CAP_PRINTERINDEXMAXVALUE
CAP_PRINTERINDEXNUMDIGITS

CAP_PRINTERINDEXSTEP
CAP_PRINTERINDEXTRIGGER
CAP_PRINTERMODE
CAP_PRINTERSTRING
CAP_PRINTERSTRINGPREVIEW
CAP_PRINTERSUFFIX
CAP_PRINTERVERTICALOFFSET
10-82 TWAIN 2.3 Specification

CAP_PRINTERINDEXLEADCHAR

Description

User can set the character to be used for filling the leading digits before the counter value if the
counter digits are fewer than CAP_PRINTERINDEXNUMDIGITS.

Examples:
If the lead character is a zero: 00001
If the lead character is a blank: 1

Application

Send a string containing a single character to the source.

Source

Use the first character of the string as the leading character to pad the current counter out to
CAP_PRINTERNUMDIGITS.

Values

Type: TW_STR32

Startup / Reset Value: (selected by the data source writer)

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: Any value

Containers

MSG_GET TW_ONEVALUE, TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE, TW_ENUMERATION

MSG_SETCONSTRAINT TW_ONEVALUE, TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.3
TWAIN 2.3 Specification 10-83

Chapter 10
See Also

Best Practices

CAP_PRINTER
CAP_PRINTERCHARROTATION
CAP_PRINTERENABLED
CAP_PRINTERFONTSTYLE
CAP_PRINTERINDEX
CAP_PRINTERINDEXMAXVALUE
CAP_PRINTERINDEXNUMDIGITS

CAP_PRINTERINDEXSTEP
CAP_PRINTERINDEXTRIGGER
CAP_PRINTERMODE
CAP_PRINTERSTRING
CAP_PRINTERSTRINGPREVIEW
CAP_PRINTERSUFFIX
CAP_PRINTERVERTICALOFFSET
10-84 TWAIN 2.3 Specification

CAP_PRINTERINDEXMAXVALUE

Description

The User can set the maximum value of the counter of the current CAP_PRINTER device. After the
counter reaches this value, it will automatically reset to the value specified by
CAP_PRINTERINDEX.

Application

Set this value to specify the counter’s maximum value for the current CAP_PRINTER device. Set it
to 0 for the device’s maximum limit.

Source

This value allows the user to set maximum value of the current printer's counter.

Values

Type: TW_UINT32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: 0

Allowed Values: Any value

Containers

MSG_GET TW_ONEVALUE, TW_ENUMERATION, TW_RANGE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE, TW_ENUMERATION, TW_RANGE

MSG_SETCONSTRAINT TW_ONEVALUE, TW_ENUMERATION, TW_RANGE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.3

See Also

Best Practices

CAP_PRINTER
CAP_PRINTERCHARROTATION
CAP_PRINTERENABLED
CAP_PRINTERFONTSTYLE
CAP_PRINTERINDEX
CAP_PRINTERINDEXLEADCHAR
CAP_PRINTERINDEXNUMDIGITS

CAP_PRINTERINDEXSTEP
CAP_PRINTERINDEXTRIGGER
CAP_PRINTERMODE
CAP_PRINTERSTRING
CAP_PRINTERSTRINGPREVIEW
CAP_PRINTERSUFFIX
CAP_PRINTERVERTICALOFFSET
TWAIN 2.3 Specification 10-85

Chapter 10
CAP_PRINTERINDEXNUMDIGITS

Description

Right justify the counter of the current CAP_PRINTER device. The fill character is set by
CAP_PRINTERLEADCHAR.

Application

Set it to 0 to make it left justified. Allowing the counter to exceed the number of available digits
results in undefined behavior.

Source

Set the current printer's counter field width (the numbers are right justified). If set to zero the
numbers are left justified.

If the counter value exceeds the number of available digits, the source can choose the action. For
example, the source could show the correct number, adding the extra needed digits. It could
truncate the number to the specified number of digits. Or, finally, it could end the session with an
error.

Values

Type: TW_UINT32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: 0

Allowed Values: Positive values

Containers

MSG_GET TW_ONEVALUE, TW_ENUMERATION, TW_RANGE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE, TW_ENUMERATION, TW_RANGE

MSG_SETCONSTRAINT TW_ONEVALUE, TW_ENUMERATION, TW_RANGE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.3
10-86 TWAIN 2.3 Specification

See Also

Best Practices

CAP_PRINTER
CAP_PRINTERCHARROTATION
CAP_PRINTERENABLED
CAP_PRINTERFONTSTYLE
CAP_PRINTERINDEX
CAP_PRINTERINDEXLEADCHAR
CAP_PRINTERINDEXMAXVALUE

CAP_PRINTERINDEXSTEP
CAP_PRINTERINDEXTRIGGER
CAP_PRINTERMODE
CAP_PRINTERSTRING
CAP_PRINTERSTRINGPREVIEW
CAP_PRINTERSUFFIX
CAP_PRINTERVERTICALOFFSET
TWAIN 2.3 Specification 10-87

Chapter 10
CAP_PRINTERINDEXSTEP

Description

Set the counter increment for the current CAP_PRINTER device to any positive value.

Values

Type: TW_UINT32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: 1

Allowed Values: Any positive value

Containers

MSG_GET TW_ONEVALUE, TW_ENUMERATION, TW_RANGE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE, TW_ENUMERATION, TW_RANGE

MSG_SETCONSTRAINT TW_ONEVALUE, TW_ENUMERATION, TW_RANGE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.3

See Also

Best Practices

CAP_PRINTER
CAP_PRINTERCHARROTATION
CAP_PRINTERENABLED
CAP_PRINTERFONTSTYLE
CAP_PRINTERINDEX
CAP_PRINTERINDEXLEADCHAR
CAP_PRINTERINDEXMAXVALUE

CAP_PRINTERINDEXNUMDIGITS
CAP_PRINTERINDEXTRIGGER
CAP_PRINTERMODE
CAP_PRINTERSTRING
CAP_PRINTERSTRINGPREVIEW
CAP_PRINTERSUFFIX
CAP_PRINTERVERTICALOFFSET
10-88 TWAIN 2.3 Specification

CAP_PRINTERINDEXTRIGGER

Description

Specify the events which cause the printer's counter to increment its value. If no trigger is
specified (the array is empty) then the counter never increments.

TWCT_PAGE should be used alone. The other values can be mixed in any combination.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: TWCT_PAGE

Allowed Values: TWCT_PAGE
TWCT_PATCH1
TWCT_PATCH2
TWCT_PATCH3
TWCT_PATCH4
TWCT_PATCHT
TWCT_PATCH6

Containers

MSG_GET TW_ARRAY

MSG_GETCURRENT TW_ARRAY

MSG_GETDEFAULT TW_ARRAY

MSG_SET TW_ARRAY

MSG_SETCONSTRAINT TW_ARRAY

MSG_RESET TW_ARRAY

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.3

See Also

Best Practices

CAP_PRINTER
CAP_PRINTERCHARROTATION
CAP_PRINTERENABLED
CAP_PRINTERFONTSTYLE
CAP_PRINTERINDEX
CAP_PRINTERINDEXLEADCHAR
CAP_PRINTERINDEXMAXVALUE

CAP_PRINTERINDEXNUMDIGITS
CAP_PRINTERINDEXSTEP
CAP_PRINTERMODE
CAP_PRINTERSTRING
CAP_PRINTERSTRINGPREVIEW
CAP_PRINTERSUFFIX
CAP_PRINTERVERTICALOFFSET
TWAIN 2.3 Specification 10-89

Chapter 10
CAP_PRINTERMODE

Description

Specifies the appropriate current CAP_PRINTER device mode.

Note:

• TWPM_SINGLESTRING specifies that the printed text will consist of a single string.

• TWPM _MULTISTRING specifies that the printed text will consist of an enumerated list of
strings to be printed in order.

• TWPM _COMPOUNDSTRING specifies that the printed string will consist of a compound of a
String followed by a value followed by a suffix string.

Application

Negotiate this capability to specify the mode of printing to use when the current CAP_PRINTER
device is enabled.

Source

If supported, use the specified mode for future image acquisitions.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWPM_SINGLESTRING
TWPM_MULTISTRING
TWPM_COMPOUNDSTRING

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

When a Source supports CAP_PRINTERSTRING and / or CAP_PRINTERSUFFIX.

TWAIN Version Introduced

Version 1.8
10-90 TWAIN 2.3 Specification

See Also

Best Practices

CAP_PRINTER
CAP_PRINTERCHARROTATION
CAP_PRINTERENABLED
CAP_PRINTERFONTSTYLE
CAP_PRINTERINDEX
CAP_PRINTERINDEXLEADCHAR
CAP_PRINTERINDEXMAXVALUE

CAP_PRINTERINDEXNUMDIGITS
CAP_PRINTERINDEXSTEP
CAP_PRINTERINDEXTRIGGER
CAP_PRINTERSTRING
CAP_PRINTERSTRINGPREVIEW
CAP_PRINTERSUFFIX
CAP_PRINTERVERTICALOFFSET
TWAIN 2.3 Specification 10-91

Chapter 10
CAP_PRINTERSTRING

Description

Specifies the string(s) that are to be used in the string component when the current CAP_PRINTER
device is enabled.

Application

Negotiate this capability to specify the string or strings to be used for printing (depending on
printer mode). Use enumeration to print multiple lines of text, one line per string in the
enumerated list. Be sure to check the status codes if attempting multiple lines, since not all
devices support this feature.

Source

If supported, use the specified string for printing during future acquisitions.

Values

Type: TW_STR255

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: Any string

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

CAP_PRINTER
CAP_PRINTERCHARROTATION
CAP_PRINTERENABLED
CAP_PRINTERFONTSTYLE
CAP_PRINTERINDEX
CAP_PRINTERINDEXLEADCHAR
CAP_PRINTERINDEXMAXVALUE

CAP_PRINTERINDEXNUMDIGITS
CAP_PRINTERINDEXSTEP
CAP_PRINTERINDEXTRIGGER
CAP_PRINTERMODE
CAP_PRINTERSTRINGPREVIEW
CAP_PRINTERSUFFIX
CAP_PRINTERVERTICALOFFSET
10-92 TWAIN 2.3 Specification

CAP_PRINTERSTRINGPREVIEW

Description

Return the text that would be printed next, by the imprinter designated by CAP_PRINTER, based
on current printer/endorser settings.

The complete text is an N-element TW_ARRAY with each element containing the text of the
corresponding line.

This is a read only capability.

Source

This is a simulation of the printer text string that the source provides to its best ability.

Values

Type: TW_STR255

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: Any string

Containers

MSG_GET TW_ARRAY

MSG_GETCURRENT TW_ARRAY

MSG_GETDEFAULT TW_ARRAY

MSG_SET Not allowed

MSG_SETCONSTRAINT Not allowed

MSG_RESET Not allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.3

See Also

Best Practices

CAP_PRINTER
CAP_PRINTERCHARROTATION
CAP_PRINTERENABLED
CAP_PRINTERFONTSTYLE
CAP_PRINTERINDEX
CAP_PRINTERINDEXLEADCHAR
CAP_PRINTERINDEXMAXVALUE

CAP_PRINTERINDEXNUMDIGITS
CAP_PRINTERINDEXSTEP
CAP_PRINTERINDEXTRIGGER
CAP_PRINTERMODE
CAP_PRINTERSTRING
CAP_PRINTERSUFFIX
CAP_PRINTERVERTICALOFFSET
TWAIN 2.3 Specification 10-93

Chapter 10
CAP_PRINTERSUFFIX

Description

Specifies the string that shall be used as the current CAP_PRINTER device’s suffix.

Application

Negotiate this capability to specify the string that is used as the suffix for printing if
TWPM_COMPOUNDSTRING is used.

Values

Type: TW_STR255

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: Any string

Containers

MSG_GET TW_ONEVALUE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

CAP_PRINTER
CAP_PRINTERCHARROTATION
CAP_PRINTERENABLED
CAP_PRINTERFONTSTYLE
CAP_PRINTERINDEX
CAP_PRINTERINDEXLEADCHAR
CAP_PRINTERINDEXMAXVALUE

CAP_PRINTERINDEXNUMDIGITS
CAP_PRINTERINDEXSTEP
CAP_PRINTERINDEXTRIGGER
CAP_PRINTERMODE
CAP_PRINTERSTRING
CAP_PRINTERSTRINGPREVIEW
CAP_PRINTERVERTICALOFFSET
10-94 TWAIN 2.3 Specification

CAP_PRINTERVERTICALOFFSET

Description

Specifies a Y-Offset in ICAP_UNITS units for the current CAP_PRINTER device.

Source

This allows the user to set Y-Offset for the current CAP_PRINTER device. Some scanners may not
support a 0 offset.

Values

Type: TW_FIX32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: Any value

Containers

MSG_GET TW_ONEVALUE
TW_RANGE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.2

See Also

Best Practices

CAP_PRINTER
CAP_PRINTERCHARROTATION
CAP_PRINTERENABLED
CAP_PRINTERFONTSTYLE
CAP_PRINTERINDEX
CAP_PRINTERINDEXLEADCHAR
CAP_PRINTERINDEXMAXVALUE

CAP_PRINTERINDEXNUMDIGITS
CAP_PRINTERINDEXSTEP
CAP_PRINTERINDEXTRIGGER
CAP_PRINTERMODE
CAP_PRINTERSTRING
CAP_PRINTERSTRINGPREVIEW
CAP_PRINTERSUFFIX
TWAIN 2.3 Specification 10-95

Chapter 10
CAP_REACQUIREALLOWED

Description

Indicates whether the physical hardware (e.g. scanner, digital camera) is capable of acquiring
multiple images of the same page without changes to the physical registration of that page.

This is a read only capability.

Application

Use this capability to enable or disable modes of operation where multiple image acquisitions of
the page are required. Examples: preview mode, automated image analysis mode.

Source

If supported, return TRUE if the device is capable of capturing the page image multiple times
without refeeding the page or otherwise causing physical registration changes. Return FALSE
otherwise.

Support Guidelines for Sources
• A flat bed scanner that can retain the page on the platen and moves the scan bar past the page

would return TRUE.
• A sheet-fed scanner that physically moves the page past the scan bar would return FALSE.
• A hand held scanner would return FALSE.

Values

Type: TW_BOOL

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

CAP_AUTOFEED
CAP_CLEARPAGE
CAP_FEEDERENABLED

CAP_FEEDPAGE
CAP_REWINDPAGE
10-96 TWAIN 2.3 Specification

CAP_REWINDPAGE

Description

If TRUE, the Source will return the current page to the input side of the document feeder and feed
the last page from the output side of the feeder back into the acquisition area.

If CAP_AUTOFEED is TRUE, automatic feeding will continue after all negotiated frames from this
page are acquired.

CAP_FEEDERENABLED must equal TRUE to use this capability.

This capability must have been negotiated as an extended capability to be used in States 5 and 6.

Application

This capability is used in States 5 and 6 by applications controlling the Source’s feeder (usually
without the Source’s user interface).

If CAP_AUTOFEED is TRUE, the normal automatic feeding will continue after all frames of this
page are acquired.

Source

If CAP_FEEDERENABLED equals FALSE, return TWRC_FAILURE / TWCC_CAPSEQERROR
(capability is not supported in current settings).

If there are no documents in the output area, return: TWRC_FAILURE / TWCC_BADVALUE.

The Source will perform this action once whenever the capability is MSG_SET to TRUE. The Source
should then revert the Current value to FALSE.

Values

Type: TW_BOOL

Value after MSG_OPENDS: FALSE

After MSG_RESET/MSG_RESETALL: FALSE

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0
TWAIN 2.3 Specification 10-97

Chapter 10
See Also

Best Practices

CAP_AUTOFEED
CAP_CLEARPAGE
CAP_EXTENDEDCAPS

CAP_FEEDERENABLED
CAP_FEEDERLOADED
CAP_FEEDPAGE
10-98 TWAIN 2.3 Specification

CAP_SEGMENTED

Description

Describes the segmentation setting for captured images. Image segmentation occurs when either
the device, the Source or the Application breaks up an image into a stream of image components
(text, pictures, graphics) that must be assembled by the application to reconstruct the original
document. Applications must use the DAT_EXTIMAGEINFO / TWEI_SEGMENTNUMBER field to
identify pieces of an image that are associated with each other through segmentation.

Manual segmentation is an advanced way of setting the Source to transfer image components
with different parameters from the same page. Not all Sources support this feature.

Application

Applications should be able to GET/SET whether segmentation will be applied to captured
images.

If the Application sets Manual segmentation, it can specify different settings for every frame in
ICAP_FRAMES. In this mode ICAP_FRAMES states before ICAP_COLORMANAGMENTENABLED in
capability ordering. The Application can set the current frame by setting ICAP_FRAMES using the
TW_ENUMERATION container and changing CurrentIndex only. The number of Frames and their
parameters must be kept unchanged during this process, otherwise a Source will set all
capabilities the same for all frames.

A Source may not support separate settings for all supported capabilities for different frames. Get
the list of these capabilities from CAP_SUPPORTEDCAPSSEGMENTUNIQUE. Applications must set
all common capabilities before it sets the Manual Segmentation mode, and then set only
capabilities which are different for different frames.

Source

If the Source is in Manual segmentation, and the Application changed the number of frames and
their parameters, then the Source will make all capabilities the same for all frames using values for
the current frame (prior this operation). In this mode the Source must ignore the capability order
for ICAP_FRAMES. It may allow different settings for capabilities which are placed below
ICAP_MINIMUMWIDTH in the capabilities order. The Source must report these capabilities in
CAP_SUPPORTEDCAPSSEGMENTUNIQUE.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: TWSG_NONE

Allowed Values: TWSG_AUTO
TWSG_NONE
TWSG_MANUAL

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE
TWAIN 2.3 Specification 10-99

Chapter 10
MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.91

See Also

Best Practices

ICAP_FRAMES
ICAP_MAXFRAMES
CAP_SUPPORTEDCAPSSEGMENTUNIQUE
DG_IMAGE / DAT_EXTIMAGEINFO / MSG_GET (TWEI_SEGMENTNUMBER)
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GETDEFAULT
DG_IMAGE / DAT_IMAGELAYOUT / MSG_RESET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET
TW_IMAGELAYOUT
10-100 TWAIN 2.3 Specification

CAP_SERIALNUMBER

Description

A string containing the serial number of the currently selected device in the Source. Multiple
devices may all report the same serial number.

This is a read only capability.

Application

The value is device specific, Applications should not attempt to parse the information.

Values

Type: TW_STR255

Allowed Values: Any value

Containers

MSG_GET TW_ONEVALUE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices
TWAIN 2.3 Specification 10-101

Chapter 10
CAP_SUPPORTEDCAPS

Description

Returns a list of all the capabilities for which the Source will answer inquiries. Does not indicate
which capabilities the Source will allow to be set by the application. Some capabilities can only be
set if certain setup work has been done so the Source cannot globally answer which capabilities
are “set-able.”

This is a read only capability.

Values

Type: TW_UINT16

Allowed Values: Any “get-able” capability

Containers

MSG_GET TW_ARRAY

MSG_GETCURRENT TW_ARRAY

MSG_GETDEFAULT TW_ARRAY

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Sources

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

CAP_EXTENDEDCAPS
CAP_SUPPORTEDDATS
10-102 TWAIN 2.3 Specification

CAP_SUPPORTEDCAPSSEGMENTUNIQUE

Description

For Sources that allow unique values to be set for things like the top and bottom or for each
segment on a page.

Returns a list of all the capabilities for which the Source allows to have unique values.

This is a read only capability.

Values

Type: TW_UINT16

Allowed Values: Any “get-able” capability

Containers

MSG_GET TW_ARRAY

MSG_GETCURRENT TW_ARRAY

MSG_GETDEFAULT TW_ARRAY

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

2.2 or greater sources that allow different settings for camera or segment.

TWAIN Version Introduced

Version 2.2

See Also

Best Practices

CAP_SUPPORTEDCAPS
CAP_SEGMENTED
TWAIN 2.3 Specification 10-103

Chapter 10
CAP_SUPPORTEDDATS

Description

Returns a list of all the Data Argument Types (DAT_xxx) for which the Source will answer
inquiries. This list does not indicate which DATs the Source will allow to be set by the application.
Some DATs can only be set if certain setup work has been done so the Source cannot globally
answer which DATs are “set-able.”

HIWORD of the value is DG of DAT. LOWORD of the value is the DAT itself.

This is a read only capability.

Application

MSG_GET a quick way to determine if a DAT is supported by the Source.

Values

Type: TW_UINT32

Allowed Values: All standard and custom DAT_xxx understood by the Source

Containers

MSG_GET TW_ARRAY

MSG_GETCURRENT TW_ARRAY

MSG_GETDEFAULT TW_ARRAY

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All 2.2 Sources

TWAIN Version Introduced

Version 2.2

See Also

Best Practices

CAP_SUPPORTEDCAPS
10-104 TWAIN 2.3 Specification

CAP_TIMEBEFOREFIRSTCAPTURE

Description

For automatic capture, this value selects the number of milliseconds before the first picture is to be
taken, or the first image is to be scanned.

Values

Type: TW_INT32

Value after MSG_OPENDS: 0

After MSG_RESET/MSG_RESETALL: 0

Allowed Values: 0 or greater

Containers

MSG_GET TW_ONEVALUE
TW_RANGE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

CAP_AUTOMATICCAPTURE
CAP_TIMEBETWEENCAPTURES
CAP_XFERCOUNT
TWAIN 2.3 Specification 10-105

Chapter 10
CAP_TIMEBETWEENCAPTURES

Description

For automatic capture, this value selects the milliseconds to wait between pictures taken, or
images scanned.

Values

Type: TW_INT32

Value after MSG_OPENDS: 0

After MSG_RESET/MSG_RESETALL: 0

Allowed Values: 0 or greater

Containers

MSG_GET TW_ONEVALUE
TW_RANGE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

CAP_AUTOMATICCAPTURE
CAP_TIMEBEFOREFIRSTCAPTURE
CAP_XFERCOUNT
10-106 TWAIN 2.3 Specification

CAP_TIMEDATE

Description

The date and time the image was acquired.

Note: CAP_TIMEDATE does not return the exact time the image was acquired; rather, it returns
the closest available approximation of the time the physical phenomena represented by the
image was recorded. If the application needs the exact time of acquisition, the application
should generate that value itself during the image acquisition procedure.

Stored in the form “YYYY/MM/DD HH:mm:SS.sss” where YYYY is the year, MM is the
numerical month, DD is the numerical day, HH is the hour, mm is the minute, SS is the second,
and sss is the millisecond.

This capability must be negotiated during State 7 before the call to the DG_CONTROL /
DAT_PENDINGXFERS / MSG_ENDXFER triplet. It must also be listed in the CAP_EXTENDEDCAPS
capability by the data source.

This is a read only capability.

Source

The time and date when the image was originally acquired (when the Source entered State 7).

Be sure to leave the space between the ending of the date and beginning of the time fields. Pad the
unused characters after the string with zeros.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_STR32

Allowed Values: Any date

Containers

MSG_GET TW_ONEVALUE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

CAP_AUTHOR
CAP_CAPTION
TWAIN 2.3 Specification 10-107

Chapter 10
CAP_THUMBNAILSENABLED

Description

Allows an application to request the delivery of thumbnail representations for the set of images
that are to be delivered.

Setting CAP_THUMBNAILSENABLED to TRUE turns on thumbnail mode. Images transferred
thereafter will be sent at thumbnail size (exact thumbnail size is determined by the Data Source).
Setting this capability to FALSE turns thumbnail mode off and returns full size images.

Application

A successful set of this capability to TRUE will cause the Source to deliver image thumbnails
during normal data transfer operations. This mode remains in effect until this capability is set
back to FALSE.

Source

A successful set of this capability to TRUE should enable the delivery of thumbnail images during
normal data transfer. Setting this capability to FALSE will disable thumbnail delivery.

If not supported, return TWRC_FAILURE/ TWCC_CAPUNSUPPORTED.

Values

Type: TW_BOOL

Value after MSG_OPENDS: FALSE

After MSG_RESET/MSG_RESETALL: FALSE

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Image Store Data Sources.

TWAIN Version Introduced

Version 1.7

See Also

Best Practices

ICAP_IMAGEDATASET
10-108 TWAIN 2.3 Specification

CAP_UICONTROLLABLE

Description

If TRUE, indicates that this Source supports acquisition with the UI disabled; i.e.,
TW_USERINTERFACE’s ShowUI field can be set to FALSE. If FALSE, indicates that this Source can
only support acquisition with the UI enabled.

This is a read only capability.

Source

This capability was introduced in TWAIN 1.6. All Sources compliant with TWAIN 1.6 and above
must support this capability. Sources that are not TWAIN 1.6-compliant may return
TWRC_FAILURE / TWCC_BADCAP if they do not support this capability.

All Sources compliant with TWAIN 1.9 and above must support the ability to scan without the UI
(TW_USERINTERFACE.ShowUI = 0 and CAP_INDICATORS = FALSE), therefore they must
report a value of TRUE for this capability.

Application

A return value of TWRC_FAILURE / TWCC_CAPUNSUPPORTED indicates that the Source in use is
not TWAIN 1.6-compliant. Therefore, the Source may ignore TW_USERINTERFACE’s ShowUI field
when MSG_ENABLEDS is issued. See the description of DG_CONTROL / DAT_USERINTERFACE
/ MSG_ENABLEDS for more details.

Values

Type: TW_BOOL

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Sources // 1.9 and higher

TWAIN Version Introduced

Version 1.6

See Also

Best Practices

CAP_INDICATORS
DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS
TWAIN 2.3 Specification 10-109

Chapter 10
CAP_XFERCOUNT

Description

The application is willing to accept this number of images.

Application

Set this capability to the number of images you are willing to transfer per session. Common
values are:

1 Application wishes to transfer only one image this session

-1 Application is willing to transfer multiple images

Source

If the application limits the number of images it is willing to receive, the Source should not make
more transfers available than the specified number.

If the application sets the value to 0, then the Source sets its value to -1 and returns back
TWRC_FAILURE / TWCC_CHECKSTATUS.

Values

Type: TW_INT16

Value after MSG_OPENDS: -1

After MSG_RESET/MSG_RESETALL: -1

Allowed Values: -1 and 1 – 32767

Containers

MSG_GET TW_ONEVALUE
TW_RANGE // 2.3 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Sources and applications

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

TW_PENDINGXFERS.Count
10-110 TWAIN 2.3 Specification

ICAP_AUTOBRIGHT

Description

TRUE enables and FALSE disables the Source’s Auto-brightness function (if any).

Source

If TRUE, apply auto-brightness function to acquired image before transfer.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_BOOL

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: FALSE

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_BRIGHTNESS
TWAIN 2.3 Specification 10-111

Chapter 10
ICAP_AUTODISCARDBLANKPAGES

Description

Use this capability to have the Source discard blank images. The Application never sees these
images during the scanning session.

TWBP_DISABLE – this must be the default state for the Source. It indicates that all images will be
delivered to the Application, none of them will be discarded.

TWBP_AUTO – if this is used, then the Source will decide if an image is blank or not and discard as
appropriate.

If the specified value is a positive number in the range 0 to 231–1, then this capability will use it as
the byte size cutoff point to identify which images are to be discarded. If the size of the image is
less than or equal to this value, then it will be discarded. If the size of the image is greater than
this value, then it will be kept so that it can be transferred to the Application.

Values

Type: TW_INT32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: TWBP_DISABLED

Allowed Values: TWBP_DISABLED
TWBP_AUTO

Byte count 0 to 231-1
Containers

MSG_GET TW_ONEVALUE
TW_RANGE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.0

See Also

Best Practices

DG_IMAGE / DAT_EXTIMAGEINFO / MSG_GET
10-112 TWAIN 2.3 Specification

ICAP_AUTOMATICBORDERDETECTION

Description

Turns automatic border detection on and off.

Application

Negotiate this capability to determine the state of the AutoBorder detection.

ICAP_UNDEFINEDIMAGESIZE must be enabled for this feature to work.

Source

If supported, enable or disable automatic border detection according to the value specified.
Default to FALSE for backward compatibility. For this capability to be enabled,
ICAP_UNDEFINEDIMAGESIZE must be enabled.

Values

Type: TW_BOOL

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: TRUE if DAT_IMAGEINFO values in State 6 are identical
to the DAT_IMAGEINFO values after TWRC_XFERDONE,
otherwise FALSE

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

ICAP_UNDEFINEDIMAGESIZE
ICAP_AUTOMATICDESKEW
ICAP_AUTOSIZE
TWAIN 2.3 Specification 10-113

Chapter 10
ICAP_AUTOMATICCOLORENABLED

Description

The Source automatically detects the pixel type of the image and returns either a color image or a
non-color image specified by ICAP_AUTOMATICCOLORNONCOLORPIXELTYPE.

Application

When the Application sets this capability to TRUE, it must be prepared to receive a mixture of
color and non-color images.

Source

When this capability is TRUE the Source automatically determines the pixel type.

Values

Type: TW_BOOL

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: FALSE

Allowed Values: TRUE, FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.1

See Also

Best Practices

ICAP_PIXELTYPE
ICAP_AUTOMATICCOLORNONCOLORPIXELTYPE
10-114 TWAIN 2.3 Specification

ICAP_AUTOMATICCOLORNONCOLORPIXELTYPE

Description

Specifies the non-color pixel type to use when automatic color is enabled.

Application

ICAP_AUTOMATICCOLORENABLED must be TRUE. When it is, the Application sets this
capability to specify the pixel type the Source uses when transferring non-color images.

Source

When ICAP_AUTOMATICCOLORENABLED is TRUE, this capability determines the pixel type of the
non-color images.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: TWPT_BW

Allowed Values: TWPT_BW
TWPT_GRAY

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.1

See Also

Best Practices

ICAP_PIXELTYPE
ICAP_AUTOMATICCOLORENABLED
TWAIN 2.3 Specification 10-115

Chapter 10
ICAP_AUTOMATICCROPUSESFRAME

Description

Set TRUE if DAT_IMAGELAYOUT, ICAP_SUPPORTEDSIZES or ICAP_FRAMES reduces the amount
of data captured from the device, potentially improving the performance of the driver, even if any
automatic detection capability like ICAP_AUTOMATICBORDERDECTION is set TRUE.

This is a read only capability.

Application

If this capability reports TRUE then the Application may assume a performance benefit from
specifying a cropping frame using DAT_IMAGELAYOUT, ICAP_SUPPORTEDSIZES or
ICAP_FRAMES.

The Application sets the frame after turning on any automated capabilities. For instance, if the
Application wants automatic border detection, but knows that the largest paper size it will receive
is US Letter, then it sets ICAP_AUTOMATICBORDERDETECTION to TRUE and then sets
ICAP_SUPPORTEDSIZES to TWSS_USLETTER.

Source

The Source reports TRUE if it uses the cropping frame specified by DAT_IMAGELAYOUT,
ICAP_SUPPORTEDSIZES or ICAP_FRAMES to reduce the amount of data physically transferred
from the device to the Source.

The Source is not obligated to exactly match the frame requested by the Application, but it
should use it as a hint to improve the performance of the capture.

Values

Type: TW_BOOL

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

Source Operations

MSG_GET / MSG_GETCURRENT / MSG_GETDEFAULT
MSG_QUERYSUPPORT

TWAIN Version Introduced

Version 2.1
10-116 TWAIN 2.3 Specification

See Also

Best Practices

ICAP_AUTOMATICBORDERDETECTION
ICAP_FRAMES
ICAP_SUPPORTEDSIZES
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GETDEFAULT
TWAIN 2.3 Specification 10-117

Chapter 10
ICAP_AUTOMATICDESKEW

Description

Turns automatic deskew correction on and off.

Application

Negotiate this capability to enable or disable Automatic deskew.

Source

If supported, enable or disable the Automatic deskew feature according to the value specified for
future transfers. Default to FALSE for backward compatibility. Some Sources may require
ICAP_UNDEFINEDIMAGESIZE to be enabled.

Values

Type: TW_BOOL

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: TRUE if DAT_IMAGEINFO values in State 6 are identical
to the DAT_IMAGEINFO values after TWRC_XFERDONE,
otherwise FALSE

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

ICAP_AUTOMATICBORDERDETECTION
ICAP_AUTOMATICROTATE
ICAP_AUTOSIZE
ICAP_UNDEFINEDIMAGESIZE
10-118 TWAIN 2.3 Specification

ICAP_AUTOMATICLENGTHDETECTION

Description

Controls the automatic detection of the length of a document, this is intended for use with an
Automatic Document Feeder.

Application

If this capability is present, but does not support TWQC_SET when MSG_QUERYSUPPORT is called,
then it indicates the fixed behavior of the Source (always TRUE or always FALSE).

If this capability reports TWQC_SET, then the Application can control the automatic detection of
the length of a document.

If ICAP_AUTOMATICBORDERDETECTION (which detects width and length) is set to TRUE, then
this capability is ignored.

Source

If set to TRUE, the Source automatically crops the height of the image to the length of the
document.

If set to FALSE (and assuming ICAP_AUTOMATICBORDERDETECTION is FALSE), the Source
returns the full height specified by ICAP_FRAME or DAT_IMAGELAYOUT, regardless of the actual
height of the captured document (for instance, a check in an A4 size area).

Values

Type: TW_BOOL

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: TRUE if DAT_IMAGEINFO values in State 6 are identical
to the DAT_IMAGEINFO values after TWRC_XFERDONE,
otherwise FALSE

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

Source Operations

MSG_GET / MSG_GETCURRENT / MSG_GETDEFAULT
MSG_SET / MSG_RESET
MSG_QUERYSUPPORT
TWAIN 2.3 Specification 10-119

Chapter 10
TWAIN Version Introduced

Version 2.1

See Also

Best Practices

ICAP_AUTOMATICBORDERDETECTION
ICAP_FRAMES
ICAP_SUPPORTEDSIZES
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GETDEFAULT
DG_IMAGE / DAT_IMAGELAYOUT / MSG_RESET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET
10-120 TWAIN 2.3 Specification

ICAP_AUTOMATICROTATE

Description

When TRUE this capability depends on intelligent features within the Source to automatically
rotate the image to the correct position.

Application

If this capability is set to TRUE, then it must be assumed that no other correction is required
(deskew, rotation, etc…); the Source is guaranteeing that it will deliver images in the correct
orientation.

Source

There are no criteria for how this automatic rotation is determined. A Source may use a field of
text, or some distinguishing non-text field, such as a barcode or a logo, or it may rely on form
recognition to help rotate the document.

Values

Type: TW_BOOL

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: FALSE

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

ICAP_AUTOMATICDESKEW
ICAP_ORIENTATION
ICAP_ROTATION
TWAIN 2.3 Specification 10-121

Chapter 10
ICAP_AUTOSIZE

Description

Force the output image dimensions to match either the current value of ICAP_SUPPORTEDSIZES
or any of its current allowed values.

Source

This capability takes precedence over CAP_AUTOMATICBORDERDETECTION and
ICAP_AUTOMATICLENGTHDETECTION.

When this capability is on images will have their dimensions adjusted to exactly match either the
current value of ICAP_SUPPORTEDSIZES, if set to TWAS_CURRENT. Or to any of the allowed
values in ICAP_SUPPORTEDSIZES, if set to TWAS_AUTO.

If set to TWAS_NONE, then no action is taken.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: TWAS_NONE

Allowed Values: TWAS_NONE
TWAS_AUTO
TWAS_CURRENT

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.0

See Also

Best Practices

ICAP_AUTOMATICBORDERDETECTION
ICAP_AUTOMATICDESKEW
ICAP_ORIENTATION

ICAP_ROTATION
ICAP_SUPPORTEDSIZES
10-122 TWAIN 2.3 Specification

ICAP_BARCODEDETECTIONENABLED

Description

Turns bar code detection on and off.

Source

Support this capability if the scanner supports any Bar code recognition. If the device allows this
feature to be turned off, then default to off. If the device does not support disabling this feature,
report TRUE and disallow attempts to set FALSE.

Values

Type: TW_BOOL

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: FALSE

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

ICAP_SUPPORTEDBARCODETYPES
ICAP_SUPPORTEDPATCHCODETYPES
ICAP_BARCODEMAXSEARCHPRIORITIES
ICAP_BARCODESEARCHPRIORITIES

ICAP_BARCODESEARCHMODE
ICAP_BARCODEMAXRETRIES
ICAP_BARCODETIMEOUT
TWAIN 2.3 Specification 10-123

Chapter 10
ICAP_BARCODEMAXRETRIES

Description

Restricts the number of times a search will be retried if none are found on each page.

Application

Refine this capability to limit the number of times the bar code search algorithm is retried on a
page that contains no bar codes.

Source

If supported, limit the number of retries the value specified.

Values

Type: TW_UINT32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: 1 to 232 –1

Containers

MSG_GET TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

ICAP_BARCODEDETECTIONENABLED
ICAP_SUPPORTEDBARCODETYPES
ICAP_SUPPORTEDPATCHCODETYPES
ICAP_BARCODEMAXSEARCHPRIORITIES

ICAP_BARCODESEARCHPRIORITIES
ICAP_BARCODESEARCHMODE
ICAP_BARCODETIMEOUT
10-124 TWAIN 2.3 Specification

ICAP_BARCODEMAXSEARCHPRIORITIES

Description

The maximum number of supported search priorities.

Application

Query this value to determine how many bar code detection priorities can be set.

Set this value to limit the number of priorities to speed the detection process.

Source

If bar code searches can be prioritized, report the maximum number of priorities allowed for a
search.

Values

Type: TW_UINT32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: 1 to 232 –1

Containers

MSG_GET TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

ICAP_BARCODEDETECTIONENABLED
ICAP_SUPPORTEDBARCODETYPES
ICAP_SUPPORTEDPATCHCODETYPES
ICAP_BARCODESEARCHPRIORITIES

ICAP_BARCODESEARCHMODE
ICAP_BARCODEMAXRETRIES
ICAP_BARCODETIMEOUT
TWAIN 2.3 Specification 10-125

Chapter 10
ICAP_BARCODESEARCHMODE

Description

Restricts bar code searching to certain orientations, or prioritizes one orientation over the other.

Application

Negotiate this capability if the orientation of bar codes is already known to the application.
Refinement of this capability can speed the bar code search.

Source

If set then apply the specified refinements to future bar code searches.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWBD_HORZ
TWBD_VERT
TWBD_HORZVERT
TWBD_VERTHORZ

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

ICAP_BARCODEDETECTIONENABLED
ICAP_SUPPORTEDBARCODETYPES
ICAP_SUPPORTEDPATCHCODETYPES
ICAP_BARCODEMAXSEARCHPRIORITIES

ICAP_BARCODESEARCHPRIORITIES
ICAP_BARCODEMAXRETRIES
ICAP_BARCODETIMEOUT
10-126 TWAIN 2.3 Specification

ICAP_BARCODESEARCHPRIORITIES

Description

A prioritized list of bar code types dictating the order in which bar codes will be sought.

Application

Set this capability to specify the order and priority for bar code searching. Refining the priorities
to only the bar code types of interest to the application can speed the search process.

Source

If this type of search refinement is supported, then report the current values.

If set, then limit future searches to the specified bar codes in the specified priority order.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWBT_2OF5DATALOGIC
TWBT_2OF5IATA
TWBT_2OF5INDUSTRIAL
TWBT_2OF5INTERLEAVED
TWBT_2OF5MATRIX
TWBT_2OF5NONINTERLEAVED
TWBT_3OF9
TWBT_3OF9FULLASCII
TWBT_CODABAR
TWBT_CODABARWITHSTARTSTOP
TWBT_CODE128
TWBT_CODE93
TWBT_EAN13
TWBT_EAN8
TWBT_MAXICODE
TWBT_PDF417
TWBT_POSTNET
TWBT_QRCODE
TWBT_UCC128
TWBT_UPCA
TWBT_UPCE

Containers

MSG_GET TW_ARRAY

MSG_GETCURRENT TW_ARRAY

MSG_GETDEFAULT TW_ARRAY

MSG_SET TW_ONEVALUE
TW_ARRAY

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ARRAY

MSG_RESET TW_ARRAY
TWAIN 2.3 Specification 10-127

Chapter 10
MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

ICAP_BARCODEDETECTIONENABLED
ICAP_SUPPORTEDBARCODETYPES
ICAP_SUPPORTEDPATCHCODETYPES
ICAP_BARCODEMAXSEARCHPRIORITIES

ICAP_BARCODESEARCHMODE
ICAP_BARCODEMAXRETRIES
ICAP_BARCODETIMEOUT
10-128 TWAIN 2.3 Specification

ICAP_BARCODETIMEOUT

Description

Restricts the total time spent on searching for a bar code on each page.

Application

Refine this value to tune the length of time the search algorithm is allowed to execute before
giving up.

Source

If supported, limit the duration of a bar code search to the value specified.

Values

Type: TW_UINT32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: 1 to 232 –1

Containers

MSG_GET TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

ICAP_BARCODEDETECTIONENABLED
ICAP_SUPPORTEDBARCODETYPES
ICAP_SUPPORTEDPATCHCODETYPES
ICAP_BARCODEMAXSEARCHPRIORITIES

ICAP_BARCODESEARCHPRIORITIES
ICAP_BARCODESEARCHMODE
ICAP_BARCODEMAXRETRIES
TWAIN 2.3 Specification 10-129

Chapter 10
ICAP_BITDEPTH

Description

Specifies the pixel bit depths for the Current value of ICAP_PIXELTYPE.

For example;

• ICAP_PIXELTYPE = TWPT_GRAY, this capability specifies whether this is 4-bit gray or 8- bit
gray

• ICAP_PIXELTYPE = TWPT_RGB, this capability specifies whether this is 24-bit color or 48-bit
color

This depth applies to the total of all the data channels. TW_IMAGEINFO BitsPerSample is used to
identify the number of bits in each channel.

Application

The application should loop through all the ICAP_PIXELTYPEs it is interested in and negotiate
the ICAP_BITDEPTH(s) for each.

For all allowed settings of ICAP_PIXELTYPE

• Set ICAP_PIXELTYPE

• Set ICAP_BITDEPTH for the current ICAP_PIXELTYPE

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If the bit depth in a MSG_SET is not supported for the current ICAP_PIXELTYPE setting, return
TWRC_FAILURE / TWCC_BADVALUE.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (dependent on ICAP_PIXELTYPE)

Allowed Values: >=1

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Image Sources
10-130 TWAIN 2.3 Specification

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_PIXELTYPE
TWAIN 2.3 Specification 10-131

Chapter 10
ICAP_BITDEPTHREDUCTION

Description

Specifies the Reduction Method the Source should use to reduce the bit depth of the data. Most
commonly used with ICAP_PIXELTYPE = TWPT_BW to reduce gray data to black and white.

Application

Set the capability to the reduction method to be used in future acquisitions

Also select the Halftone or Threshold to be used.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWBR_THRESHOLD
TWBR_HALFTONE
TWBR_CUSTHALFTONE
TWBR_DIFFUSION
TWBR_DYNAMICTHRESHOLD

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Sources when ICAP_PIXELTYPE is TWPT_BW.

TWAIN Version Introduced

Version 1.5

See Also

Best Practices

ICAP_CUSTHALFTONE
ICAP_HALFTONES
ICAP_PIXELTYPE
ICAP_THRESHOLD
10-132 TWAIN 2.3 Specification

ICAP_BITORDER

Description

Specifies how the bytes in an image are filled by the Source. TWBO_MSBFIRST indicates that the
leftmost bit in the byte (usually bit 7) is the byte’s Most Significant Bit.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Value after MSG_OPENDS: TWBO_MSBFIRST

After MSG_RESET/MSG_RESETALL: TWBO_MSBFIRST

Allowed Values: TWBO_LSBFIRST
TWBO_MSBFIRST

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Image Sources

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_BITORDERCODES
TWAIN 2.3 Specification 10-133

Chapter 10
ICAP_BITORDERCODES

Description

Used for CCITT data compression only. Indicates the bit order representation of the stored
compressed codes.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Value after MSG_OPENDS: TWBO_LSBFIRST

After MSG_RESET/MSG_RESETALL: TWBO_LSBFIRST

Allowed Values: TWBO_LSBFIRST
TWBO_MSBFIRST

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_COMPRESSION
10-134 TWAIN 2.3 Specification

ICAP_BRIGHTNESS

Description

The brightness values available within the Source.

Application

The application can use this capability to inquire, set, or restrict the values for BRIGHTNESS used
in the Source.

Source

Source should normalize the values into the range. Make sure that a ‘0’ value is available as the
Current Value when the Source starts up. If the Source’s ± range is asymmetric about the ‘0’ value,
set range maxima to ±1000 and scale homogeneously from the ‘0’ value in each direction. This will
yield a positive range whose step size differs from the negative range’s step size.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: 0

Allowed Values: -1000 to +1000

Containers

MSG_GET TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_AUTOBRIGHT
ICAP_CONTRAST
TWAIN 2.3 Specification 10-135

Chapter 10
ICAP_CCITTKFACTOR

Description

Used for CCITT Group 3 2-dimensional compression. The ‘K’ factor indicates how often the new
compression baseline should be re-established. A value of 2 or 4 is common in facsimile
communication. A value of zero in this field will indicate an infinite K factor—the baseline is only
calculated at the beginning of the transfer.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values:

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: 4

Allowed Values: 0 to 216

Containers

MSG_GET TW_ONEVALUE
TW_RANGE // 2.3 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

When the ICAP_COMPRESSION value is TWCP_GROUP32D.

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_COMPRESSION
10-136 TWAIN 2.3 Specification

ICAP_COLORMANAGEMENTENABLED

Description

Disables the Source’s color and gamma tables for color and grayscale images, resulting in output
that that could be termed “raw”.

Application

When the Application sets this capability to FALSE, it takes responsibility for profiling the color
and grayscale output of the device, and applying the desired color and gamma corrections itself.
The Application is completely responsible for the quality of the finished image.

Source

When this capability is FALSE the Source turns off as much of its color and gamma correction as
it can. There is no universal standard for this behavior, so it makes its best effort.

It is recommended that the Source not expose this capability unless it can do a credible job of
outputting “raw” image data.

Values

Type: TW_BOOL

Value after MSG_OPENDS: TRUE

After MSG_RESET/MSG_RESETALL: TRUE

Allowed Values: TRUE, FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.1

See Also

Best Practices

ICAP_PIXELTYPE
TWAIN 2.3 Specification 10-137

Chapter 10
ICAP_COMPRESSION

Description

Allows the application and Source to identify which compression schemes they have in common
for Buffered Memory and File transfers.

Note for File transfers:

Since only certain file formats support compression, this capability must be negotiated after
setting the desired file format with ICAP_IMAGEFILEFORMAT.

TWCP_NONE All Sources must support this.

TWCP_PACKBITS Can be used with TIFF or PICT

TWCP_GROUP31D,

TWCP_GROUP31DEOL,

TWCP_GROUP32D,

TWCP_GROUP4 Are all from the CCITT specification (now ITU), intended for
document images (can be used with TIFF).

TWCP_JPEG Intended for the compression of color photographs (can be used with
TIFF, JFIF or SPIFF).

TWCP_LZW A compression licensed by UNISYS (can be used with TIFF).

TWCP_JBIG Intended for bitonal and grayscale document images (can be used
with TIFF or SPIFF).

TWCP_PNG This compression can only be used if ICAP_IMAGEFILEFORMAT is
set to TWFF_PNG.

TWCP_RLE4,

TWCP_RLE8,

TWCP_BITFIELDS These compressions can only be used if ICAP_IMAGEFILEFORMAT is
set to TWFF_BMP.

TWCP_ZIP Per RFC 1951 (AKA 'Flate' and 'Deflate')

TWCP_JPEG2000 Per ISO/IEC 15444

Application

Applications must not assume that a Source can provide compressed Buffered Memory or File
transfers, because many cannot. The application should use MSG_SET on a TW_ONEVALUE
container to specify the compression type for future transfers.

Source

The current value of this setting specifies the compression method to be used in future transfers.
If the image transfer mechanism is changed, then the allowed list must be modified to reflect the
supported values. If the current value is not available on the new allowed list, then the Source
must change it to its preferred value.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)
10-138 TWAIN 2.3 Specification

After MSG_RESET/MSG_RESETALL: TWCP_NONE

Allowed Values: TWCP_NONE
TWCP_PACKBITS
TWCP_GROUP31D
TWCP_GROUP31DEOL
TWCP_GROUP32D
TWCP_GROUP4
TWCP_JPEG
TWCP_LZW
TWCP_JBIG
TWCP_PNG
TWCP_RLE4
TWCP_RLE8
TWCP_BITFIELDS
TWCP_ZIP
TWCP_JPEG2000

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Image Sources

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

CAP_XFERCOUNT
ICAP_IMAGEFILEFORMAT
ICAP_JPEGQUALITY
ICAP_JPEGSUBSAMPLING

DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET
DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET
TWAIN 2.3 Specification 10-139

Chapter 10
ICAP_CONTRAST

Description

The contrast values available within the Source.

Application

The application can use this capability to inquire, set or restrict the values for CONTRAST used in
the Source.

Source

Scale the values available internally into a homogeneous range between -1000 and 1000. Make
sure that a ‘0’ value is available as the Current value when the Source starts up. If the Source’s ±
range is asymmetric about the ‘0’ value, set range maxima to ±1000 and scale homogeneously
from the ‘0’ value in each direction. This will yield a positive range whose step size differs from
the negative range’s step size.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: 0

Allowed Values: -1000 to +1000

Containers

MSG_GET TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_BRIGHTNESS
10-140 TWAIN 2.3 Specification

ICAP_CUSTHALFTONE

Description

Specifies the square-cell halftone (dithering) matrix the Source should use to halftone the image.

Application

The application should also set ICAP_BITDEPTHREDUCTION to TWBR_CUSTHALFTONE to use this
capability.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT8

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: Any rectangular array

Containers

MSG_GET TW_ARRAY

MSG_GETCURRENT TW_ARRAY

MSG_GETDEFAULT TW_ARRAY

MSG_SET TW_ONEVALUE
TW_ARRAY

MSG_SETCONSTRAINT TW_ARRAY

MSG_RESET TW_ARRAY

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

When the ICAP_BITDEPTHREDUCTION value is TWBR_CUSTHALFTONE.

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_BITDEPTHREDUCTION
TWAIN 2.3 Specification 10-141

Chapter 10
ICAP_EXPOSURETIME

Description

Specifies the exposure time used to capture the image, in seconds.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: >0

Containers

MSG_GET TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_FLASHUSED2
ICAP_LAMPSTATE
ICAP_LIGHTPATH
ICAP_LIGHTSOURCE
10-142 TWAIN 2.3 Specification

ICAP_EXTIMAGEINFO

Description

Allows the application to query the data source to see if it supports the operation triplet
DG_IMAGE / DAT_EXTIMAGEINFO / MSG_GET. Support is only available if the capability is
supported and the value TRUE is allowed.

When set to TRUE, the source supports the DG_IMAGE / DAT_EXTIMAGEINFO / MSG_GET
message, and data will be returned by this call for any supported TWEI_ items.

When set to FALSE, the application is indicating that it will make no calls to DG_IMAGE /
DAT_EXTIMAGEINFO/ MSG_GET. FALSE is the default.

Note: The TWAIN API allows for an application to query the results of many advanced device/
manufacturer operations. The responsibility of configuring and setting up each advanced
operation lies with the device’s data source user interface. Since the configuration of
advanced device/manufacturer-specific operations varies from manufacturer to
manufacturer, placing the responsibility for setup and configuration of advanced
operations allows the application to remain device independent.

Application

Set this capability to FALSE if there is no intent to use DG_IMAGE /DAT_EXTIMAGEINFO /
MSG_GET. This may improve performance, since the Source is not required to collect that
information from the device. Set this capability to TRUE if using DG_IMAGE /
DAT_EXTIMAGEINFO / MSG_GET to ensure all TWEI_ are available.

Source

If not supported, return TWRC_FAILURE/ TWCC_CAPUNSUPPORTED.

Values

Type: TW_BOOL

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: TRUE

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None
TWAIN 2.3 Specification 10-143

Chapter 10
TWAIN Version Introduced

Version 1.7

See Also

Best Practices

ICAP_SUPPORTEDEXTIMAGEINFO
DG_IMAGE / DAT_EXTIMAGEINFO / MSG_GET
10-144 TWAIN 2.3 Specification

ICAP_FEEDERTYPE

Description

Allows the Application to set scan parameters depending upon the type of feeder.

If the Source has a general type of the feeder only, default scan parameters can depend upon the
type of scan (general document or photo). In this case, negotiating this capability will allow the
Source adjusting the settings accordingly. It is advised, therefore, that this capability be
negotiated prior to the capabilities related to specific Source settings (like ICAP_*RESOLUTION,
ICAP_PIXELTYPE, etc.) but after the other feeder-related capabilities (CAP_FEEDERENABLED,
CAP_FEEDERLOADED).

Application

MSG_GET provides a list of available feeder types. MSG_SET specifies which type of feeder to use.

 Source

Use this capability to report either the types of feeders available or (in the case where there is a
general type feeder only) the scan types supported through the feeder.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWFE_GENERAL
TWFE_PHOTO

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.91

See Also

Best Practices

CAP_FEEDERENABLED CAP_FEEDERLOADED
TWAIN 2.3 Specification 10-145

Chapter 10
ICAP_FILMTYPE

Description

When ICAP_LIGHTPATH is set to TWLP_TRANSMISSIVE it allows an Application to set what kind
of film is being scanned.

Application

Allows setting of current type of transmissive media you wish to scan.

 Source

If supported, the Source should compensate for the type of media to return a positive image.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWFM_POSITIVE
TWFM_NEGATIVE

Containers

MSG_GET TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.2

See Also

Best Practices

ICAP_LIGHTPATH
10-146 TWAIN 2.3 Specification

ICAP_FILTER

Description

Describes the color characteristic of the subtractive filter applied to the image data. Multiple
filters may be applied to a single acquisition.

If the Source supports DAT_FILTER as well, then it will apply the filter set by the last SET
operation invoked by the Application. Setting/Resetting ICAP_FILTER will clear the filter
associated with DAT_FILTER. Setting/Resetting DAT_FILTER will clear the filter associated with
ICAP_FILTER.

Source

If the Source only supports application of a single filter during an acquisition and multiple filters
are specified by the application, set the current filter to the first one requested and return
TWRC_CHECKSTATUS.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (empty array)

Allowed Values: TWFT_RED
TWFT_GREEN
TWFT_BLUE
TWFT_NONE
TWFT_WHITE
TWFT_CYAN
TWFT_MAGENTA
TWFT_YELLOW
TWFT_BLACK

Containers

MSG_GET TW_ONEVALUE
TW_ARRAY

MSG_GETCURRENT TW_ARRAY

MSG_GETDEFAULT TW_ARRAY

MSG_SET TW_ONEVALUE
TW_ARRAY

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ARRAY

MSG_RESET TW_ARRAY

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0
TWAIN 2.3 Specification 10-147

Chapter 10
See Also

Best Practices

DG_IMAGE / DAT_FILTER / MSG_GET
DG_IMAGE / DAT_FILTER / MSG_GETDEFAULT
DG_IMAGE / DAT_FILTER / MSG_SET
DG_IMAGE / DAT_FILTER / MSG_RESET
10-148 TWAIN 2.3 Specification

ICAP_FLASHUSED2

Description

For devices that support flash. MSG_SET selects the flash to be used (if any). MSG_GET reports the
current setting. This capability replaces ICAP_FLASHUSED, which is only able to negotiate the
flash being on or off.

Application

Note that an image with flash may have a different color composition than an image without
flash.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWFL_NONE
TWFL_OFF
TWFL_ON
TWFL_AUTO
TWFL_REDEYE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

ICAP_FLASHUSED in the TWAIN 2.0 Specification
TWAIN 2.3 Specification 10-149

Chapter 10
ICAP_FLIPROTATION

Description

Flip rotation is used to properly orient images that flip orientation every other image.

TWFR_BOOK The images to be scanned are viewed in book form, flipping each
page from left to right or right to left.

TWFR_FANFOLD The images to be scanned are viewed in fanfold paper style, flipping
each page up or down.

On duplex paper, the As are all located on the top, and the Bs are all located on the bottom. If
ICAP_FLIPROTATION is set to TWFR_BOOK, and fanfold paper is scanned, then every B image
will be upside down. Setting the capability to TWFR_FANFOLD instructs the Source to rotate the B
images 180 degrees around the x-axis.

Because this capability is described to act upon every other image, it will work correctly in
simplex mode, assuming that every other simplex image is flipped in the manner described above.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: TWFR_BOOK

Allowed Values: TWFR_BOOK
TWFR_FANFOLD

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

A B BADirection of scan

B

AA

B

Direction of scan
10-150 TWAIN 2.3 Specification

TWAIN Version Introduced

Version 1.8

See Also

Best Practices
TWAIN 2.3 Specification 10-151

Chapter 10
ICAP_FRAMES

Description

The list of frames the Source will acquire on each page.

Application

MSG_GET returns the size and location of all the frames the Source will acquire image data from
when acquiring from each page.

MSG_GETCURRENT returns the size and location of the next frame to be acquired.

MSG_SET allows the application to specify the frames and their locations to be used to acquire
from future pages. If the application isn't interested in setting the origin of the image, set both Top
and Left to zero.

Defines the Left, Top, Right, and Bottom coordinates (in ICAP_UNITS) of the rectangle enclosing
the original image on the original scanner. This ICAP is most useful if the Source supports
simultaneous acquisition from multiple frames. Use ICAP_MAXFRAMES to establish this ability.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FRAME

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: Device dependent

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

TW_IMAGELAYOUT
CAP_SEGMENTED
CAP_SUPPORTEDCAPSSEGMENTUNIQUE

ICAP_MAXFRAMES
ICAP_SUPPORTEDSIZES
10-152 TWAIN 2.3 Specification

ICAP_GAMMA

Description

Gamma correction value for the image data.

Application

Do not use with TW_CIECOLOR, TW_GRAYRESPONSE, or TW_RGBRESPONSE data.

Source

If the application supplies an invalid gamma value, the Source selects the closest value and
returns TWRC_FAILURE / TWCC_CHECKSTATUS.

Values

Type: TW_FIX32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: 2.2

Allowed Values: Any value

Containers

MSG_GET TW_ONEVALUE
TW_RANGE // 2.3 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices
TWAIN 2.3 Specification 10-153

Chapter 10
ICAP_HALFTONES

Description

A list of names of the halftone patterns available within the Source.

Application

The application may not rename any halftone pattern.

The application should also set ICAP_BITDEPTHREDUCTION to use this capability.

For backwards compatibility, Applications need to be aware that a TWAIN 1.0 Data Sources
might respond with a TW_ARRAY container.

Values

Type: TW_STR32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: Any halftone name

Containers

MSG_GET TW_ENUMERATION
TW_ONEVALUE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ENUMERATION

MSG_SETCONSTRAINT TW_ENUMERATION
TW_ONEVALUE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

When the ICAP_BITDEPTHREDUCTION value is TWBR_HALFTONE.

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_BITDEPTHREDUCTION
ICAP_CUSTHALFTONE
ICAP_THRESHOLD
10-154 TWAIN 2.3 Specification

ICAP_HIGHLIGHT

Description

Specifies which value in an image should be interpreted as the lightest “highlight.” All values
“lighter” than this value will be clipped to this value. Whether lighter values are smaller or larger
can be determined by examining the Current value of ICAP_PIXELFLAVOR.

Source

If more or less than 8 bits are used to describe the image, the actual data values should be
normalized to fit within the 0-255 range. The normalization need not result in a homogeneous
distribution if the original distribution was not homogeneous.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: 255

Allowed Values: 0 to 255

Containers

MSG_GET TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_SHADOW
TWAIN 2.3 Specification 10-155

Chapter 10
ICAP_ICCPROFILE

Description

Informs the application if the source has an ICC profile and can embed or link it in the current
ICAP_IMAGEFILEFORMAT. Tells the source if the application would like an ICC profile
embedded or linked into the image file the source will write.

Application

Use this ICAP to determine if the source supports embedding or linking of ICC profiles into files
and to control whether or not the source does so.

Source

 This should only be supported if ICAP_IMAGEFILEFORMAT is set to a file format that supports
the embedding or linking of profiles and the source has an ICC profile it can embed.

Since the given ICAP_PIXELTYPE may not have been determined at the time this is called, the
source should ignore the current ICAP_PIXELTYPE. For example, if the source has an ICC profile
for color data, but not grayscale or monochrome data, it should offer values as if all pixeltypes are
supported.

In the case of TWPT_SRGB, the source should embed the sRGB ICC profile to the file if told to embed a

profile.

Values

Type: TW_UNIT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWIC_NONE
TWIC_EMBED
TWIC_LINK

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.91
10-156 TWAIN 2.3 Specification

See Also

Best Practices

DG_IMAGE / DAT_ICCPROFILE / MSG_GET
TWAIN 2.3 Specification 10-157

Chapter 10
ICAP_IMAGEDATASET

Description

Gets or sets the image indices that will be delivered during the standard image transfer done in
States 6 and 7. Indices are assumed to start at 1, so a TW_ONEVALUE container sets an implied
range from 1 to the number specified. TW_RANGE returns are useful for those cases where the
images are contiguous (5 .. 36). TW_ARRAY returns should be used were index values are
discontinuous (as could be the case where the user previously set such a data set). See the note in
the Values section below.

Application

A MSG_RESET operation should always be done before a MSG_GET if the application wishes to get
the complete list of available images. A MSG_SET operation will define the number and order of
images delivered during States 6 and 7.

Source

For MSG_GET, if a contiguous range of images are available starting from the first index (e.g., 1 ..
36) it is recommended that the TW_ONEVALUE container is used specifying just the total number of
available images (e.g., 36).

If not supported, return TWRC_FAILURE/ TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT32

Value after MSG_OPENDS: (entire range or set of available images)

After MSG_RESET/MSG_RESETALL: (entire range or set of available images)

Allowed Values: 0 to 232 -1 (for MSG_GET)
1 to 232 -1 (for MSG_SET)

Containers

MSG_GET TW_ARRAY (see note below)
TW_RANGE (see note below)
TW_ONEVALUE (see note below)

MSG_GETCURRENT TW_ARRAY

MSG_GETDEFAULT TW_ARRAY

MSG_SET TW_ONEVALUE (see note below)
TW_ARRAY (see note below)
TW_RANGE (see note below)

MSG_SETCONSTRAINT TW_ONEVALUE (see note below)
TW_ARRAY (see note below)
TW_RANGE (see note below)

MSG_RESET TW_ARRAY

MSG_QUERYSUPPORT TW_ONEVALUE

Note: Source must use the container type used during the last successful SET/RESET operation.
These container types are supported for the returning discontinuous indices that have
been previously set by the application. It is highly recommended that for an initialized or
reset Image Store device, the TW_ONEVALUE container be the only one returned by the
10-158 TWAIN 2.3 Specification

MSG_GET operation. In other words, the data source should not expose the details of the
internal memory management of the Image Store device by claiming that it has a hole in
its storage locations due to user deletions. For example, a camera that currently has data
for pictures 1 to 10 should report that it has 10 images available. If the user later deletes
pictures 5, 7, and 9, it should now report that it has 7 images available (i.e., 1 to 7), and not
claim that it has pictures 1, 2, 3, 4, 6, 8, and 10 available. To do so would expose the
internal memory management constraints of the device and serves little use but to confuse
the user.

Required By

All Image Store Data Sources.

TWAIN Version Introduced

Version 1.7

See Also

Best Practices
TWAIN 2.3 Specification 10-159

Chapter 10
ICAP_IMAGEFILEFORMAT

Description

Informs the application which file formats the Source can generate (MSG_GET). Tells the Source
which file formats the application can handle (MSG_SET).

TWFF_TIFF Used for document imaging. Native Linux format.

TWFF_PICT Native Macintosh format

TWFF_BMP Native Microsoft format

TWFF_XBM Used for document imaging

TWFF_JFIF Wrapper for JPEG images

TWFF_FPX FlashPix, used with digital cameras

TWFF_TIFFMULTI Multi-page TIFF files

TWFF_PNG An image format standard intended
for use on the web, replaces GIF

TWFF_SPIFF A standard from JPEG, intended to replace JFIF, also supports JBIG

TWFF_EXIF File format for use with digital cameras.

TWFF_PDF A file format from Adobe

TWFF_JP2 A file format from the Joint Photographic Experts Group ISO/IEC
15444-1

TWFF_JPX A file format from the Joint Photographic Experts Group ISO/IEC
15444-2

TWFF_DEJAVU A file format from LizardTech

TWFF_PDFA A file format from Adobe PDF/A, Version 1

TWFF_PDFA2 A file format from Adobe PDF/A, Version 2

Application

Use this ICAP to determine which formats are available for file transfers, and set the context for
other capability negotiations such as ICAP_COMPRESSION.

Be sure to use the DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET operation to specify the
format to be used for a particular acquisition.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

If Operation is not supported, return TWRC_FAILURE, TWCC_CAPBADOPERATION. (See
DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT)

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWFF_TIFF
TWFF_PICT
10-160 TWAIN 2.3 Specification

TWFF_BMP
TWFF_XBM
TWFF_JFIF
TWFF_FPX
TWFF_TIFFMULT
TWFF_PNG
TWFF_SPIFF
TWFF_EXIF
TWFF_PDF
TWFF_JP2
TWFF_JPX
TWFF_DEVAVU
TWFF_PDFA

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_COMPRESSION
DG_CONTROL / DAT_SETUPFILEXFER / MSG_SET
DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET
TWAIN 2.3 Specification 10-161

Chapter 10
ICAP_IMAGEFILTER

Description

For devices that support image enhancement filtering. This capability selects the algorithm used
to improve the quality of the image.

Application

• TWIF_LOWPASS is good for halftone images.
• TWIF_BANDPASS is good for improving text.
• TWIF_HIGHPASS is good for improving fine lines.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWIF_NONE
TWIF_AUTO
TWIF_LOWPASS
TWIF_BANDPASS
TWIF_HIGHPASS
TWIF_TEXT
TWIF_FINELINE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices
10-162 TWAIN 2.3 Specification

 ICAP_IMAGEMERGE

Description

Merges the front and rear image of a document in one of four orientations: front on the top, front
on the bottom, front on the left or front on the right.

Application

The front and rear have the same settings. It is a customization for a source to allow different
settings, for instance a front of TWPT_RGB and a rear of TWPT_BW.

The merged image can be found at an origin of (0, total-image-height / 2) or (total-image-width,
0), depending on the value of this capability.

Use the TWEI_IMAGEMERGED value with DAT_EXTIMAGEINFO to determine if an image is the
result of a merge.

Source

This capability only has meaning when scanning duplex.

The source chooses how many differences it wants to support between the front and the rear. The
only one it is obligated to deal with is differences in the width and height. In both cases the larger
value must be selected, and the extra space in the smaller image filled in with some color.

If the source cannot negotiate this capability because of a difference in the front and rear settings,
it returns TWCC_CAPSEQERROR.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: TWIM_NONE

Allowed Values: TWIM_NONE
TWIM_FRONTONTOP
TWIM_FRONTONBOTTOM
TWIM_FRONTONLEFT
TWIM_FRONTONRIGHT

Front or Rear For TWIM_FRONTONTOP and TWIM_FRONTONBOTTOM the final image is
twice the pixel height of the larger of the two images. The top image
has its origin at the upper left hand corner. The bottom image has its
origin on the left but down (total-image-height / 2) pixels.

Rear or Front

Front
or
Rear

Rear
or
Front

For TWIM_FRONTONLEFT and TWIM_FRONTONRIGHT the final image
is twice the pixel width of the larger of the two images. The left image
has its origin at the upper left hand corner. The right image has its
origin on the top but left (total-image-width / 2) pixels.
TWAIN 2.3 Specification 10-163

Chapter 10
Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

Source Operations

MSG_GET / MSG_GETCURRENT / MSG_GETDEFAULT
MSG_SET / MSG_RESET
MSG_QUERYSUPPORT

TWAIN Version Introduced

Version 2.1

See Also

Best Practices

CAP_DUPLEXENABLED
ICAP_IMAGEMERGEHEIGHTTHRESHOLD
TWEI_IMAGEMERGED
10-164 TWAIN 2.3 Specification

ICAP_IMAGEMERGEHEIGHTTHRESHOLD

Description

Specifies a Y-Offset in ICAP_UNITS units. Front and rear images less than or equal to this value
are merged according to the settings of ICAP_IMAGEMERGE. If either the front or the rear image is
greater than this value, they are not merged.

Application

The Application specifies this value to help with mixed batches of different paper sizes. For
instance, a value of 4.0 inches would be enough to merge check-size documents, while leaving
larger paper sizes unmerged.

If ICAP_AUTOMATICDESKEW is FALSE, then this value must allow for image skew in the height.
If ICAP_AUTOMATICDESKEW is TRUE, then some small amount above the expected document
height is still recommended.

Source

This capability only has meaning when CAP_INDICATORS is set to a value other than
TWIM_NONE.

Values

Type: TW_FIX32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: 0.0

Allowed Values: 0.0 to ICAP_PHYSICALHEIGHT

Containers

MSG_GET TW_ONEVALUE
TW_RANGE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

Source Operations

MSG_GET / MSG_GETCURRENT / MSG_GETDEFAULT
MSG_SET / MSG_RESET
MSG_QUERYSUPPORT

TWAIN Version Introduced

Version 2.1
TWAIN 2.3 Specification 10-165

Chapter 10
See Also

Best Practices

CAP_INDICATORS
10-166 TWAIN 2.3 Specification

ICAP_JPEGPIXELTYPE

Description

Allows the application and Source to agree upon a common set of color descriptors that are made
available by the Source. This ICAP is only useful for JPEG-compressed buffered memory image
transfers.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWPT_BW
TWPT_GRAY
TWPT_RGB
TWPT_PALETTE
TWPT_CMY
TWPT_CMYK
TWPT_YUV
TWPT_YUVK
TWPT_CIEXYZ

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

When the ICAP_COMPRESSION value is TWCP_JPEG.

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_COMPRESSION
TWAIN 2.3 Specification 10-167

Chapter 10
ICAP_JPEGQUALITY

Description

Use this capability as a shortcut to select JPEG quantization tables that tradeoff quality versus
compressed image size. Used in concert with DAT_JPEGCOMPRSSION it is possible for an
Application to obtain the tables that are appropriate for varying percentages of quality within a
given Source.

TWJQ_UNKNOWN is a read-only value (MSG_GET or MSG_GETCURRENT), the Application cannot set
the Source to this value. This value is reported if the Application uses DAT_JPEGCOMPRESSION
to select the quantization tables, and the Source is unable to resolve those tables to a percentage
value.

The next three TWJQ_ values are intended as markers into the quality range, and are only
applicable with MSG_SET.

MSG_GET, MSG_GETCURRENT and MSG_GETDEFAULT only return values in the range 0 – 100. If an
Application wishes to map a TWJQ_ value to a corresponding value in the range 0 – 100, then it
must issue a MSG_GET after a MSG_SET with one of the three TWJQ_ values.

No assumption is made about the meaning of the range 0 – 99, it may be derived from the JPEG
standard or it may be optimized for the Source’s device. 100, though, implies a lossless form of
compression. Applications are not encouraged to use this value since it results in poor
compression, as well as a format that is not currently widely supported in the industry.

TWJQ_UNKNOWN – read-only; must be the setting for this capability if the user sets the JPEG
compression tables using DAT_JPEGCOMPRESSION, and the Source is not able to map the selected
tables to a specific percentage of quality.

TWJQ_LOW – write-only; implies low quality; the images are at the maximum compression
recommended by the Source.

TWJQ_MEDIUM – write-only; implies medium quality; the images are at the balance point between
good compression and good images. This is an arbitrary setting on the part of the Source writer
that is expected to best represent their device. This is the value that Applications are most
encouraged to use.

TWJQ_HIGH – write-only; implies high quality; the images display the maximum quality that
produces any kind of meaningful compression. Note that images at this setting are still
considered to be lossy.

Values

Type: TW_INT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWJQ_UNKNOWN
TWJQ_LOW
TWJQ_MEDIUM
TWJQ_HIGH
0 - 100

Containers

MSG_GET TW_ONEVALUE
TW_RANGE
TW_ENUMERATION
10-168 TWAIN 2.3 Specification

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

When the ICAP_COMPRESSION value is TWCP_JPEG.

TWAIN Version Introduced

Version 1.9

See Also

Best Practices

ICAP_COMPRESSION
ICAP_JPEGSUBSAMPLING

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GET
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GETDEFAULT
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_RESET
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_SET
TWAIN 2.3 Specification 10-169

Chapter 10
ICAP_JPEGSUBSAMPLING

Description

Use this capability and ICAP_JPEGQUALITY as a shortcut to select JPEG quantization. Used in
concert with DAT_JPEGCOMPRSSION it is possible for an Application to obtain the tables that are
appropriate for varying percentages of quality within a given Source. It has meaning for color
images only.

Source

If requested image is bitonal or grayscale, return TWRC_FAILURE / TWCC_CAPSEQERROR.
If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWJS_444YCBCR
TWJS_444RGB
TWJS_422
TWJS_421
TWJS_411
TWJS_420
TWJS_410
TWJS_311

Containers

MSG_GET TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.2

See Also

Best Practices

ICAP_COMPRESSION
ICAP_JPEGQUALITY

DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GET
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_GETDEFAULT
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_RESET
DG_IMAGE / DAT_JPEGCOMPRESSION / MSG_SET
10-170 TWAIN 2.3 Specification

ICAP_LAMPSTATE

Description

TRUE means the lamp is currently, or should be set to ON. Sources may not support MSG_SET
operations.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_BOOL

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_EXPOSURETIME
ICAP_FLASHUSED2
ICAP_LIGHTPATH
ICAP_LIGHTSOURCE
TWAIN 2.3 Specification 10-171

Chapter 10
ICAP_LIGHTPATH

Description

Describes whether the image was captured transmissively or reflectively.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWLP_REFLECTIVE
TWLP_TRANSMISSIVE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_EXPOSURETIME
ICAP_FILMTYPE
ICAP_FLASHUSED2
ICAP_LAMPSTATE
ICAP_LIGHTSOURCE
10-172 TWAIN 2.3 Specification

ICAP_LIGHTSOURCE

Description

Describes the general color characteristic of the light source used to acquire the image.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWLS_RED
TWLS_GREEN
TWLS_BLUE
TWLS_NONE
TWLS_WHITE
TWLS_UV
TWLS_IR

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_EXPOSURETIME
ICAP_FLASHUSED2
ICAP_LAMPSTATE
ICAP_LIGHTPATH
TWAIN 2.3 Specification 10-173

Chapter 10
ICAP_MAXFRAMES

Description

The maximum number of frames the Source can provide or the application can accept per page.

This is a bounding capability only. It does not establish current or future behavior.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: 1 to 216

Containers

MSG_GET TW_ONEVALUE
TW_RANGE // 2.3 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_FRAMES
TW_IMAGELAYOUT
10-174 TWAIN 2.3 Specification

ICAP_MINIMUMHEIGHT

Description

Allows the source to define the minimum height (Y-axis) that the source can acquire.

This is a read only capability.

Source

The minimum height that the device can scan. This may be different depending on the value of
CAP_FEEDERENABLED.

Values

Type: TW_FIX32

Allowed Values: 0 to 32767 in ICAP_UNITS

Containers

MSG_GET TW_ONEVALUE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.7

See Also

Best Practices

CAP_FEEDERENABLED
ICAP_PHYSICALHEIGHT
ICAP_UNITS
TWAIN 2.3 Specification 10-175

Chapter 10
ICAP_MINIMUMWIDTH

Description

Allows the source to define the minimum width (X-axis) that the source can acquire.

This is a read only capability.

Source

The minimum width that the device can scan. This may be different depending on the value of
CAP_FEEDERENABLED.

Values

Type: TW_FIX32

Allowed Values: 0 to 32767 in ICAP_UNITS

Containers

MSG_GET TW_ONEVALUE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.7

See Also

Best Practices

CAP_FEEDERENABLED
ICAP_PHYSICALWIDTH
ICAP_UNITS
10-176 TWAIN 2.3 Specification

ICAP_MIRROR

Description

How the Source can/should mirror the scanned image data prior to transfer. Operation is
performed in conjunction with ICAP_ORIENTATION and ICAP_ROTATION.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Recommend order - Mirror then Rotation.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: TWMR_NONE

Allowed Values: TWMR_NONE
TWMR_VERTICAL
TWMR_HORIZONTAL

Containers

MSG_GET TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.2

See Also

Best Practices

ICAP_ORIENTATION
ICAP_ROTATION
TWAIN 2.3 Specification 10-177

Chapter 10
ICAP_NOISEFILTER

Description

For devices that support noise filtering. This capability selects the algorithm used to remove
noise.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWNF_NONE
TWNF_AUTO
TWNF_LONEPIXEL
TWNF_MAJORITYRULE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices
10-178 TWAIN 2.3 Specification

ICAP_ORIENTATION

Description

Defines which edge of the “paper” the image’s “top” is aligned with. This information is used to
adjust the frames to match the scanning orientation of the paper. For instance, if an
ICAP_SUPPORTEDSIZE of TWSS_ISOA4 has been negotiated, and ICAP_ORIENTATION is set to
TWOR_LANDSCAPE, then the Source must rotate the frame it downloads to the scanner to reflect
the orientation of the paper.

• ICAP_ORIENTATION affects the values reported by ICAP_FRAMES when using
ICAP_SUPPORTEDSIZES.

• ICAP_ORIENTATION is ignored when set using ICAP_FRAMES or DAT_IMAGELAYOUT.

The upper-left of the image is defined as the location where both the primary and secondary scans
originate. (The X axis is the primary scan direction and the Y axis is the secondary scan direction.)
For a flatbed scanner, the light bar moves in the secondary scan direction. For a handheld scanner,
the scanner is drug in the secondary scan direction. For a digital camera, the secondary direction
is the vertical axis when the viewed image is considered upright.

Application

If one pivots the image about its center, then orienting the image in TWOR_LANDSCAPE has the
effect of rotating the original image 90 degrees to the “left.” TWOR_PORTRAIT mode does not
rotate the image. The image may be oriented along any of the four axes located 90 degrees from
the unrotated image. Note that:

TWOR_ROT0 == TWOR_PORTRAIT and TWOR_ROT270 == TWOR_LANDSCAPE.

Source

The Source is responsible for rotating the image if it allows this capability to be set.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: TWOR_PORTRAIT

Allowed Values: TWOR_ROT0
TWOR_ROT90
TWOR_ROT180
TWOR_ROT270
TWOR_PORTRAIT (equals TWOR_ROT0)
TWOR_LANDSCAPE (equals TWOR_ROT270)

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION
TWAIN 2.3 Specification 10-179

Chapter 10
MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_AUTOSIZE
ICAP_MIRROR
ICAP_ROTATION
10-180 TWAIN 2.3 Specification

ICAP_OVERSCAN

Description

Overscan is used to scan outside of the boundaries described by ICAP_FRAMES, and is used to
help acquire image data that may be lost because of skewing.

Consider the following:

This is primarily of use for transport scanners which rely on edge detection to begin scanning. If
overscan is supported, then the device is capable of scanning in the inter-document gap to get the
skewed image information.

Application

Use this capability, if available, to help software processing images for deskew and border
removal.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: TWOV_NONE

Allowed Values: TWOV_NONE
TWOV_AUTO
TWOV_TOPBOTTOM
TWOV_LEFTRIGHT
TWOV_ALL

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

Frame
Paper Overscan
TWAIN 2.3 Specification 10-181

Chapter 10
See Also

Best Practices
10-182 TWAIN 2.3 Specification

ICAP_PATCHCODEDETECTIONENABLED

Description

Turns patch code detection on and off.

Source

Support this capability if the scanner supports any patch code recognition. If the device allows
this feature to be turned off, then default to off. If the device does not support disabling this
feature, report TRUE and disallow attempts to set FALSE.

Values

Type: TW_BOOL

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: FALSE

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

ICAP_PATCHCODEMAXSEARCHPRIORITIES
ICAP_PATCHCODESEARCHPRIORITIES
ICAP_PATCHCODESEARCHMODE

ICAP_PATCHCODEMAXRETRIES
ICAP_PATCHCODETIMEOUT
ICAP_SUPPORTEDPATCHCODETYPES
TWAIN 2.3 Specification 10-183

Chapter 10
ICAP_PATCHCODEMAXRETRIES

Description

Restricts the number of times a search will be retried if none are found on each page.

Application

Refine this capability to limit the number of times the patch code search algorithm is retried on a
page that contains no patch codes.

Source

If supported, limit the number of retries the value specified.

Values

Type: TW_UINT32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: 1 to 232 –1

Containers

MSG_GET TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

ICAP_PATCHCODEDETECTIONENABLED
ICAP_SUPPORTEDPATCHCODETYPES
ICAP_PATCHCODEMAXSEARCHPRIORITIES

ICAP_PATCHCODESEARCHPRIORITIES
ICAP_PATCHCODESEARCHMODE
ICAP_PATCHCODETIMEOUT
10-184 TWAIN 2.3 Specification

ICAP_PATCHCODEMAXSEARCHPRIORITIES

Description

The maximum number of supported search priorities.

Application

Query this value to determine how many patch code detection priorities can be set.

Source

Set this value to limit the number of priorities to speed the detection process.

If patch code searches can be prioritized, report the maximum number of priorities allowed for a
search.

Values

Type: TW_UINT32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: 1 to 232 –1

Containers

MSG_GET TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

ICAP_PATCHCODEDETECTIONENABLED
ICAP_SUPPORTEDPATCHCODETYPES
ICAP_PATCHCODESEARCHPRIORITIES

ICAP_PATCHCODESEARCHMODE
ICAP_PATCHCODEMAXRETRIES
ICAP_PATCHCODETIMEOUT
TWAIN 2.3 Specification 10-185

Chapter 10
ICAP_PATCHCODESEARCHMODE

Description

Restricts patch code searching to certain orientations, or prioritizes one orientation over the other.

Application

Negotiate this capability if the orientation of patch codes is already known to the application.
Refinement of this capability can speed the patch code search.

Source

If set then apply the specified refinements to future patch code searches.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWBD_HORZ
TWBD_VERT
TWBD_HORZVERT
TWBD_VERTHORZ

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

ICAP_PATCHCODEDETECTIONENABLED
ICAP_SUPPORTEDPATCHCODETYPES
ICAP_PATCHCODEMAXSEARCHPRIORITIES

ICAP_PATCHCODESEARCHPRIORITIES
ICAP_PATCHCODEMAXRETRIES
ICAP_PATCHCODETIMEOUT
10-186 TWAIN 2.3 Specification

ICAP_PATCHCODESEARCHPRIORITIES

Description

A prioritized list of patch code types dictating the order in which patch codes will be sought.

Application

Set this capability to specify the order and priority for patch code searching. Refining the
priorities to only the patch code types of interest to the application can speed the search process.

Source

If this type of search refinement is supported, then report the current values.
If set, then limit future searches to the specified patch codes in the specified priority order.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWPCH_PATCH1
TWPCH_PATCH2
TWPCH_PATCH3
TWPCH_PATCH4
TWPCH_PATCH6
TWPCH_PATCHT

Containers

MSG_GET TW_ARRAY

MSG_GETCURRENT TW_ARRAY

MSG_GETDEFAULT TW_ARRAY

MSG_SET TW_ONEVALUE
TW_ARRAY

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ARRAY

MSG_RESET TW_ARRAY

MSG_SETCONSTRAINT TW_ARRAY

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

ICAP_PATCHCODEDETECTIONENABLED
ICAP_SUPPORTEDPATCHCODETYPES
ICAP_PATCHCODEMAXSEARCHPRIORITIES

ICAP_PATCHCODESEARCHMODE
ICAP_PATCHCODEMAXRETRIES
ICAP_PATCHCODETIMEOUT
TWAIN 2.3 Specification 10-187

Chapter 10
ICAP_PATCHCODETIMEOUT

Description

Restricts the total time spent on searching for a patch code on each page.

Application

Refine this value to tune the length of time the search algorithm is allowed to execute before
giving up.

Source

If supported, limit the duration of a patch code search to the value specified.

Values

Type: TW_UINT32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: 1 to 232 –1

Containers

MSG_GET TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

ICAP_PATCHCODEDETECTIONENABLED
ICAP_SUPPORTEDPATCHCODETYPES
ICAP_PATCHCODEMAXSEARCHPRIORITIES

ICAP_PATCHCODESEARCHPRIORITIES
ICAP_PATCHCODESEARCHMODE
ICAP_PATCHCODEMAXRETRIES
10-188 TWAIN 2.3 Specification

ICAP_PHYSICALHEIGHT

Description

The maximum physical height (Y-axis) the Source can acquire (measured in units of
ICAP_UNITS).

This is a read only capability.

Source

For a flatbed scanner, the height of the platen; for a handheld scanner or a sheet fed scanner, the
maximum length of a scan.

For dimensionless devices, such as digital cameras, this ICAP is meaningless for all values of
ICAP_UNITS other than TWUN_PIXELS. If the device is dimensionless, the Source should return
a value of zero if ICAP_UNITS does not equal TWUN_PIXELS. This tells the application to inquire
with TWUN_PIXELS.

Note: The physical acquired area may be different depending on the setting of
CAP_FEEDERENABLED (if the Source has separate feeder and non-feeder acquire areas).

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Allowed Values: 0 to 65535 in ICAP_UNITS

Containers

MSG_GET TW_ONEVALUE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Image Sources

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

CAP_FEEDERENABLED
ICAP_UNITS
TWAIN 2.3 Specification 10-189

Chapter 10
ICAP_PHYSICALWIDTH

Description

The maximum physical width (X-axis) the Source can acquire (measured in units of
ICAP_UNITS).

This is a read only capability.

Source

For a flatbed scanner, the width of the platen; for a handheld scanner or a sheet fed scanner, the
maximum width of a scan.

For dimensionless devices, such as digital cameras, this ICAP is meaningless for all values of
ICAP_UNITS other than TWUN_PIXELS. If the device is dimensionless, the Source should return
a value of zero if ICAP_UNITS does not equal TWUN_PIXELS. This tells the application to inquire
with TWUN_PIXELS. The Source should then reply with its X-axis pixel count.

Note: The physical acquired area may be different depending on the setting of
CAP_FEEDERENABLED (if the Source has separate feeder and non-feeder acquire areas).

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Allowed Values: 0 to 65535 in ICAP_UNITS

Containers

MSG_GET TW_ONEVALUE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Image Sources

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

CAP_FEEDERENABLED
ICAP_UNITS
10-190 TWAIN 2.3 Specification

ICAP_PIXELFLAVOR

Description

Sense of the pixel whose numeric value is zero (minimum data value). For example, consider a
black and white image:

If ICAP_PIXELTYPE is TWPT_BW then
 If ICAP_PIXELFLAVOR is TWPF_CHOCOLATE
 then Black = 0
 Else if ICAP_PIXELFLAVOR is TWPF_VANILLA
 then White = 0

Application

Sources may prefer a different value depending on ICAP_PIXELTYPE. Set ICAP_PIXELTYPE
and do a MSG_GETDEFAULT to determine the Source’s preferences.

Source

TWPF_CHOCOLATE means this pixel represents the darkest data value that can be generated by the
device (the darkest available optical value may measure greater than 0).

TWPF_VANILLA means this pixel represents the lightest data value that can be generated by the
device (the lightest available optical value may measure greater than 0).

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: TWPF_CHOCOLATE

Allowed Values: TWPF_CHOCOLATE
TWPF_VANILLA

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Image Sources

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_PIXELTYPE
TWAIN 2.3 Specification 10-191

Chapter 10
ICAP_PIXELFLAVORCODES

Description

Used only for CCITT data compression. Specifies whether the compressed codes’ pixel “sense”
will be inverted from the Current value of ICAP_PIXELFLAVOR prior to transfer.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: TWPF_CHOCOLATE

Allowed Values: TWPF_CHOCOLATE
TWPF_VANILLA

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_COMPRESSION
10-192 TWAIN 2.3 Specification

ICAP_PIXELTYPE

Description

The type of pixel data that a Source is capable of acquiring (for example, black and white, gray,
RGB, etc.).

Application

• MSG_GET returns a list of all pixel types available from the Source.

• MSG_SET on a TW_ENUMERATION structure requests that the Source restrict the available pixel
types to the enumerated list.

• MSG_SET on a TW_ONEVALUE container specifies the only pixel type the application can accept.

If the application plans to transfer data through any mechanism other than Native and cannot
handle all possible ICAP_PIXELTYPEs, it must support negotiation of this ICAP.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWPT_BW
TWPT_GRAY
TWPT_RGB
TWPT_PALETTE
TWPT_CMY
TWPT_CMYK
TWPT_YUV
TWPT_YUVK
TWPT_CIEXYZ
TWPT_LAB
TWPT_SRGB
TWPT_SRGB64
TWPT_BGR
TWPT_CIELAB
TWPT_CIELUV
TWPT_YCBCR
TWPT_INFRARED

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION
TWAIN 2.3 Specification 10-193

Chapter 10
MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Image Sources

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_BITDEPTH
ICAP_BITDEPTHREDUCTION
10-194 TWAIN 2.3 Specification

ICAP_PLANARCHUNKY

Description

Allows the application and Source to identify which color data formats are available. There are
two options, “planar” and “chunky.”

For example, planar RGB data is transferred with the entire red plane of data first, followed by the
entire green plane, followed by the entire blue plane (typical for three-pass scanners). “Chunky”
mode repetitively interlaces a pixel from each plane until all the data is transferred (R-G-B-R-G-
B…) (typical for one-pass scanners).

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWPC_CHUNKY
TWPC_PLANAR

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Image Sources

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

TW_IMAGEINFO.Planar
TWAIN 2.3 Specification 10-195

Chapter 10
ICAP_ROTATION

Description

How the Source can/should rotate the scanned image data prior to transfer. This doesn’t use
ICAP_UNITS. It is always measured in degrees. Any applied value is additive with any rotation
specified in ICAP_ORIENTATION.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: 0

Allowed Values: +/- 360 degrees

Containers

MSG_GET TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_ORIENTATION
ICAP_AUTOSIZE
ICAP_MIRROR
10-196 TWAIN 2.3 Specification

ICAP_SHADOW

Description

Specifies which value in an image should be interpreted as the darkest “shadow.” All values
“darker” than this value will be clipped to this value.

Application

Whether darker values are smaller or larger can be determined by examining the Current value of
ICAP_PIXELFLAVOR.

Source

If more or less than 8 bits are used to describe the image, the actual data values should be
normalized to fit within the 0-255 range. The normalization need not result in a homogeneous
distribution if the original distribution was not homogeneous.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: 0

Allowed Values: 0 to 255

Containers

MSG_GET TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_PIXELFLAVOR
TWAIN 2.3 Specification 10-197

Chapter 10
ICAP_SUPPORTEDBARCODETYPES

Description

Provides a list of bar code types that can be detected by the current Data Source.

This is a read only capability.

Application

Query this capability to determine if the Data Source can detect bar codes that are appropriate to
the particular application.

Source

If bar code detection is supported, report all the bar code types that can be detected.

Values

Type: TW_UINT16

Allowed Values: TWBT_2OF5DATALOGIC
TWBT_2OF5IATA
TWBT_2OF5INDUSTRIAL
TWBT_2OF5INTERLEAVED
TWBT_2OF5MATRIX
TWBT_2OF5NONINTERLEAVED
TWBT_3OF9
TWBT_3OF9FULLASCII
TWBT_CODABAR
TWBT_CODABARWITHSTARTSTOP
TWBT_CODE128
TWBT_CODE93
TWBT_EAN13
TWBT_EAN8
TWBT_MAXICODE
TWBT_PDF417
TWBT_POSTNET
TWBT_QRCODE
TWBT_UCC128
TWBT_UPCA
TWBT_UPCE

Containers

MSG_GET TW_ARRAY

MSG_GETCURRENT TW_ARRAY

MSG_GETDEFAULT TW_ARRAY

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None
10-198 TWAIN 2.3 Specification

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

ICAP_BARCODEDETECTIONENABLED
ICAP_SUPPORTEDPATCHCODETYPES
ICAP_BARCODEMAXSEARCHPRIORITIES
ICAP_BARCODESEARCHPRIORITIES

ICAP_BARCODESEARCHMODE
ICAP_BARCODEMAXRETRIES
ICAP_BARCODETIMEOUT
TWAIN 2.3 Specification 10-199

Chapter 10
ICAP_SUPPORTEDEXTIMAGEINFO

Description

Lists all of the information that the Source is capable of returning from a call to
DAT_EXTIMAGEINFO.

This is a read only capability.

Application

This capability mirrors CAP_SUPPORTEDCAPS. The array indicates all of the possible TWEI_
values the Source is capable of returning. It does not guarantee that all of these values will be
returned for every call to DAT_EXTIMAGEINFO, because that depends on the negotiated
capabilities and on what the device finds.

For instance, if the Source supports ICAP_BARCODEDETECTIONENABLED, then it may report
TWEI_BARCODETEXT as part of this capability. However, if the image that was just captured has
no barcode data, or if ICAP_BARCODEDETECTIONENABLED was disabled, then the Source can
return TWRC_DATANOTAVAILABLE or TWRC_INFONOTSUPPORTED for that TW_INFO field, when
the Application calls DAT_EXTIMAGEINFO.

Source

The Source lists all of the TWEI_ values it is capable of returning in a call to DAT_EXTIMAGEINFO.

Values

Type: TW_UINT16

Allowed Values: An array of TWEI_* values

Containers

MSG_GET TW_ARRAY

MSG_GETCURRENT TW_ARRAY

MSG_GETDEFAULT TW_ARRAY

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 2.1

See Also

Best Practices

ICAP_EXTIMAGEINFO
DG_IMAGE / DAT_EXTIMAGEINFO / MSG_GET
10-200 TWAIN 2.3 Specification

ICAP_SUPPORTEDPATCHCODETYPES

Description

A list of patch code types that may be detected by the current Data Source.

This is a read only capability.

Application

Query this capability to determine if the Data Source can detect patch codes that are appropriate
to the Application.

Source

If patch code detection is supported, report all the possible patch code types that might be
detected.

Values

Type: TW_UINT16

Allowed Values: TWPCH_PATCH1
TWPCH_PATCH2
TWPCH_PATCH3
TWPCH_PATCH4
TWPCH_PATCH6
TWPCH_PATCHT

Containers

MSG_GET TW_ARRAY

MSG_GETCURRENT TW_ARRAY

MSG_GETDEFAULT TW_ARRAY

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.8

See Also

Best Practices

ICAP_PATCHCODEDETECTIONENABLED
ICAP_PATCHCODEMAXSEARCHPRIORITIES
ICAP_PATCHCODESEARCHPRIORITIES

ICAP_PATCHCODESEARCHMODE
ICAP_PATCHCODEMAXRETRIES
ICAP_PATCHCODETIMEOUT
TWAIN 2.3 Specification 10-201

Chapter 10
ICAP_SUPPORTEDSIZES

Description

For devices that support fixed frame sizes. Defined sizes match typical page sizes. This specifies
the size(s) the Source can/should use to acquire image data.

Note: TWSS_B has been removed from the specification.

Source

The frame size selected by using this capability should be reflected in the TW_IMAGELAYOUT
structure information.

If the Source cannot acquire the exact frame size specified by the application, it should provide the
closest possible size (preferably acquiring an image that is larger than the requested frame in both
axes).

For devices that support physical dimensions TWSS_NONE indicates that the maximum image size
supported by the device is to be used. Devices that do not support physical dimensions should
not support this capability.

Note: TWSS_MAXSIZE has been added to simplify negotiating for the entire acquisition area of a
device, since TWSS_NONE was overloaded to mean both “a custom frame” and “the
maximum image size.”

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: TWSS_NONE TWSS_USLEDGER
*TWSS_A4LETTER TWSS_USEXECUTIVE
*TWSS_B5LETTER TWSS_A3
TWSS_USLETTER *TWSS_B3
TWSS_USLEGAL TWSS_A6
TWSS_A5 TWSS_C4
*TWSS_B4 TWSS_C5
*TWSS_B6 TWSS_C6

(*) Constant should not be used in Sources or
Applications using TWAIN 1.8 or higher. For instance, use TWSS_A4
instead of TWSS_A4LETTER (note that the values are the same, the
reason for the new constants is to improve naming clarification and
consistency).

// 1.8 Additions
TWSS_4A0 TWSS_JISB1
TWSS_2A0 TWSS_JISB2
TWSS_A0 TWSS_JISB3
TWSS_A1 TWSS_JISB4
TWSS_A2 WSS_JISB5(TWSS_B5LETTER)
10-202 TWAIN 2.3 Specification

TWSS_A4(TWSS_A4LETTER) TWSS_JISB6
TWSS_A7 TWSS_JISB7
TWSS_A8 TWSS_JISB8
TWSS_A9 TWSS_JISB9
TWSS_A10 TWSS_JISB10
TWSS_ISOB0 TWSS_C0
TWSS_ISOB1 TWSS_C1
TWSS_ISOB2 TWSS_C2
TWSS_ISOB3(TWSS_B3) TWSS_C3
TWSS_ISOB4(TWSS_B4) TWSS_C7
TWSS_ISOB5 TWSS_C8
TWSS_ISOB6(TWSS_B6) TWSS_C9
TWSS_ISOB7 TWSS_C10
TWSS_ISOB8 TWSS_USSTATEMENT
TWSS_ISOB9 TWSS_BUSINESSCARD
TWSS_ISOB10 TWSS_MAXSIZE
TWSS_JISB0

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Image Sources that support fixed frame sizes.

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_FRAMES
ICAP_AUTOSIZE
TW_IMAGEINFO
TW_IMAGELAYOUT
TWAIN 2.3 Specification 10-203

Chapter 10
ICAP_THRESHOLD

Description

Specifies the dividing line between black and white. This is the value the Source will use to
threshold, if needed, when ICAP_PIXELTYPE = TWPT_BW.

The value is normalized so there are no units of measure associated with this ICAP.

Application

Application will typically set ICAP_BITDEPTHREDUCTION to TWBR_THRESHOLD to use this
capability.

Source

Source should fit available values linearly into the defined range such that the lowest available
value equals 0 and the highest equals 255.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: 128

Allowed Values: 0 to 255

Containers

MSG_GET TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

When the ICAP_BITDEPTHREDUCTION value is TWBR_THRESHOLD.

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_BITDEPTHREDUCTION
10-204 TWAIN 2.3 Specification

ICAP_TILES

Description

This is used with buffered memory transfers. If TRUE, Source can provide application with tiled
image data.

Application

If set to TRUE, the application expects the Source to supply tiled data for the upcoming transfer(s).
This persists until the application sets it to FALSE. If the application sets it to FALSE, Source will
supply strip data.

Source

If Source can supply tiled data and application does not set this ICAP, Source may or may not
supply tiled data at its discretion.

In State 6, ICAP_TILES should reflect whether tiles or strips will be used in the upcoming
transfer.

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_BOOL

Value after MSG_OPENDS: FALSE

After MSG_RESET/MSG_RESETALL: FALSE

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

TW_IMAGEMEMXFER
TWAIN 2.3 Specification 10-205

Chapter 10
ICAP_TIMEFILL

Description

Used only with CCITT data compression. Specifies the minimum number of words of
compressed codes (compressed data) to be transmitted per line.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: 1

Allowed Values: 1 to 216

Containers

MSG_GET TW_ONEVALUE
TW_RANGE

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_COMPRESSION
10-206 TWAIN 2.3 Specification

ICAP_UNDEFINEDIMAGESIZE

Description

If TRUE the Source will issue a MSG_XFERREADY before starting the scan.

Note: The Source may need to scan the image before initiating the transfer. This is the case if the
scanned image is rotated or merged with another scanned image.

Application

Used by the application to notify the Source that the application accepts -1 as the image width or -
length in the TW_IMAGEINFO structure.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_BOOL

Value after MSG_OPENDS: FALSE

After MSG_RESET/MSG_RESETALL: FALSE

Allowed Values: TRUE or FALSE

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION // 2.0 and higher

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

When the Source supports any one or more of the following:
• ICAP_AUTOSIZE

• ICAP_AUTOMATICBORDERDETECTION

• ICAP_AUTOMATICLENGTHDETECTION

• ICAP_AUTOMATICROTATE

• ICAP_FLIPROTATION

TWAIN Version Introduced

Version 1.6

See Also

Best Practices

TW_IMAGEINFO
TWAIN 2.3 Specification 10-207

Chapter 10
ICAP_UNITS

Description

Unless a quantity is dimensionless or uses a specified unit of measure, ICAP_UNITS determines
the unit of measure for all quantities.

Application

Applications should be able to handle TWUN_PIXELS if they want to support data transfers from
“dimensionless” devices such as digital cameras.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_UINT16

Value after MSG_OPENDS: TWUN_INCHES

After MSG_RESET/MSG_RESETALL: TWUN_INCHES

Allowed Values: TWUN_INCHES TWUN_TWIPS
TWUN_CENTIMETERS TWUN_PIXELS
TWUN_PICAS TWUN_MILLIMETERS
TWUN_POINTS

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Image Sources

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_FRAMES
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_GETDEFAULT
DG_IMAGE / DAT_IMAGELAYOUT / MSG_RESET
DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET
10-208 TWAIN 2.3 Specification

ICAP_XFERMECH

Description

Allows the application and Source to identify which transfer mechanisms the source supports.

Application

The current value of ICAP_XFERMECH must match the data argument type when starting the
transfer using the triplet: DG_IMAGE / DAT_IMAGExxxxXFER / MSG_GET.

Values

Type: TW_UINT16

Value after MSG_OPENDS: TWSX_NATIVE

After MSG_RESET/MSG_RESETALL: TWSX_NATIVE

Allowed Values: TWSX_NATIVE
TWSX_FILE
TWSX_MEMORY
TWSX_MEMFILE

Containers

MSG_GET TW_ONEVALUE (permitted TWAIN 2.1 and earlier)
TW_ENUMERATION (required TWAIN 2.2 and later)

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Image Sources

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

DG_IMAGE / DAT_IMAGEFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMFILEXFER / MSG_GET
DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET
DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET
TWAIN 2.3 Specification 10-209

Chapter 10
ICAP_XNATIVERESOLUTION

Description

The native optical resolution along the X-axis of the device being controlled by the Source. Most
devices will respond with a single value (TW_ONEVALUE).

This is NOT a list of all resolutions that can be generated by the device. Rather, this is the
resolution of the device’s optics. Measured in units of pixels per unit as defined by ICAP_UNITS
(pixels per TWUN_PIXELS yields dimensionless data).

This is a read only capability.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Allowed Values: >0

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All 2.2 Scanner Sources

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_UNITS
ICAP_XRESOLUTION
ICAP_YNATIVERESOLUTION
10-210 TWAIN 2.3 Specification

ICAP_XRESOLUTION

Description

All the X-axis resolutions the Source can provide.

Measured in units of pixels per unit as defined by ICAP_UNITS (pixels per TWUN_PIXELS yields
dimensionless data). That is, when the units are TWUN_PIXELS, both ICAP_XRESOLUTION and
ICAP_YRESOLUTION shall report 1 pixel/pixel. Some data sources like to report the actual
number of pixels that the device reports, but that response is more appropriate in
ICAP_PHYSICALHEIGHT and ICAP_PHYSICALWIDTH.

Application

Setting this value will restrict the various resolutions that will be available to the user during
acquisition.

Applications will want to ensure that the values set for this ICAP match those set for
ICAP_YRESOLUTION.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: >0

Containers

MSG_GET TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Image Sources

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_UNITS ICAP_XNATIVERESOLUTION ICAP_YRESOLUTION
TWAIN 2.3 Specification 10-211

Chapter 10
ICAP_XSCALING

Description

All the X-axis scaling values available. A value of ‘1.0’ is equivalent to 100% scaling. Do not use
values less than or equal to zero.

Application

Applications will want to ensure that the values set for this ICAP match those set for
ICAP_YSCALING. There are no units inherent with this data as it is normalized to 1.0 being
“unscaled.”

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: 1.0

Allowed Values: > 0

Containers

MSG_GET TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_YSCALING
10-212 TWAIN 2.3 Specification

ICAP_YNATIVERESOLUTION

Description

The native optical resolution along the Y-axis of the device being controlled by the Source.

Measured in units of pixels per unit as defined by ICAP_UNITS (pixels per TWUN_PIXELS yields
dimensionless data).

This is a read only capability.

Application

Most devices will respond with a single value (TW_ONEVALUE). This is NOT a list of all
resolutions that can be generated by the device. Rather, this is the resolution of the device’s optics

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Allowed Values: > 0

Containers

MSG_GET TW_ONEVALUE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET Not Allowed

MSG_SETCONSTRAINT Not Allowed

MSG_RESET Not Allowed

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All 2.2 Scanner Sources

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_UNITS
ICAP_XNATIVERESOLUTION
ICAP_YRESOLUTION
TWAIN 2.3 Specification 10-213

Chapter 10
ICAP_YRESOLUTION

Description

All the Y-axis resolutions the Source can provide.

Measured in units of pixels per unit as defined by ICAP_UNITS (pixels per TWUN_PIXELS yields
dimensionless data). That is, when the units are TWUN_PIXELS, both ICAP_XRESOLUTION and
ICAP_YRESOLUTION shall report 1 pixel/pixel. Some data sources like to report the actual
number of pixels that the device reports, but that response is more appropriate in
ICAP_PHYSICALHEIGHT and ICAP_PHYSICALWIDTH.

Application

Setting this value will restrict the various resolutions that will be available to the user during
acquisition.

Applications will want to ensure that the values set for this ICAP match those set for
ICAP_XRESOLUTION.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: (selected by the data source writer)

Allowed Values: > 0

Containers

MSG_GET TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

All Image Sources

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_UNITS ICAP_XRESOLUTION ICAP_YNATIVERESOLUTION
10-214 TWAIN 2.3 Specification

ICAP_YSCALING

Description

All the Y-axis scaling values available. A value of ‘1.0’ is equivalent to 100% scaling. Do not use
values less than or equal to zero.

There are no units inherent with this data as it is normalized to 1.0 being “unscaled.”

Application

Applications will want to ensure that the values set for this ICAP match those set for
ICAP_XSCALING.

Source

If not supported, return TWRC_FAILURE / TWCC_CAPUNSUPPORTED.

Values

Type: TW_FIX32

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: 1.0

Allowed Values: > 0

Containers

MSG_GET TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None

TWAIN Version Introduced

Version 1.0

See Also

Best Practices

ICAP_XSCALING
TWAIN 2.3 Specification 10-215

Chapter 10
ICAP_ZOOMFACTOR

Description

When used with MSG_GET, return all camera supported lens zooming range.

Application

Use this capability with MSG_SET to select one of the lens zooming value that the Source supports.

Values

Type: TW_INT16

Value after MSG_OPENDS: (may be remembered from a previous session)

After MSG_RESET/MSG_RESETALL: 0

Allowed Values: Source dependent.

Containers

MSG_GET TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_GETCURRENT TW_ONEVALUE

MSG_GETDEFAULT TW_ONEVALUE

MSG_SET TW_ONEVALUE

MSG_SETCONSTRAINT TW_ONEVALUE
TW_RANGE
TW_ENUMERATION

MSG_RESET TW_ONEVALUE

MSG_QUERYSUPPORT TW_ONEVALUE

Required By

None. Highly recommended for digital cameras that are equipped with zoom lenses.

TWAIN Version Introduced

Version 1.8

See Also

Best Practices
10-216 TWAIN 2.3 Specification

11
Return Codes and Condition Codes

Chapter Contents

An Overview of Return Codes and Condition Codes . 11-1

Currently Defined Return Codes . 11-2

Currently Defined Condition Codes. 11-3

Custom Return and Condition Codes . 11-4

An Overview of Return Codes and Condition Codes
The TWAIN protocol defines no dynamic messaging system through which the application might
determine, in real-time, what is happening in either the Source Manager or a Source. Neither does
the protocol implement the native messaging systems built into the operating environments that
TWAIN is defined to operate under (Microsoft Windows and Macintosh). This decision was
made due to issues regarding platform specificity and higher-than-desired implementation costs.

Instead, for each call the application makes to DSM_Entry(), whether aimed at the Source
Manager or a Source, the Source Manager returns an appropriate Return Code (TWRC_xxxx). The
Return Code may have originated from the Source if that is where the original operation was
destined.

To get more specific status information, the application can use the DG_CONTROL / DAT_STATUS
/ MSG_GET operation to inquire the complimentary Condition Code (TWCC_xxxx) from the
Source Manager or Source (whichever one originated the Return Code).

The application should always check the Return Code. If the Return Code is TWRC_FAILURE, it
should also check the Condition Code. This is especially important during capability negotiation.

There are very few, if any, catastrophic error conditions for the application to worry about.
Usually, the application will only have to “recover” from low memory errors caused from
allocations in the Source. Most error conditions are handled by the Source Manager or, most
typically, by the Source (often involving interaction with the user). If the Source fails in a way that
is unrecoverable, it will ask to have its user interface disabled by sending the MSG_CLOSEDSREQ
to the application’s event loop.
TWAIN 2.3 Specification 11-1

Chapter 11
The following operations can only return TWRC_SUCCESS or TWRC_FAILURE / TWCC_SEQERROR,
if called in the wrong state. This is to avoid a situation where an Application is unable to
shutdown a Source because of an error state, like the device being offline. The Source must
comply with the request to change states.

DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER
DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET
DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS
DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS
DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDSM

When an Application receives this condition code, it alerts the user (so they can exit, if they wish).
While waiting for the user response the Application polls the value of CAP_DEVICEONLINE. The
device continues to be offline as long as this call returns TWCC_SUCCESS, with a value of FALSE.

The state 3 operation DG_CONTROL / DAT_IDENTITY / MSG_OPENDS is the only one capable
of returning TWCC_CHECKDEVICEONLINE. The Application cannot check CAP_DEVICEONLINE
(since that is a state 4 operation), however, it can retry the MSG_OPENDS call, if it chooses.

Currently Defined Return Codes
Code Description

TWRC_BUSY Scanner busy, please retry your command again later.

TWRC_CANCEL Abort transfer or the Cancel button was pressed.

TWRC_CHECKSTATUS Partially successful operation; request further information.

TWRC_DSEVENT Event (or Windows message) belongs to this Source.

TWRC_ENDOFLIST No more Sources found after MSG_GETNEXT.

TWRC_FAILURE Operation failed - get the Condition Code for more
information.

TWRC_NOTDSEVENT Event (or Windows message) does not belong to this Source.

TWRC_SCANNERLOCKED Scanner is in use by another application, please retry your
command again later.

TWRC_SUCCESS Operation was successful.

TWRC_XFERDONE All data has been transferred.
11-2 TWAIN 2.3 Specification

Currently Defined Condition Codes
The following are the currently defined condition codes:

Code Description

TWCC_BADCAP* Capability not supported by Source or operation (get,
set) is not supported on capability, or capability had
dependencies on other capabilities and cannot be
operated upon at this time
(Obsolete, see TWCC_CAPUNSUPPORTED,
TWCC_CAPBADOPERATION, and TWCC_CAPSEQERROR).

TWCC_BADDEST Unknown destination in DSM_Entry.

TWCC_BADPROTOCOL Unrecognized operation triplet.

TWCC_BADVALUE Data parameter out of supported range.

TWCC_BUMMER General failure. Unload Source immediately.

TWCC_CAPBADOPERATION* Operation (i.e., Get or Set) not supported on capability.

TWCC_CAPSEQERROR* Capability has dependencies on other capabilities and
cannot be operated upon at this time.

TWCC_CAPUNSUPPORTED* Capability not supported by Source.

TWCC_CHECKDEVICEONLINE Check the device status using CAP_DEVICEONLINE, this
condition code can be returned by any TWAIN operation
in state 4 or higher, or from the state 3 DG_CONTROL /
DAT_IDENTITY / MSG_OPENDS. The state remains
unchanged. If in state 4 the Application can poll with
CAP_DEVICELINE until the value returns TRUE.

TWCC_DAMAGEDCORNER Operation failed because the document has a damaged
corner.

TWCC_DENIED File System operation is denied (file is protected).

TWCC_DOCTOODARK Operation failed because the document is too dark.

TWCC_DOCTOOLIGHT Operation failed because the document is too light.

TWCC_FILEEXISTS Operation failed because file already exists.

TWCC_FILENOTFOUND File not found.

TWCC_FOCUSERROR Operation failed because of a focusing error during
document capture.

TWCC_INTERLOCK Operation failed because the cover or door is open.

TWCC_LOWMEMORY Not enough memory to complete operation.

TWCC_MAXCONNECTIONS Source is connected to maximum supported number of
applications.

TWCC_NODS Source Manager unable to find the specified Source.
TWAIN 2.3 Specification 11-3

Chapter 11
* TWCC_BADCAP has been replaced with three new condition codes that more clearly specify the
reason for a capability operation failure. For backwards compatibility applications should also
accept TWCC_BADCAP and treat it as a general capability operation failure. No 1.6 Image Data
Sources should return this condition code, but use the new ones instead.

Custom Return and Condition Codes
Although probably not necessary or desirable, it is possible to create custom Return Codes and
Condition Codes. Refer to the TWAIN.H file for the value of TWRC_CUSTOMBASE for custom
Return Codes and TWCC_CUSTOMBASE for custom Condition Codes. All custom values must be
numerically greater than these base values. Remember that the consumer of these custom values
will look in your TW_IDENTITY.ProductName field to clarify what the identifier’s value means.
There is no other protection against overlapping custom definitions.

TWCC_NOMEDIA Source has nothing to capture for a transfer. Can be
returned by DG_CONTROL / DAT_USERINTERFACE /
MSG_ENABLEDS, by any of the DAT_IMAGE*XFER
operations, by DAT_IMAGEINFO or
DAT_EXTIMAGEINFO.

TWCC_NOTEMPTY Operation failed because directory is not empty.

TWCC_OPERATIONERROR Source or Source Manager reported an error to the user
and handled the error; no application action required.

TWCC_PAPERDOUBLEFEED Transfer failed because of a feeder error, this can be
returned by any of the DAT_IMAGE*XFER operations.
When received the current TWAIN state remains
unchanged.

TWCC_PAPERJAM Transfer failed because of a feeder error, this can be
returned by any of the DAT_IMAGE*XFER operations.
When received the current TWAIN state remains
unchanged.

TWCC_SEQERROR Illegal operation for current Source Manager or Source
state.

TWCC_SUCCESS Operation worked.

Code Description
11-4 TWAIN 2.3 Specification

12
Operating System Dependencies

Chapter Contents

Developing for Windows . 12-1

Developing for Mac. 12-8

Developing for Linux . 12-12

This section describes the differences and requirements of developing TWAIN Applications and
Sources on various operating systems. This section covers 32-bit and 64-bit Windows, Apple OS X
version 10.2 and later, and Linux. Older operating systems are not described in this version of the
specification. For older operating systems (16-bit Windows and Apple OS before version 10.2)
please refer to version 1.9 of the Specification.

Developing for Windows

Installation of the Data Source Manager

All TWAIN 2.x Applications must use TWAINDSM.DLL. All TWAIN 2.x Sources must be
prepared to work with either TWAINDSM.DLL or TWAIN_32.DLL, which may still be used by
older Applications.

Applications that wish to use access the Data Source Manager, must install it themselves. Please
refer to the TWAIN website http://www.twain.org to obtain this file and for installation
instructions. This DSM is fully backwards compatible with all versions of TWAIN. The
Application Installer may include a Data Source Manager merge module:
http://sourceforge.net/projects/twain-dsm/files/

The TWAIN DSM is a shared library named TWAINDSM.DLL. There is a 32-bit and a 64-bit
version of this file. TWAINDSM.DLL is installed in the Windows System directory (normally
C:\Windows\System32). If installing the 32-bit file on a 64-bit system, it needs to end up in the
WOW64 System directory (normally C:\Windows\SysWow64). By including the TWAIN DSM
merge module in the application installer, the DSM is installed in the correct location.
TWAIN 2.3 Specification 12-1

Chapter 12
Load the TWAIN Source Manager and get the DSM_Entry

This process takes a TWAIN application from State 1 to 2.

Load TWAINDSM.DLL using the LoadLibrary() routine.

Get the DSM_Entry by using the GetProcAddress() call.

Applications must perform a dynamic run-time link to DSM_Entry() by calling
LoadLibrary(). If the Application has a dynamic link, however, it will be able to give users a
meaningful error message, and perhaps continue with image acquisition facilities disabled.

After loading the DSM, the application must check LoadLibrary return code. If it is NULL, it
means that the Source Manager has not been installed on the user’s machine and the application
cannot provide any TWAIN services to the user. If DSM_Entry returned by GetProcAddress(
) is NULL, the application must not attempt to call *pDSM_Entry as this would result in an
Unrecoverable Application Error (UAE).

On Windows the official TWAINDSM.dll is signed. This digital signature can be verified to check
if an official version is being used. See http://twain-samples.svn.sourceforge.net.

OpenDSM

To Move from State 2 to State 3

The Application must provide a pointer to hWnd in pParent. It is strongly recommended that all
TWAIN calls be made from a single thread.

OpenDS

To Move from State 3 to State 4

The Source Manager does a LoadLibrary() of the Source and passes the OpenDS triplet to the
Source. When the Source Manager receives a success from a Source, it increases its internal
counter for this application having the specified Source open.

CloseDS

To Move from State 4 to State 3

The Source Manager forwards this triplet to the Source. The Source immediately prepares to
terminate execution. When the Source Manager receives a success from a Source, it decrements its
internal counter to see whether this application still has the specified Source open. If not, the
Source Manager removes it from memory (It does a FreeLibrary() of the Source).

Unload DSM

To Move from State 2 to State 1

Once the Source Manager has been closed, the application must unload the DLL from memory
before continuing.
12-2 TWAIN 2.3 Specification

http://twain-samples.svn.sourceforge.net/viewvc/twain-samples/trunk/TWAIN-Samples/Twain_App_sample01/src/VerifySignature.cpp?revision=16&view=markup

Use FreeLibrary(hDSMLib); where hDSMLib is the handle to the Source Manager DLL
returned from the call to LoadLibrary() seen earlier (in the State 1 to 2 section).

Function Declaration

The keyword FAR is included in the entry point syntax for legacy reasons. It has no value for any
supported operating system, and is defined as an empty value. See Twain.h for details.

Memory Management in TWAIN

When TWAIN 2.x Applications and Sources connect to TWAINDSM.DLL, they must use the
memory functions supplied by the DSM.

When a TWAIN Source is connected to a legacy TWAIN 1.x DSM it must use these legacy WIN32
Global Memory functions:

GlobalAlloc, GlobalFree, GlobalLock, GlobalUnlock

Using DAT_CALLBACK and DAT_NULL for Messages from the Source to the Application

Sources

TWAIN sources use the DG_CONTROL/DAT_NULL to return events like MSG_XFERREADY. If the
callback pointer is supplied by the DSM, then the DS must use it. If not, it must use the Data
Source Manager entry point DSM_ENTRY. MSG_INVOKECALLBACK was immediately deprecated
for Windows and Linux Sources after implementing and should not be used.

Alter the Application’s Message Loop

Messages include activities such as key clicks, mouse events, periodic events, accelerators, etc.
Every TWAIN-compliant application on Windows needs a message loop. These actions are called
messages; however, this may be confusing as TWAIN uses the term “messages” to describe the
third parameter of an operation triplet. Therefore, we will refer to these key clicks, etc. as events in
this section generically. During a TWAIN session, the application opens one or more Sources.
However, even if several Sources are open, the application should only have one Source enabled
at any given time. That is the Source from which the user is attempting to acquire data.

Altering the message loop is required so that the source can respond to Windows messages.

Message Loop Modification - Passing messages

While a Source is enabled, all messages are sent to the application’s message loop. Some of the
messages may belong to the application but others belong to the enabled Source. To ensure that
the Source receives and processes its messages, the following changes are required: The
application must send all Windows messages that it receives in its message loop to the Source, as
long as the Source is enabled. The application uses:

DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT

The TW_EVENT data structure looks like this:

typedef struct {

TW_MEMREF pEvent; /* Windows pMSG */
TWAIN 2.3 Specification 12-3

Chapter 12
TW_UINT16 TWMessage; /* TW message from Source to */
 /* the application */

} TW_EVENT, FAR *pTW_EVENT;

The pEvent field points to the message structure.

The Source receives the message from the Source Manager and determines if the message belongs
to it.

• If it does, the Source processes the message. It then sets the Return Code to TWRC_DSEVENT to
indicate it was a Source message. In addition, it should set the TWMessage field of the
TW_EVENT structure to MSG_NULL.

• If it does not, the Source sets the Return Code to TWRC_NOTDSEVENT, meaning it is not a
Source message. In addition, it should set the TWMessage field of the TW_EVENT structure to
MSG_NULL. The application receives this information from DSM_Entry and should process
the message in its message loop as normal.

DAT_EVENT Handling Errors

One of the most common problems between a data source and application is the management of
DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT. The symptoms are not immediately
obvious, so it is worth mentioning them to assist new developers in quickly identifying and
solving the problem.

Cannot use TAB or Keyboard Shortcuts to Navigate TWAIN Dialog

The cause of this can be one of two things. Either the application is not forwarding all messages to
TWAIN through the DAT_EVENT mechanism, or the data source is not properly processing the
DAT_EVENT messages. (Windows: calling IsDialogMessage for each forwarded message with
TWAIN Dialog handle.)

TWAIN Dialog Box Combo Boxes cannot be opened / Edit boxes produce multiple chars
per keystroke

This case is caused by processing TWAIN Dialog Messages twice. Either the data source has not
returned the proper return code in response to DAT_EVENT calls (Windows: TWRC_DSEVENT
when IsDialogMessage returns TRUE), or the application is ignoring the return code.

Problem seems erratic, keyboard shortcuts and Tab key work for Message Boxes, but not
TWAIN Dialog

This observation often further confuses the issue. In Windows, a standard Message box is Modal,
and operates from a local message pump until the user closes it. All messages are properly
dispatched to the message box since it does not rely on the application message pump. The
TWAIN Dialog is slightly different since it is implemented Modeless. There is no easy way to
duplicate Modal behavior for the TWAIN Dialog.

Refer to the function EnableDS(), in the TWAIN application sample file main.cpp at
http://twain-samples.svn.sourceforge.net, to see an example of how to modify the message loop
for Windows.
12-4 TWAIN 2.3 Specification

http://twain-samples.svn.sourceforge.net/viewvc/twain-samples/trunk/TWAIN-Samples/Twain_App_sample01/src/main.cpp?view=markup

The Structure of a Source

The following sections describe the structure of a source

Implementation

The Source is implemented as a Dynamic Link Library (DLL). The DLL runs within the calling
application’s heap, although DLLs may be able to allocate their own heap and stack space. There
is only one copy of the DLL’s code and data loaded at run-time per application. For more
information regarding DLLs please refer to Microsoft documents.

Naming and Location

The DLL’s file name must end with a .DS extension. The Source Manager recursively searches for
your Source in the TWAIN sub-directory of the Windows directory. The name of the TWAIN
directory is "twain_32" for 32-bit Sources and "twain_64" for 64-bit Sources (on 64-bit systems
only). To reduce the chance for naming collisions, each Source should create a sub-directory
beneath TWAIN giving it a name relevant to their product. The Source DLLs are placed there.
Supporting files may be placed there as well, but since this is a system directory that may only be
modifiable by a System Administrator, Sources must not write any information into this directory
after installation.

Entry Points and Segment Attributes

Every Source is required to have an entry point called DS_Entry (see Chapter 6, "Entry Points and
Triplet Components") which must have the stdcall calling style.

General Notes

• DllMain entry point - This function is called by the loader when it loads or unloads a DLL.
See http://www.microsoft.com for more details.

Sources UI and Handling Windows Messages

When a Source is enabled (i.e. States 5, 6, and 7), the application must pass all messages to the
Source. Since the Source runs subservient to the application, this ensures that the Source will
receive all messages for its window. The message will be passed in the TW_EVENT data structure
that is referenced by a DG_CONTROL / DAT_EVENT / MSG_PROCESSEVENT command.

Routing all messages, to all connected Sources while they are enabled, places a burden on the
application and creates a potential performance bottleneck. Therefore, the Source must process the
incoming messages as quickly as possible. The Source should examine each incoming operation
before doing anything else. Only one operation’s message field says MSG_PROCESSEVENT so
always look at the message field first. If it indicates MSG_PROCESSEVENT then immediately
determine if the message belongs to the Source:

If it does

Set the Return Code for the operation to TWRC_DSEVENT

Set the TWMessage field to MSG_NULL

Process the message

Return to the application
TWAIN 2.3 Specification 12-5

http://www.microsoft.com/whdc/driver/kernel/DLL_bestprac.mspx

Chapter 12
Else

Set the Return Code to TWRC_NOTDSEVENT

Set the TWMessage field to MSG_NULL

Return to the application immediately

If the Source developer fails to process messages with this high priority, the user may see
degraded performance whenever the Source is frontmost, which reflects poorly on the Source.

On Windows, the code fragment looks like the following:

TW_UINT16 FAR PASCAL DS_Entry(pTW_IDENTITY pSrc,

TW_UINT32 DG,

TW_UINT16 DAT,

TW_UINT16 MSG,

TW_MEMREF pData)

{

TWMSG twMsg;

TW_UINT16 twRc;

//Valid states 5 – 7 (or 4 – 7 if CAP_DEVICEEVENTS has been

// negotiated to anything other than its default value of an

// empty TW_ARRAY). As soon as the application has enabled the

// Source it must being sending the Source events. This allows

// the Source to receive events to update its user interface and

// to return messages to the application. The app sends down ALL

// message, the Source decides which ones apply to it.

if (MSG == MSG_PROCESSEVENT)

{

if (hImageDlg && IsDialogMessage(hImageDlg,

(LPMSG)(((pTW_EVENT)pData)->pEvent)))

{

twRc = TWRC_DSEVENT;

// The source should, for proper form, return a MSG_NULL

// for all Windows messages processed by the Data Source

((pTW_EVENT)pData)->TWMessage = MSG_NULL;

}

else

{

// notify the application that the source did not

// consume this message
12-6 TWAIN 2.3 Specification

twRc = TWRC_NOTDSEVENT;

((pTW_EVENT)pData)->TWMessage = MSG_NULL;

}

}

else

{

// This is a Twain message, process accordingly.

// The remainder of the Source’s code follows...

}

return twRc;

}

The Windows IsDialogMessage() call is used in this example. Sources can also use other
Windows calls such as TranslateAccelerator() and TranslateMDISYSAccel().

If the Source has more than one window it has to check all of them and process the target one.

Native Transfer Mode

Every Source must support Native transfer mode. It is the default mode and is the easiest for an
application to implement, however it is restrictive and the format is limited to the Device
Independent Bitmap (DIB) when implementing on Windows.

Set pHandle pointing to a handle to a DIB in memory. The Source will allocate the image buffer
and return the handle to the address specified.

Format the data block as a DIB. Use l DSM_MemAllocate (or GlobalAlloc for 1.x or less DSM)

The following assignment will work in Windows:

*(TW_HANDLE *) pHandle = hDIB;

See the Windows SDK documentation under Structures: BIMAPINFO, BITMAPINFOHEADER,
RGBQUAD.

See also “DIBs and their use” by Ron Gery, in the Microsoft Development Library (MSDN CD).

Note:

• Follow the BITMAPINFOHEADER with the color table if required

• Color table entries are RGBQUADs, which are stored in memory as BGR not RGB.

• For 24-bit color DIBs, the “pixels” are also stored in BGR order, not RGB.

• DIBs are stored ‘upside-down’ - the first pixel in the DIB is the lower-left corner of the image,
and the last pixel is the upper-right corner.

• Pixels in 1, 4, and 8 bit DIBs are “always” color table indices, you must index through the color
table to determine the color value of a pixel.
TWAIN 2.3 Specification 12-7

Chapter 12
• Every scanline is DWORD-aligned. The scanline is buffered to alignment; the buffering is not
necessarily 0.

Native Audio format is WAV handle

File Transfer

The TW_SETUPFILEXFER

pSetupFile->FileName = name of file must include the complete path and name

pSetupFile->VRefNum = is not used

Developing for Mac
Mac OS X includes two high-level native development environments that you can use for your
application’s graphical user interface: Carbon and Cocoa. These are full-featured development
environments in their own right. You can write TWAIN applications and TWAIN Data Sources in
either of these environments. Note that Carbon libraries are 32-bit only, use Cocoa for 64-bit
Sources. (See http://developer.apple.com). Only the Intel platform is supported, starting from OS
X 10.6.

Because both Carbon and Cocoa change the event handling mechanism (no WaitNextEvent
loops), these paragraphs update and extend the section of the previous specification that describes
how to modify the application event loop to support TWAIN. Carbon and Cocoa-based Mac OS X
TWAIN applications are required to supply an event handler callback function that the TWAIN
DSM will call. Carbon applications using the Classic Event Manager (WaitNextEvent) should
continue to route all events through the Data Source. However, Data Sources on Mac OS X can no
longer use the Classic Event Manager.

Installation of the Data Source Manager

Apple provides /System/Library/Frameworks/TWAIN.framework for access to the 1.x Data
Source Manager.

For Mac OS X version 10.2 and later, the Source Manager is installed automatically with the OS
and developers should not install or modify TWAIN.framework.

The directory “TWAIN Data Sources” should be created in "/Library/Image Capture" if it does
not exist. If you are a scanner vendor, install your scanner data sources into a subdirectory of "/
Library/Image Capture/TWAIN Data Sources" directory.

Load the TWAIN Source Manager and get the DSM_Entry

This process takes a TWAIN application from State 1 to 2.

Link against TWAIN.framework.

The Source Manager is a mach-o framework (TWAIN.framework).
12-8 TWAIN 2.3 Specification

http://developer.apple.com/mac/library/documentation/Carbon/Conceptual/Carbon64BitGuide/Introduction/Introduction.html

When building your application, you should link against TWAIN.framework. There should be no
need to check for an existing Source Manager - beginning with Mac OS X 10.2, the
TWAIN.framework is part of Mac OS X.

OpenDSM

To Move from State 2 to State 3

Application must set pParent to NULL

OpenDS

The Source Manager does a dsOpen() of the Source and sends an OpenDS triplet to the Source.

CloseDS

Closes the Source and removes it from memory by calling dsClose, following receipt of
TWRC_SUCCESS from the Source.

Unload DSM

To Move from State 2 to State 1

No action is necessary.

Function Declaration

The keyword FAR is included in the entry point syntax for legacy reasons. It has no value for any
supported operating system, and is defined as an empty value. See Twain.h for details.

Using DAT_CALLBACK and DAT_NULL for Messages from the Source to the Application

Sources

TWAIN sources that do not detect DF_DSM2 in TW_IDENTITY.SupportedGroups must use
DG_CONTROL/DAT_CALLBACK/MSG_INVOKE_CALLBACK to return events like
MSG_XFERREADY.READY.

Memory Management in TWAIN

When TWAIN Applications and Sources must use these memory functions:

Memory allocation - NewHandle

Memory free - DisposeHandle

Memory lock - dereference the handle

Memory unlock - is a no op

The Structure of a Source

The following sections describe the structure of a source
TWAIN 2.3 Specification 12-9

Chapter 12
Implementation

A Source on a Macintosh is implemented as a bundle. The Source will not run standalone. A
separate copy of the Source’s code in memory will be made for each application that opens the
Source. The bundle must contain a Contents directory and, inside it, an Info.plist file. It is
recommended that bundle contains universal 32/64 binary. Bundle structure is shown below:

 See the sample DS - http://twain-samples.svn.sourceforge.net.

Naming and Location

The extension for a Source is ds. The Source Manager will search for bundles with this extension in
the /Library/Image Capture/TWAIN Data Sources/ directory. It is recommended that each
Source bundle contains any other files it may require.

Compatibility with Older Data Sources

Pre Mac OS X Data Sources are not compatible with the TWAIN implementation on Mac OS X.

Sources and Handling Events

Do not receive TW_EVENTS from the DSM.

On Mac OS X, the Data source either uses Carbon or Cocoa.

• A Carbon based Data Source has to install Carbon Event Handler for all UI elements.

• A Cocoa Data Source gets the UI event handling for free.

Implementing Modal and Modeless User Interfaces

You cannot use the modal dialog creation call DialogBox() to create the Source’s user interface
main window. To allow event processing by both the application and the Source, this call cannot
be used. Modal user interfaces in Source are not inherently bad, however. If a modal user interface
makes sense for your Source, use either the CreateDialog() or CreateWindow() call.

When sending MSG_ENABLEDS set hParent to NULL.

Modal (App Modal)

It is recommended that the Source’s main user interface window be created with a modeless
mechanism. Source writers can still decide to make their user interface behave modally if they
choose. It is even appropriate for a very simple “click and go” interface to be implemented this
way.

This is done by first specifying setting the ModalUI field to TRUE and second by enabling/
disabling the parent window during the MSG_ENABLEDS / MSG_DISABLEDS operations. Use
12-10 TWAIN 2.3 Specification

http://twain-samples.svn.sourceforge.net/viewvc/twain-samples/trunk/TWAIN-Samples/Twain_App_sample01/src/main.cpp?view=markup

EnableWindow(NULL, FALSE) to disable the window and EnableWindow(NULL, FALSE) to re-
enable it.

Modeless

If implementing a modeless user interface, set the ModalUI field to FALSE. Also, it is suggested
that you call BringWindowToTop() whenever a second request is made by the same
application or another application requesting access to a Source that supports multiple application
connections.

Implementing Modal and Modeless User Interfaces

It is recommended that the Source’s main user interface window be created with a modeless
mechanism. Source writers can still decide to make their user interface behave modally if they
choose. It is even appropriate for a very simple “click and go” interface to be implemented this
way.

Native Transfer Mode

Every Source must support Native transfer mode. It is the default mode and is the easiest for an
application to implement, however it is restrictive and the format is limited to PICT when
implementing on Macintosh.

The version of PICT to be transferred is the latest version available on the machine on which the
application is running (usually PICT II for machines running 32-bit/color QuickDraw and PICT I
for machines running black and white QuickDraw).

Set pHandle pointing to a handle to a Picture in memory. The Source will allocate the image
buffer at the memory location referenced by the handle.

Format the data block as a PICT, preferably using standard system calls.

Native Audio format is audio handle

ICAP_XNATIVERESOLUTION and ICAP_YNATIVERESOLUTION are required for Mac
ImageCaputre to use TWAIN Data Source. These capabilities are not required by TWAIN.

File Transfer

The TW_SETUPFILEXFER

pSetupFile->FileName = name of file must only

pSetupFile->VRefNum = The volume reference and folder reference number.
TWAIN 2.3 Specification 12-11

Chapter 12
Developing for Linux

Installation of the Data Source Manager

Please check the TWAIN website http://www.twain.org to see if a binary supplied for your distro
is represented, and if not, please consider making a submission of one to the TWAIN Working
Group.

The TWAIN DSM is a shared library named libtwaindsm.so. There is a 32-bit and a 64-bit version
of this file. libtwaindsm.so location is: /usr/local/lib. For 32-bit DS running on 64-bit system
it is: /usr/local/lib32

Load the TWAIN Source Manager and get the DSM_Entry

This process takes a TWAIN application from State 1 to 2.

Load TWAINDSM.so using the dlopen() routine.

Get the DSM_Entry by using the dlsym() call.

The Source Manager is a shared library.

OpenDSM

To Move from State 2 to State 3

Application must set pParent to NULL

OpenDS

The Source Manager does a dlopen() of the Source and sends an OpenDS triplet to the Source.

CloseDS

Checks its internal counter to see whether any other applications are accessing the specified
Source. If so, the Source Manager takes no other action. If the closing application is the last to be
accessing this Source, the Source Manager closes the Source (forwards this triplet to it) and
removes it from memory, following receipt of TWRC_SUCCESS from the Source.

Upon receiving the request from the Source Manager, the Source immediately prepares to
terminate execution.

Unload DSM

To Move from State 2 to State 1

Once the Source Manager has been closed, the application must unload the SO from memory
before continuing.

Use dlclose(hDSMLib); where hDSMLib is the pointer to the Source Manager SO returned
from the call to dlopen() seen earlier (in the State 1 to 2 section).
12-12 TWAIN 2.3 Specification

Memory Management in TWAIN

All TWAIN Applications and Sources must use the memory functions supplied by the DSM.

The Structure of a Source

The following sections describe the structure of a source.

Implementation

A Source is implemented as a shared library. The Source will not run standalone. A separate copy
of the Source’s code will be made for each application that opens the Source.

Naming and Location

The extension for a Source is ds. The Source Manager will search for a shared library with this
extension in the /usr/local/lib/twain directory. For 32-bit DS running on 64-bit system it is: /
usr/local/lib32/twain

It is recommended that each Source is placed in its own directory and any other files it may
require placed with it.

Implementing Modal and Modeless User Interfaces

It is recommended that the Source’s main user interface window be created with a modeless
mechanism. Source writers can still decide to make their user interface behave modally if they
choose. It is even appropriate for a very simple “click and go” interface to be implemented this
way.

Native Transfer Mode

Every Source must support Native transfer mode. It is the default mode and is the easiest for an
application to implement, however it is restrictive and the format is limited to TIFF when
implementing on Linux.

For Linux, the native format is a TIFF.

Set pHandle pointing to a TIFF file located in memory. The Source will allocate the image buffer
and return the handle to the address specified.

Native Audio format is WAV

File Transfer

The TW_SETUPFILEXFER

pSetupFile->FileName = name of file must include the complete path and name

pSetupFile->VRefNum = is not used
TWAIN 2.3 Specification 12-13

Chapter 12
12-14 TWAIN 2.3 Specification

13
TWAIN Self-Certification Process for

Data Sources

Chapter Contents

Overview . 13-1

Non-Goals of Basic TWAIN Self-Certification . 13-2

Affirmation of Successful Completion of TWAIN Self-Certification. 13-3

TWAIN “Congratulations” Webpage . 13-10

TWAIN Self-Certification Tests. 13-10

TWAIN Standard Capability Tests . 13-11

Vendor Custom Capability Tests . 13-19

Status Return Tests . 13-25

Stress Tests . 13-27

Non-UI Image Transfer Tests . 13-28

UI Image Transfer Tests . 13-33

CAP_XFERCOUNT Tests. 13-34

Version Tests . 13-39

Verify Values For MSG_RESETALL and MSG_RESET . 13-41

The TWAIN self-certification system helps developers test their data source’s support of the basic
interface described by the TWAIN Specification. Passing the test helps to confirm that the data
source’s interface works as expected with applications, leading to a better user experience.

This document provides the Test Plan for TWAIN self-certification for data sources. It also
describes how to submit a form affirming successful completion of the test to receive
authorization to display the “TWAIN Certified” logo.

Overview
The TWAIN interface operates between an application and a data source. The nature of this
interface is described by the TWAIN Specification.
TWAIN 2.3 Specification 13-1

Chapter 13
Basic TWAIN self-certification exercises specific portions of the TWAIN interface and behavior of
the TWAIN interface that all data sources are required to support. Passing these tests confirms
that a data source correctly follows the TWAIN Specification, when responding to commands sent
by an application, and that it does not crash or hang.

This is not a comprehensive test of the entire TWAIN interface. It focuses on enforcing basic
“good behavior”. More stringent tests may be described in future.

The basic self-certification test is limited to the kinds of checks described in this document.
Modifications may be made in association with new versions of the TWAIN Specification (for
instance, the addition of a new mandatory feature). For this reason self-certification is always
done in the context of a particular version of the TWAIN Specification (ex: 2.2).

TWAIN data sources with a protocol version of 1.9 or higher may be self-certified. The version of
this document is a measure of the kinds of tests performed on the data source. Running the tests
in this document does not certify a TWAIN 1.9 data source as TWAIN 2.2 compliant, rather the
data source is self-certified as TWAIN 1.9 compliant using criteria described inside of the TWAIN
2.2 Specification.

TWAIN data sources that have been self-certified will work correctly with any compliant TWAIN
Application reporting a TWAIN protocol version of 1.5 or higher.

TWAIN self-certification promotes the creation of 64-bit applications and data sources by
requiring simultaneous submissions of native 32-bit and 64-bit data sources for Windows Vista or
later, Macintosh OS X or Linux. A native 64-bit data source is one that interfaces with a native 64-
bit application. 64-bit applications cannot be run on 32-bit Systems. A 32-bit data source running
in any kind of virtual or thunking environment on a 64-bit Operating System does not qualify as a
native 64-bit data source.

TWAIN self-certification requires the presence of a TWAIN data source manager corresponding
to the version of the TWAIN data source or higher. If one is not pre-installed on the operating
system, then the TWAIN data source must install it.

Questions or comments regarding TWAIN self-certification should be referred to the TWAIN
Forum www.twainforum.org.

Non-Goals of Basic TWAIN Self-Certification
This is a test of the operation of the interface; it does not test the internals of the data source.

This test is not designed to catch data errors (ex: bad pointers, data corruption, array out of
bounds, etc) except in those instances where the error happens to cause the failure of some other
test.

Negotiated settings are not confirmed in the meta-data or images they produce (ex: did changing
ICAP_BRIGHTNESS really result in a brighter or darker image, was the proper print string written
on the document).
13-2 TWAIN 2.3 Specification

Constraints for TW_ENUMERATION and TW_RANGE are not tested (ex: limiting the
ICAP_PIXELTYPE enumeration to just TWPT_RGB, or limiting ICAP_BRIGHTNESS to a range of -
100 to 100).

Mandatory features for accessories are not tested (ex: there is no check to make sure that all of the
barcode features are properly supported if any one barcode capability is detected).

Affirmation of Successful Completion of TWAIN Self-
Certification

After TWAIN self-certification has been successfully completed the tester may submit an
“Acknowledgement of Successful Completion of TWAIN Self-Certification” form to the TWAIN
Working Group.

This can be accomplished in more than one way. The preferred method is to access the TWAIN
Working Group website (www.twain.org), and access the section titled “Scanner Driver
Developers.” Under there is the “Certify TWAIN Driver” link.

Alternatively, one can submit a notarized or a digitally signed form of the document

This form includes the following information

Company: The name of the company manufacturing the data source being self-certified, a
division within that company may be optionally provided. The submitter may also opt to
provide a URL to their company’s website which will link off of this name.

Hardware: The model name, model number and revision of the hardware used during self-
certification. This is marketing information identifying the device supported by this specific
TWAIN data source. In most cases this information can be found printed somewhere on the
device.

TWAIN Data Source Identity: Fields from the TWAIN data source’s TW_IDENTITY
structure, which indicate the manufacturer, family, product, and the version number,
uniquely identify the data source to the application. The TW_IDENTITY.ProductName
should be unique by itself, since this is the only field displayed by the data source manager’s
user select dialog on Windows.

TWAIN Data Source Version: The complete version of the TWAIN data source, matching the
.DLL version on Windows, and the .so file name on Linux and Mac OS X, this version number
matches the MajorNum and MinorNum fields from the data source’s
TW_IDENTITY.Version structure.

Installation: The name and the version of the installation media that includes this TWAIN
data source provides information the user needs to install the self-certified TWAIN driver.

Operating System: The operating system’s name and revision (version number or service
pack) that was used during self-certification.

Processor: The computer processor of the host machine used during self-certification,
examples include: x86, x64, IA64. This should match the native processor supported by the
TWAIN data source. For example, if the self-certification is performed for a 32-bit TWAIN
data source on Windows XP or Linux without a 64-bit data source, then the x86 processor
should be used.
TWAIN 2.3 Specification 13-3

http://www.twain.org
http://www.twain.org

Chapter 13
32-Bit / 64-Bit: When performing the self-certification test on Windows Vista or later, or any
version of Macintosh OS X, or Linux, the submitted form must indicate successful completion
using both a native 32-bit and a native 64-bit data source.

Email: The name and email address of a contact. This is initially used to deliver the Logo, but
it will also be used to help manage entries posted by the TWAIN Working Group.

URL: The URL to the Installer for the TWAIN data source is a convenience for users browsing
the posted list of self-certified content. It is optional, but recommended.

Self-Certification Method: The submitter may specify the software used to perform self-
certification, when indicated this information is made available to users browsing the posted
list of self-certified content.

It is expected that multiple versions of the same driver will be submitted over the life of the
hardware product. Please be aware of the following:

Email address: The email address specifies the contact who receives the Logo for a successful
submission. This same email address must be used when submitting a new instance of a
previously submitted TWAIN data source, or when replacing an existing submission.
Requests using other email addresses may not be recognized by the TWAIN Working Group.

Signature: There is no requirement for the same signature (notarized or digital) to be used
from one submission to the next, but pairing the same signature with the same email address
for all submissions for a given driver is appreciated.

Hardware: The model name and model number uniquely identifies the hardware supported
by the TWAIN data source. Submissions of new TWAIN data sources for the same hardware
must take care to make sure that this information is identical from one version to the next. If
there is no exact match with an existing hardware entry, then the entire entry is treated as
new.

TWAIN Data Source Identity: The following fields uniquely identify the TWAIN data source:
TW_IDENTITY.Manufacturer, TW_IDENTITY.ProductFamily and
TW_IDENTITY.ProductName. When updating a previously existing self-certified TWAIN
data source it is important to make sure this data is identical from one version to the next. If
there is no exact match with an existing TWAIN data source, then the entire entry is treated as
new.

TWAIN Data Source Version: Many vendors use a four field versioning system (ex: 1.2.0.1).
The first two fields must correspond to the TW_IDENTITY.Info.Version.Major and
TW_IDENTITY.Info.Version.Minor fields. The last two fields vary among vendors, and
are not described here. The value zero must be used for any unused field. If a submission has
exactly the same email, hardware, data source and version information as a previous
submission, it will replace its posting on the TWAIN Working Group website. If there is no
exact match with an existing TWAIN data source, then the entire entry is treated as new.

Operating System: The operating system’s name and revision (version number or service
pack) that was used during self-certification. If there is no exact match with an existing
TWAIN data source, then the entire entry is treated as new.

The TWAIN Working Group makes no attempt to enforce continuity of versions. If the
submission is correct, the version numbers may change in any way specified by the submitter.

Submission of the form qualifies the data source and its associated hardware to display the
TWAIN Certified Logo. Submission information from the form is displayed on the TWAIN
Working Group website (www.twain.org).

Contact information is required to deliver the Logo; this includes the name of a contact and an
email address. This information will not be shared or made public. The form asks if the email
13-4 TWAIN 2.3 Specification

address may be used to occasionally send information relating to TWAIN or the TWAIN Working
Group.

The form must be either digitally signed or notarized. This identification is meant to guarantee
that the document has not been modified since it was signed. The form includes an address where
it can be mailed as a paper copy or emailed. The complete form is on the next two pages.
TWAIN 2.3 Specification 13-5

Chapter 13
Form

Affirmation of Successful Completion of TWAIN Self-Certification
Compliance with TWAIN Versions 1.9 through 2.2
Page 1 of 2

Completion and submission of a digitally signed or notarized original of this statement to the
TWAIN Working Group authorizes the authorized representative or their company to display the
TWAIN Certified Logo on the hardware, software and marketing materials of the TWAIN data
source described below. All fields must be filled in, except where otherwise indicated.

The certification mark is intended for use by authorized entities or persons and is intended to
certify that this software conforms to standards designated by the TWAIN Working Group. This
document indicates compliance with the TWAIN Specification for version TWAIN 2.2 or earlier.

The following information will not be published or shared. The Logo will be sent to the email
address.

Name of Contact: __

Email Address: __

May the TWAIN Working Group send TWAIN information not related to this submissionto
this email address? (circle one) [Yes] [No]

The following fields will be posted on the TWAIN Working Group website.

May the TWAIN Working Group post the software used to self-certify? (circle one)
[Yes] [No]

Company:

Division: (optional)

Company/Division URL: (optional)

Hardware Model Name:

Hardware Model Number:

Hardware Model Revision: (optional)

TW_IDENTITY.Manufacturer:

TW_IDENTITY.ProductFamily:

TW_IDENTITY.ProductName:

TW_IDENTITY.Protocol: ______. ______

TWAIN Data Source Version: ______. ______ . ______ . ______

Installer Version:

URL to Data Source: (optional)

Processor: x86 ___ x64 ___ other _______________________

Operating System/Revision:

Self-Certification Software: (optional)
13-6 TWAIN 2.3 Specification

Affirmation of Successful Completion of TWAIN Self-Certification
Compliance with TWAIN Versions 1.9 through 2.2
Page 2 of 2

Please confirm that all tests described within the “TWAIN Self-Certification Process for Data
Sources” document have been completely and successfully run (check all that apply).

Mail the Notarized Document to:

The TWAIN Working Group
7960 Soquel Drive B113
Aptos, Ca. 95003

- or -

Email the Digitally Signed Document to:

admin@twain.org

32-bit 64-bit Test
TWAIN Standard Capability Tests

Vendor Custom Capability Tests

Status Return Tests

Stress Tests

Non-UI Image Transfer Tests

UI Image Transfer Tests

CAP_XFERCOUNT

Version Tests

I attest under penalty of perjury to the fact that the information on this form is true and accurate.

Signature of Authorized Representative Date

Printed Name

Subscribed and duly sworn in my presence this ______ day of _______________ 20___.

Country of _________________ State of ________________________

SS Notary Public Signature

My commission expires:
TWAIN 2.3 Specification 13-7

Chapter 13
S A
 M

 P
 L

 E

Sample Form

Affirmation of Successful Completion of TWAIN Self-Certification
Compliance with TWAIN Versions 1.9 through 2.2
Page 1 of 2

Completion and submission of a digitally signed or notarized original of this statement to the
TWAIN Working Group authorizes the authorized representative or their company to display the
TWAIN Certified Logo on the hardware, software and marketing materials of the TWAIN data
source described below. All fields must be filled in, except where otherwise indicated.

The certification mark is intended for use by authorized entities or persons and is intended to
certify that this software conforms to standards designated by the TWAIN Working Group. This
document indicates compliance with the TWAIN Specification for version TWAIN 2.2 or earlier.

The following information will not be published or shared. The Logo will be sent to the email
address.

Name of Contact: __John Smith________________________________

Email Address: __twainselfcert@notarealcompany.com_________

May the TWAIN Working Group send TWAIN information not related to this submissionto
this email address? (circle one) [Yes] [No]

The following fields will be posted on the TWAIN Working Group website.

May the TWAIN Working Group post the software used to self-certify? (circle one)
[Yes] [No]

Company: Not A Real Company

Division: (optional) Scanner Group

Company/Division URL: (optional) www.notarealcompany.com/scanners

Hardware Model Name: Business Scanner

Hardware Model Number: 123

Hardware Model Revision: (optional) 6.0

TW_IDENTITY.Manufacturer: Not A Real Company

TW_IDENTITY.ProductFamily: Business Scanner

TW_IDENTITY.ProductName: Not A Real Scanner: 123

TW_IDENTITY.Protocol: __2___. __1___

TWAIN Data Source Version: ___5___. ___3___ . ___0___ . ___0___

Installer Version: Not A Real Scanner: 123, CD v3.4.0.0

URL to Data Source: (optional) www.notarealcompany.com/scanners/123

Processor: x86 _x_ x64 _x_ other _______________________

Operating System/Revision: Windows Vista / SP2

Self-Certification Software: (optional) Inspector TWAIN 3.1.14
13-8 TWAIN 2.3 Specification

S A
 M

 P
 L

 E

Affirmation of Successful Completion of TWAIN Self-Certification
Compliance with TWAIN Versions 1.9 through 2.2
Page 2 of 2

Please confirm that all tests described within the “TWAIN Self-Certification Process for Data
Sources” document have been completely and successfully run (check all that apply).

Mail the Notarized Document to:

The TWAIN Working Group
7960 Soquel Drive B113
Aptos, Ca. 95003

- or -

Email the Digitally Signed Document to:

admin@twain.org

32-bit 64-bit Test
X X TWAIN Standard Capability Tests

X X Vendor Custom Capability Tests

X X Status Return Tests

X X Stress Tests

X X Non-UI Image Transfer Tests

X X UI Image Transfer Tests

X X CAP_XFERCOUNT

X X Version Tests

I attest under penalty of perjury to the fact that the information on this form is true and accurate.

Signature of Authorized Representative Date

Printed Name

Subscribed and duly sworn in my presence this ______ day of _______________ 20___.

Country of _________________ State of ________________________

SS Notary Public Signature

My commission expires:
TWAIN 2.3 Specification 13-9

Chapter 13
TWAIN “Congratulations” Webpage
Applications that automate the TWAIN self-certification process are asked to use the
“Congratulations” web page to complete the process. Hard coding the “Affirmation of Successful
Completion of TWAIN Self-Certification” may require updates to the application if the TWAIN
Working Group changes the document. Use of the web page avoids this problem.

The URL of the web page is:

http://www.twain.org/self_certification_congratulations.shtm

TWAIN Self-Certification Tests
The tests are broken down into the following groups:

TWAIN Standard Capability Tests Exercise DAT_CAPABILITY operations for all standard
TWAIN capabilities reported by CAP_SUPPORTEDCAPS.
Confirm use of containers and supported operations.

Vendor Custom Capability Tests Exercise DAT_CAPABILITY operations for any vendor spe-
cific custom capabilities reported by CAP_SUPPORTEDCAPS.

Status Return Tests Confirm that the expected status return is reported by cer-
tain operations.

Stress Tests Stress aspects of data sources that have been reported as
common problems.

Non-UI Image Transfer Tests Confirm that multiple MSG_ENABLEDS and
MSG_DISABLEDS calls can be made in the context of one
MSG_OPENDS / MSG_CLOSEDS. This test focuses on image
capture with no UI.

UI Image Transfer Tests Confirm that multiple MSG_ENABLEDS and
MSG_DISABLEDS calls can be made in the context of one
MSG_OPENDS / MSG_CLOSEDS. This test focuses on image
capture with the UI.

ICAP_XFERMECH Test the ability of the data source to transfer the correct
number of images based on the value of ICAP_XFERMECH.

Version Test Confirm that the data sources responds correctly to differ-
ent TWAIN versions of data source manager and applica-
tion.
13-10 TWAIN 2.3 Specification

TWAIN Standard Capability Tests

Purpose

Exercise all of the TWAIN Standard capabilities exposed by CAP_SUPPORTEDCAPS using the
standard operations supported by DG_CONTROL / DAT_CAPABILITY.

Operations on capabilities (MSG_* values specified below) are assumed to be DG_CONTROL /
DAT_CAPABILITY, unless otherwise stated.

Pre-Test Procedure

Open the data source manager. It is required that when opened the data source is in the state it
would be in after being installed (e.g., no saved settings from previous sessions), to make the test
more reproducible.

When performing this test on Windows Vista or later, Macintosh OS X or Linux it must be
successfully completed using both a native 32-bit and a native 64-bit data source.

Confirm Basic Negotiation with CAP_SUPPORTEDCAPS

Make sure that CAP_SUPPORTEDCAPS is working properly. Perform basic checks on how well it
supports negotiation.

1. Action: MSG_GET CAP_SUPPORTEDCAPS (get the list of capabilities to be tested)

1.1. Test: If result is not TWRC_SUCCESS, then end with error

1.2. Test: If TW_CAPABILITY.Cap is not CAP_SUPPORTEDCAPS, then end with error

1.3. Test: If TW_CAPABILITY.ConType is not TWON_ARRAY, then end with error

1.4. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE value, then end
with error

1.5. Test: If TW_ARRAY.ItemType is not TWTY_UINT16, then end with error

1.6. Test: If TW_ARRAY.NumItems is equal to zero, then end with error

1.7. Action: Confirm the presence of the following capabilities in TW_ARRAY.ItemList

1.7.1. Test: If CAP_SUPPORTEDCAPS not found, then end with error

1.7.2. Test: If ICAP_PIXELTYPE not found, then end with error

1.7.3. Test: If ICAP_XFERMECH not found, then end with error

 Confirm Basic Negotiation with ICAP_PIXELTYPE

Make sure that ICAP_PIXELTYPE is working properly. Perform basic checks on how well it
supports negotiation.

2. Action: MSG_GET ICAP_PIXELTYPE
TWAIN 2.3 Specification 13-11

Chapter 13
2.1. Test: If result is not TWRC_SUCCESS, then end with error

2.2. Test: If TW_CAPABILITY.Cap is not ICAP_PIXELTYPE, then end with error

2.3. Test: If TW_CAPABILITY.ConType is not TWON_ENUMERATION, then end with error

2.4. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE value, then end with
error

2.5. Test: If TW_ENUMERATION.ItemType is not TWTY_UINT16, then end with error

2.6. Test: If TW_ENUMERATION.NumItems is equal to zero, then end with error

Confirm Basic Negotiation with ICAP_BITDEPTH

Make sure that ICAP_BITDEPTH is working properly, and doesn’t include invalid values for
commonly used pixel types.Make sure that ICAP_BITDEPTH is working properly, and doesn’t
include invalid values for commonly used pixel types.

3. Action: MSG_SET ICAP_PIXELTYPE to TWPT_BW

3.1. Test: If result is not TWRC_SUCCESS, then proceed to the TWPT_GRAY test immediately
below

3.2. Action: MSG_GET ICAP_BITDEPTH

3.2.1. Test: If TW_CAPABILITY.ConType is not TWON_ENUMERATION, then proceed
to the TWPT_RGB test below

3.2.2. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE value, then
end with error

3.2.3. Test: If TW_ENUMERATION.ItemType is not TWTY_UINT16, then end with
error

3.2.4. Test: If the TW_ENUMERATION.ItemList includes a value of 24, then end
with error

4. Action: MSG_SET ICAP_PIXELTYPE to TWPT_GRAY

4.1. Test: If result is not TWRC_SUCCESS, then proceed to the TWPT_RGB test below

4.2. Action: MSG_GET ICAP_BITDEPTH

4.2.1. Test: If TW_CAPABILITY.ConType is not TWON_ENUMERATION, then proceed
to the TWPT_RGB test below

4.2.2. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE value, then
end with error

4.2.3. Test: If TW_ENUMERATION.ItemType is not TWTY_UINT16, then end with
error

4.2.4. Test: If the TW_ENUMERATION.ItemList includes a value of 1, then end with
error

4.2.5. Test: If the TW_ENUMERATION.ItemList includes a value of 24, then end
with error
13-12 TWAIN 2.3 Specification

5. Action: MSG_SET ICAP_PIXELTYPE to TWPT_RGB

5.1. Test: If result is not TWRC_SUCCESS, then proceed to the next test section

5.2. Action: MSG_GET ICAP_BITDEPTH

5.2.1. Test: If TW_CAPABILITY.ConType is not TWON_ENUMERATION, then proceed
to the TWPT_RGB test below

5.2.2. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE value, then
end with error

5.2.3. Test: If TW_ENUMERATION.ItemType is not TWTY_UINT16, then end with
error

5.2.4. Test: If the TW_ENUMERATION.ItemList includes a value of 1, then end with
error

Confirm Basic Negotiation with ICAP_XFERMECH

Make sure that ICAP_XFERMECH is working properly. Perform basic checks on how well it
supports negotiation.

6. Action: MSG_GET ICAP_XFERMECH

6.1. Test: If result is not TWRC_SUCCESS, then end with error

6.2. Test: If TW_CAPABILITY.Cap is not ICAP_XFERMECH, then end with error

6.3. Test: If TW_CAPABILITY.ConType is not TWON_ENUMERATION, then end with error

6.4. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE value, then end with
error

6.5. Test: If TW_ENUMERATION.ItemType is not TWTY_UINT16, then end with error

6.6. Test: If TW_ENUMERATION.NumItems is less than two, then end with error

Exercise DAT_CAPABILITY

Exercise DAT_CAPABILITY operations for all TWAIN Standard capabilities (ID’s with a value less
than 0x8000). Ignore Vendor Custom capabilities (ID’s with a value of 0x8000 or greater).
Confirm correct ConType and ItemType values described in the TWAIN Specification in the
chapter titled Chapter 10, "Capabilities".

7. Action: MSG_RESETALL

7.1. Test: If return code is not TWRC_SUCCESS, end with an error

7.2. Action: Repeat this section for each enumerated value found inside of
ICAP_PIXELTYPE, (testing is done for each value of ICAP_PIXELTYPE, to provide the
best chance of exercising every available capability)

7.3. Action: Repeat this section for Standard TWAIN array values found inside of
CAP_SUPPORTEDCAPS (each Standard TWAIN capability ID is referred to as #CAP#
for the rest of this section)
TWAIN 2.3 Specification 13-13

Chapter 13
7.3.1. Action: MSG_QUERYSUPPORT #CAP#

7.3.1.1. Test: If result is not TWRC_SUCCESS, then end with error

7.3.1.2. Test: If TW_CAPABILITY.Cap is not #CAP#, then end with error

7.3.1.3. Test: If TW_CAPABILITY.ConType is not TWON_ONEVALUE, then
end with error

7.3.1.4. Test: If TW_ONEVALUE.ItemType is not TWTY_UINT32, then end
with error

7.3.1.5. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE
value, then end with error

7.3.1.6. Test: If the value of TW_ONEVALUE.Item doesn’t match the TWQC
values for this capability, then end with error

7.3.1.7. Test: If TWQC_GET, TWQC_GETCURRENT or TWQC_GETDEFAULT is
detected, then all three must be present, if any are missing end with
error

7.3.1.8. Test: If TWQC_RESET or TWQC_SET is detected, then both must be
present, plus TWQC_GET, TWQC_GETCURRENT and
TWQC_GETDEFAULT, if not true then end with error

7.3.2. Action: If TWQC_GET is reported, then call MSG_GET #CAP#

7.3.2.1. Test: If result is TWRC_FAILURE / TWCC_CAPSEQERROR, then skip to
the next capability

7.3.2.2. Test: If result is not TWRC_SUCCESS, then end with error

7.3.2.3. Test: If TW_CAPABILITY.Cap is not #CAP#, then end with error

7.3.2.4. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE
value, then end with error

7.3.2.5. Test: If the value of TW_CAPABILITY.ConType doesn’t match the
Specification’s MSG_GET container for this capability, then end with
error

7.3.2.6. Test: If container’s ItemType doesn’t match the Specification’s
ItemType for this capability, then end with error

7.3.3. Action: If TWQC_GETCURRENT is reported, then call MSG_GETCURRENT #CAP#

7.3.3.1. Test: If result is not TWRC_SUCCESS, then end with error

7.3.3.2. Test: If TW_CAPABILITY.Cap is not #CAP#, then end with error

7.3.3.3. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE
value, then end with error
13-14 TWAIN 2.3 Specification

7.3.3.4. Action: If TWQC_GET was reported by MSG_QUERYSUPPORT then do
the following:

7.3.3.4.1. Test: If the TW_CAPABILITY.ConType for MSG_GET was
TWON_ENUMERATION, TWON_ONEVALUE or TWON_RANGE,
then the TW_CAPABILITY.ConType for
MSG_GETCURRENT must be TWTY_ONEVALUE, if not then
end with error

7.3.3.4.2. Test: If the TW_CAPABILITY.ConType for MSG_GET was
TWON_ARRAY then the TW_CAPABILITY.ConType for
MSG_GETCURRENT must be TWTY_ARRAY, if not then end
with error

7.3.3.4.3. Test: If container’s ItemType for MSG_GET doesn’t match
container’s ItemType for MSG_GETCURRENT, then end
with error

7.3.4. Action: If TWQC_GETDEFAULT is reported, then call MSG_GETDEFAULT #CAP#

7.3.4.1. Test: If result is not TWRC_SUCCESS, then end with error

7.3.4.2. Test: If TW_CAPABILITY.Cap is not #CAP#, then end with error

7.3.4.3. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE
value, then end with error

7.3.4.4. Action: If TWQC_GET was reported by MSG_QUERYSUPPORT then do
the following:

7.3.4.4.1. Test: If the TW_CAPABILITY.ConType for MSG_GET was
TWON_ENUMERATION, TWON_ONEVALUE or TWON_RANGE,
then the TW_CAPABILITY.ConType for
MSG_GETDEFAULT must be TWTY_ONEVALUE, if not then
end with error

7.3.4.4.2. Test: If the TW_CAPABILITY.ConType for MSG_GET was
TWON_ARRAY then the TW_CAPABILITY.ConType for
MSG_GETDEFAULT must be TWTY_ARRAY, if not then end
with error

7.3.4.4.3. Test: If container’s ItemType for MSG_GET doesn’t match
container’s ItemType for MSG_GETDEFAULT, then end
with error

7.3.5. Action: If TWQC_RESET is reported, then call MSG_RESET #CAP#

7.3.5.1. Test: If result is not TWRC_SUCCESS, then end with error

7.3.5.2. Test: If TW_CAPABILITY.Cap is not #CAP#, then end with error

7.3.5.3. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE
value, then end with error
TWAIN 2.3 Specification 13-15

Chapter 13
7.3.6. Action: If TWQC_GET was reported by MSG_QUERYSUPPORT then do the
following:

7.3.6.1. Test: If TW_CAPABILITY.ConType for MSG_GET doesn’t match
TW_CAPABILITY.ConType for MSG_RESET, then end with error

7.3.6.2. Test: If container’s ItemType for MSG_GET doesn’t match container’s
ItemType for MSG_RESET, then end with error

7.3.7. Action: If TWQC_SET is reported then do the following:

7.3.7.1. Action: If TWQC_GET was reported by MSG_QUERYSUPPORT then do
the following:

7.3.7.1.1. Action: MSG_GET #CAP#

7.3.7.1.1.1. Test: If result is not TWRC_SUCCESS, then
end with error

7.3.7.1.2. Action: MSG_SET with TW_CAPABILITY from MSG_GET

7.3.7.1.2.1. Test: If result is TWRC_FAILURE /
TWCC_CAPSEQERROR, then skip to next
capability

7.3.7.1.2.2. Test: If result is not TWRC_SUCCESS or
TWRC_CHECKSTATUS, then end with error

7.3.7.2. Action: If TWQC_GETCURRENT was reported by
MSG_QUERYSUPPORT then do the following:

7.3.7.2.1. Action: MSG_GETCURRENT #CAP#

7.3.7.2.1.1. Test: If result is not TWRC_SUCCESS, then
end with error

7.3.7.2.1.2. Action: MSG_SET with TW_CAPABILITY
from MSG_GETCURRENT

7.3.7.2.1.3. Test: If result is TWRC_FAILURE /
TWCC_CAPSEQERROR, then skip to next
capability

7.3.7.2.1.4. Test: If result is not TWRC_SUCCESS or
TWRC_CHECKSTATUS, then end with error

7.3.7.3. Action: If TWQC_GETDEFAULT was reported by
MSG_QUERYSUPPORT then do the following:

7.3.7.3.1. Action: MSG_GETDEFAULT #CAP#

7.3.7.3.1.1. Test: If result is not TWRC_SUCCESS, then
end with error
13-16 TWAIN 2.3 Specification

7.3.7.3.2. Action: MSG_SET with TW_CAPABILITY from
MSG_GETDEFAULT

7.3.7.3.2.1. Test: If result is TWRC_FAILURE /
TWCC_CAPSEQERROR, then skip to next
capability

7.3.7.3.2.2. Test: If result is not TWRC_SUCCESS or
TWRC_CHECKSTATUS, then end with error

7.3.7.4. Action: If TWQC_RESET was reported by MSG_QUERYSUPPORT then
do the following:

7.3.7.4.1. Action: MSG_RESET #CAP#

7.3.7.4.1.1. Test: If result is not TWRC_SUCCESS, then
end with error

7.3.7.4.2. Action: MSG_SET with TW_CAPABILITY from
MSG_RESET

7.3.7.4.2.1. Test: If result is TWRC_FAILURE /
TWCC_CAPSEQERROR, then skip to next
capability

7.3.7.4.2.2. Test: If result is not TWRC_SUCCESS, then
end with error

7.3.7.5. Action: If TWQC_GET was reported by MSG_QUERYSUPPORT then do
the following:

7.3.7.5.1. Action: MSG_GET #CAP#

7.3.7.5.1.1. Test: If result is not TWRC_SUCCESS, then
end with error

7.3.7.5.1.2. Test: If the container’s ItemType is
TWTY_BOOL and the test application has
DF_APP2 in its
TW_IDENTITY.SupportedGroups, and
the data source has DF_DS2 in its
TW_IDENTITY.SupportedGroups, then
TW_CAPABILITY.ConType must be set to
TW_ENUMERATION, if not then end with
error

7.3.7.5.1.3. Test: If the container’s ItemType is
TWTY_BOOL and the test application does
not have DF_APP2 in its
TW_IDENTITY.SupportedGroups, or the
data source does not have DF_DS2 in its
TW_IDENTITY.SupportedGroups, then
TW_CAPABILITY.ConType must be set to
TW_ONEVALUE, if not then end with error
TWAIN 2.3 Specification 13-17

Chapter 13
7.3.7.5.2. Action: If TW_CAPABILITY.ConType is TWON_ARRAY
then repeat following for each value in the array:

7.3.7.5.2.1. Action: MSG_SET the value using a
TW_ARRAY container

7.3.7.5.2.1.1. Test: If result is not
TWRC_SUCCESS or
TWRC_CHECKSTATUS, then
end with error

7.3.7.5.2.2. Action: If TW_CAPABILITY.ConType is
TWON_ARRAY then do the following:

7.3.7.5.2.2.1. Action: MSG_SET the value
using a TW_ARRAY
container, setting the value
to 22222 (which is expected
to be an illegal value)

7.3.7.5.2.3. Test: If result is not TWRC_BADVALUE or
TWRC_CHECKSTATUS, then end with error

7.3.7.5.3. Action: If TW_CAPABILITY.ConType is
TWON_ENUMERATION then repeat following for each
value in the enumeration:

7.3.7.5.4. Action: MSG_SET the value using a TW_ENUMERATION
container

7.3.7.5.4.1. Test: If result is not TWRC_SUCCESS or
TWRC_CHECKSTATUS, then end with error

7.3.7.5.5. Action: If TW_CAPABILITY.ConType is
TWON_ENUMERATION then do the following:

7.3.7.5.5.1. Action: MSG_SET the current value using a
TW_ONEVALUE container, the value must be
something that did not appear in the list of
valid enumerations

7.3.7.5.5.1.1. Test: If result is not
TWRC_BADVALUE, then end
with error

7.3.7.5.6. Action: If TW_CAPABILITY.ConType is TWON_RANGE
then repeat the following for the TW_RANGE.MinValue,
TW_RANGE.CurrentValue and TW_RANGE.MaxValue:

7.3.7.5.6.1. Action: MSG_SET the current value using a
TW_RANGE container
13-18 TWAIN 2.3 Specification

7.3.7.5.6.1.1. Test: If result is not
TWRC_SUCCESS or
TWRC_CHECKSTATUS, then
end with error

Post-Test Procedure

When testing is completed, close the data source and the data source manager.

Vendor Custom Capability Tests

Purpose

Exercise all of the Vendor Custom capabilities exposed by CAP_SUPPORTEDCAPS using the
standard operations supported by DG_CONTROL / DAT_CAPABILITY.

Operations on capabilities (MSG_* values specified below) are assumed to be DG_CONTROL /
DAT_CAPABILITY, unless otherwise stated.

Pre-Test Procedure

Open the data source manager and the data source that is to be tested. It is recommended that the
data source is in the state it would be in after being installed (e.g., no saved settings from previous
sessions), to make the test more reproducible.

When performing this test on Windows Vista or later, Macintosh OS X or Linux it must be
successfully completed using both a native 32-bit and a native 64-bit data source.

Confirm Basic Negotiation with CAP_SUPPORTEDCAPS

Make sure that CAP_SUPPORTEDCAPS is working properly. Perform basic checks on how well it
supports negotiation.

1. Action: MSG_RESETALL

1.1. Test: If return code is not TWRC_SUCCESS, end with an error

1.2. Action: MSG_GET CAP_SUPPORTEDCAPS (gets the list of capabilities to be tested)

1.2.1. Test: If result is not TWRC_SUCCESS, then end with error

1.2.2. Test: If TW_CAPABILITY.Cap is not CAP_SUPPORTEDCAPS, then end with
error

1.2.3. Test: If TW_CAPABILITY.ConType is not TWON_ARRAY, then end with error

1.2.4. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE value, then
end with error

1.2.5. Test: If TW_ARRAY.ItemType is not TWTY_UINT16, then end with error
TWAIN 2.3 Specification 13-19

Chapter 13
1.2.6. Test: If TW_ARRAY.NumItems is equal to zero, then end with error

1.2.7. Action: Confirm the presence of the following capabilities in
TW_ARRAY.ItemList

1.2.7.1. Test: If CAP_SUPPORTEDCAPS not found, then end with error

1.2.7.2. Test: If ICAP_PIXELTYPE not found, then end with error

 Confirm Basic Negotiation with ICAP_PIXELTYPE

Make sure that ICAP_PIXELTYPE is working properly. Perform basic checks on how well it
supports negotiation.

2. Action: MSG_GET ICAP_PIXELTYPE

2.1. Test: If result is not TWRC_SUCCESS, then end with error

2.2. Test: If TW_CAPABILITY.Cap is not ICAP_PIXELTYPE, then end with error

2.3. Test: If TW_CAPABILITY.ConType is not TWON_ENUMERATION, then end with error

2.4. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE value, then end with
error

2.5. Test: If TW_ENUMERATION.ItemType is not TWTY_UINT16, then end with error

2.6. Test: If TW_ENUMERATION.NumItems is equal to zero, then end with error

Exercise DAT_CAPABILITY

Exercise DAT_CAPABILITY operations for all Vendor Custom capabilities (ID’s with a value of
0x8000 or greater). Ignore TWAIN Standard capabilities (ID’s with a value less than 0x8000).

3. Action: Repeat this section for each enumerated value found inside of ICAP_PIXELTYPE,
(testing is done for each value of ICAP_PIXELTYPE, to provide the best chance of exercising
every available capability)

3.1. Action: Repeat this section for each Vendor Custom TWAIN array value found inside
of CAP_SUPPORTEDCAPS (each Vendor Custom capability ID is referred to as #CAP#
for the rest of this section)

3.1.1. Action: MSG_QUERYSUPPORT #CAP#

3.1.1.1. Test: If result is not TWRC_SUCCESS, then end with error

3.1.1.2. Test: If TW_CAPABILITY.Cap is not #CAP#, then end with error

3.1.1.3. Test: If TW_CAPABILITY.ConType is not TWON_ONEVALUE, then
end with error

3.1.1.4. Test: If TW_ONEVALUE.ItemType is not TWTY_UINT32, then end
with error

3.1.1.5. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE
value, then end with error
13-20 TWAIN 2.3 Specification

3.1.2. Action: If TWQC_GET is reported, then call MSG_GET #CAP#

3.1.2.1. Test: If result is TWRC_FAILURE / TWCC_CAPSEQERROR, then skip
to the next capability

3.1.2.2. Test: If result is not TWRC_SUCCESS, then end with error

3.1.2.3. Test: If TW_CAPABILITY.Cap is not #CAP#, then end with error

3.1.2.4. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE
value, then end with error

3.1.3. Action: If TWQC_GETCURRENT is reported, then call MSG_GETCURRENT #CAP#

3.1.3.1. Test: If result is not TWRC_SUCCESS, then end with error

3.1.3.2. Test: If TW_CAPABILITY.Cap is not #CAP#, then end with error

3.1.3.3. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE
value, then end with error

3.1.3.4. Action: If TWQC_GET was reported by MSG_QUERYSUPPORT then do
the following:

3.1.3.4.1. Test: If the TW_CAPABILITY.ConType for MSG_GET was
TWON_ENUMERATION, TWON_ONEVALUE or TWON_RANGE,
then the TW_CAPABILITY.ConType for
MSG_GETCURRENT must be TWTY_ONEVALUE, if not then
end with error

3.1.3.4.2. Test: If the TW_CAPABILITY.ConType for MSG_GET was
TWON_ARRAY then the TW_CAPABILITY.ConType for
MSG_GETCURRENT must be TWTY_ARRAY, if not then end
with error

3.1.3.4.3. Test: If container’s ItemType for MSG_GET doesn’t match
container’s ItemType for MSG_GETCURRENT, then end
with error

3.1.4. Action: If TWQC_GETDEFAULT is reported, then call MSG_GETDEFAULT #CAP#

3.1.4.1. Test: If result is not TWRC_SUCCESS, then end with error

3.1.4.2. Test: If TW_CAPABILITY.Cap is not #CAP#, then end with error

3.1.4.3. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE
value, then end with error

3.1.4.4. Action: If TWQC_GET was reported by MSG_QUERYSUPPORT then do
the following:
TWAIN 2.3 Specification 13-21

Chapter 13
3.1.4.4.1. Test: If the TW_CAPABILITY.ConType for MSG_GET was
TWON_ENUMERATION, TWON_ONEVALUE or TWON_RANGE,
then the TW_CAPABILITY.ConType for
MSG_GETDEFAULT must be TWTY_ONEVALUE, if not then
end with error

3.1.4.4.2. Test: If the TW_CAPABILITY.ConType for MSG_GET was
TWON_ARRAY then the TW_CAPABILITY.ConType for
MSG_GETDEFAULT must be TWTY_ARRAY, if not then end
with error

3.1.4.4.3. Test: If container’s ItemType for MSG_GET doesn’t match
container’s ItemType for MSG_GETDEFAULT, then end
with error

3.1.5. Action: If TWQC_RESET is reported, then call MSG_RESET #CAP#

3.1.5.1. Test: If result is not TWRC_SUCCESS, then end with error

3.1.5.2. Test: If TW_CAPABILITY.Cap is not #CAP#, then end with error

3.1.5.3. Test: If TW_CAPABILITY.hContainer is not a valid TW_HANDLE
value, then end with error

3.1.5.4. Action: If TWQC_GET was reported by MSG_QUERYSUPPORT then do
the following:

3.1.5.4.1. Test: If TW_CAPABILITY.ConType for MSG_GET doesn’t
match TW_CAPABILITY.ConType for MSG_RESET, then
end with error

3.1.5.4.2. Test: If container’s ItemType for MSG_GET doesn’t match
container’s ItemType for MSG_RESET, then end with
error

3.1.6. Action: If TWQC_SET is reported then do the following:

3.1.6.1. Action: If TWQC_GET was reported by MSG_QUERYSUPPORT then do
the following:

3.1.6.1.1. Action: MSG_GET #CAP#

3.1.6.1.1.1. Test: If result is not TWRC_SUCCESS, then
end with error

3.1.6.1.2. Action: MSG_SET with TW_CAPABILITY from MSG_GET

3.1.6.1.2.1. Test: If result is TWRC_FAILURE /
TWCC_CAPSEQERROR, then skip to next
capability

3.1.6.1.2.2. Test: If result is not TWRC_SUCCESS or
TWRC_CHECKSTATUS, then end with error
13-22 TWAIN 2.3 Specification

3.1.6.2. Action: If TWQC_GETCURRENT was reported by
MSG_QUERYSUPPORT then do the following:

3.1.6.2.1. Action: MSG_GETCURRENT #CAP#

3.1.6.2.1.1. Test: If result is not TWRC_SUCCESS, then
end with error

3.1.6.2.2. Action: MSG_SET with TW_CAPABILITY from
MSG_GETCURRENT

3.1.6.2.2.1. Test: If result is TWRC_FAILURE /
TWCC_CAPSEQERROR, then skip to next
capability

3.1.6.2.2.2. Test: If result is not TWRC_SUCCESS or
TWRC_CHECKSTATUS, then end with error

3.1.6.3. Action: If TWQC_GETDEFAULT was reported by
MSG_QUERYSUPPORT then do the following:

3.1.6.3.1. Action: MSG_GETDEFAULT #CAP#

3.1.6.3.1.1. Test: If result is not TWRC_SUCCESS, then
end with error

3.1.6.3.2. Action: MSG_SET with TW_CAPABILITY from
MSG_GETDEFAULT

3.1.6.3.2.1. Test: If result is TWRC_FAILURE /
TWCC_CAPSEQERROR, then skip to next
capability

3.1.6.3.2.2. Test: If result is not TWRC_SUCCESS or
TWRC_CHECKSTATUS, then end with error

3.1.6.4. Action: If TWQC_RESET was reported by MSG_QUERYSUPPORT then
do the following:

3.1.6.4.1. Action: MSG_RESET #CAP#

3.1.6.4.1.1. Test: If result is not TWRC_SUCCESS, then
end with error

3.1.6.4.2. Action: MSG_SET with TW_CAPABILITY from
MSG_RESET

3.1.6.4.2.1. Test: If result is TWRC_FAILURE /
TWCC_CAPSEQERROR, then skip to next
capability

3.1.6.4.2.2. Test: If result is not TWRC_SUCCESS, then
end with error
TWAIN 2.3 Specification 13-23

Chapter 13
3.1.6.5. Action: If TWQC_GET was reported by MSG_QUERYSUPPORT then do
the following:

3.1.6.5.1. Action: MSG_GET #CAP#

3.1.6.5.1.1. Test: If result is not TWRC_SUCCESS, then
end with error

3.1.6.5.1.2. Test: If the container’s ItemType is
TWTY_BOOL and the test application has
DF_APP2 in its
TW_IDENTITY.SupportedGroups, and
the data source has DF_DS2 in its
TW_IDENTITY.SupportedGroups, then
TW_CAPABILITY.ConType must be set to
TW_ENUMERATION, if not then end with
error

3.1.6.5.1.3. Test: If the container’s ItemType is
TWTY_BOOL and the test application does
not have DF_APP2 in its
TW_IDENTITY.SupportedGroups, or the
data source does not have DF_DS2 in its
TW_IDENTITY.SupportedGroups, then
TW_CAPABILITY.ConType must be set to
TW_ONEVALUE, if not then end with error

3.1.6.5.2. Action: If TW_CAPABILITY.ConType is TWON_ARRAY
then repeat following for each value in the array:

3.1.6.5.2.1. Action: MSG_SET the value using a
TW_ARRAY container

3.1.6.5.2.1.1. Test: If result is not
TWRC_SUCCESS or
TWRC_CHECKSTATUS, then
end with error

3.1.6.5.3. Action: If TW_CAPABILITY.ConType is TWON_ARRAY
then do the following:

3.1.6.5.3.1. Action: MSG_SET the value using a
TW_ARRAY container, setting the value to
22222 (which is expected to be an illegal
value)

3.1.6.5.3.1.1. Test: If result is not
TWRC_BADVALUE or
TWRC_CHECKSTATUS, then
end with error

3.1.6.5.4. Action: If TW_CAPABILITY.ConType is
TWON_ENUMERATION then repeat following for each
value in the enumeration:
13-24 TWAIN 2.3 Specification

3.1.6.5.5. Action: MSG_SET the value using a TW_ENUMERATION
container

3.1.6.5.5.1. Test: If result is not TWRC_SUCCESS or
TWRC_CHECKSTATUS, then end with error

3.1.6.5.6. Action: If TW_CAPABILITY.ConType is
TWON_ENUMERATION then do the following:

3.1.6.5.6.1. Action: MSG_SET the current value using a
TW_ONEVALUE container, the value must be
something that did not appear in the list of
valid enumerations

3.1.6.5.6.1.1. Test: If result is not
TWRC_BADVALUE, then end
with error

3.1.6.5.7. Action: If TW_CAPABILITY.ConType is TWON_RANGE
then repeat the following for the TW_RANGE.MinValue,
TW_RANGE.CurrentValue and TW_RANGE.MaxValue:

3.1.6.5.7.1. Action: MSG_SET the current value using a
TW_RANGE container

3.1.6.5.7.1.1. Test: If result is not
TWRC_SUCCESS or
TWRC_CHECKSTATUS, then
end with error

Post-Test Procedure

When testing is completed, close the data source and the data source manager.

Status Return Tests

Purpose

Confirm that the expected status return is reported by certain operations.

This is not an exhaustive test of all possible Status Returns.

Pre-Test Procedure

Open the data source manager and the data source that is to be tested. It is recommended that the
data source is in the state it would be in after being installed (e.g., no saved settings from previous
sessions), to make the test more reproducible.
TWAIN 2.3 Specification 13-25

Chapter 13
When performing this test on Windows Vista or later, Macintosh OS X or Linux it must be
successfully completed using both a native 32-bit and a native 64-bit data source.

Check Status Returns for DAT_IMAGENATIVEXFER and DAT_IMAGEMEMXFER

Confirm that DAT_IMAGENATIVEXFER and DAT_IMAGEMEMXFER both return the correct status
returns in various error conditions.

1. Action: In State 4 (after MSG_OPENDS, but before calling MSG_ENABLEDS)…

1.1. Confirm that the proper statuses are returned for bad protocols and attempts to
perform image transfers in State 4.

1.2. Action: Call DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_SET

1.2.1. Test: If result is not TWRC_FAILURE / TWCC_BADPROTOCOL, then end with
error

1.3. Action: Call DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

1.3.1. Test: If result is not TWRC_FAILURE / TWCC_SEQERROR, then end with error

1.4. Action: Call DG_IMAGE / DAT_IMAGEMEMXFER / MSG_SET

1.4.1. Test: If result is not TWRC_FAILURE / TWCC_BADPROTOCOL, then end with
error

1.5. Action: Call DG_IMAGE / DAT_IMAGEMEMXFER / MSG_GET

1.5.1. Test: If result is not TWRC_FAILURE / TWCC_SEQERROR, then end with error

Check Status Returns for DAT_IMAGELAYOUT

Confirm that DAT_IMAGELAYOUT returns the correct status returns in various error conditions.

2. Action: Call DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS with ShowUI =
TRUE

2.1. Test: If result is not TWRC_SUCCESS, then end with error

2.2. Action: Call DG_IMAGE / DAT_IMAGELAYOUT / MSG_GET

2.2.1. Test: If result is not TWRC_SUCCESS, then end with error

2.3. Action: Call DG_IMAGE / DAT_IMAGELAYOUT / MSG_SET using the
TW_IMAGELAYOUT values from the previous MSG_GET call

2.3.1. Test: If result is not TWRC_FAILURE / TWRC_SEQERROR, then end with error

2.4. Action: Call DG_IMAGE / DAT_IMAGELAYOUT / MSG_RESET

2.4.1. Test: If result is not TWRC_FAILURE / TWCC_SEQERROR, then end with error

Check Status Returns for DAT_CAPABILITY

Confirm that DAT_CAPABILITY returns the correct status returns in various error conditions.
13-26 TWAIN 2.3 Specification

3. Action: Call DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS with ShowUI =
TRUE

3.1. Test: If result is not TWRC_SUCCESS, then end with error

3.2. Action: MSG_GET CAP_SUPPORTEDCAPS

3.2.1. Test: If result is not TWRC_SUCCESS, then end with error

3.3. Action: MSG_GET CAP_EXTENDEDCAPS

3.3.1. Test: If result is not TWRC_SUCCESS or the TW_ARRAY is empty, then skip any
checks of CAP_EXTENDEDCAPS referenced in the rest of this section

3.4. Action: For each value found in CAP_SUPPORTEDCAPS that is not in
CAP_EXTENDEDCAPS do the following sections (each capability ID is referred to as
#CAP# for the rest of this section):

3.4.1. Action: MSG_GET #CAP#

3.4.1.1. Test: If result is not TWRC_SUCCESS, then skip to next capability

3.4.2. Action: MSG_SET #CAP# with results of previous MSG_GET

3.4.2.1. Test: If result is TWRC_SUCCESS or TWRC_CHECKSTATUS, then end
with error

3.4.3. Action: MSG_RESET #CAP#

3.4.3.1. Test: If result is TWRC_SUCCESS or TWRC_CHECKSTATUS, then end
with error

Post-Test Procedure

When testing is completed, close the data source and the data source manager.

Stress Tests

Purpose

Stress aspects of data sources that have been reported as common problems.

Pre-Test Procedure

Open the data source manager. It is required that when opened the data source is in the state it
would be in after being installed (e.g., no saved settings from previous sessions), to make the test
more reproducible.

When performing this test on Windows Vista or later, Macintosh OS X or Linux it must be
successfully completed using both a native 32-bit and a native 64-bit data source.
TWAIN 2.3 Specification 13-27

Chapter 13
Open and Close the Data Source Multiple Times

Confirm that the data source can open and close multiple times. This tests for crashes.

1. Action: Repeat this section twenty (20) times

1.1. Confirm that the data source can successfully open and close repeated times from a
single instance of an application.

1.2. Action: Call DG_CONTROL / DAT_IDENTITY / MSG_OPENDS

1.2.1. Test: If result is not TWRC_SUCCESS, then end with error

1.3. Action: Call DG_CONTROL / DAT_IDENTITY / MSG_CLOSEDS

1.3.1. Test: If result is not TWRC_SUCCESS, then end with error

Post-Test Procedure

When testing is completed, close the data source and the data source manager.

Non-UI Image Transfer Tests

Purpose

Confirm that multiple MSG_ENABLEDS and MSG_DISABLEDS calls can be made in the context of
one MSG_OPENDS / MSG_CLOSEDS. This test focuses on image capture with no UI, verifying
that the Application does not have to close the driver after capturing images.

Pre-Test Procedure

Open the data source manager and the data source that is to be tested. It is recommended that the
data source is in the state it would be in after being installed (e.g., no saved settings from previous
sessions), to make the test more reproducible.

When performing this test on Windows Vista or later, Macintosh OS X or Linux it must be
successfully completed using both a native 32-bit and a native 64-bit data source.

Exercise DAT_IMAGENATIVEXFER

This test issues multiple image transfer sessions using DAT_IMAGENATIVEXFER. It is performed
for all available image sources (unspecified, flatbed and/or ADF). Only one image is transferred
per session.

1. Action: MSG_RESETALL

1.1. Test: If return code is not TWRC_SUCCESS, end with an error

1.2. Action: MSG_GET CAP_SUPPORTEDCAPS (get the list of capabilities to be tested)

1.3. Action: MSG_SET ICAP_XFERMECH to TWSX_NATIVE
13-28 TWAIN 2.3 Specification

1.4. Action: MSG_GETCURRENT ICAP_XFERMECH

1.5. Test: If return code is not TWRC_SUCCESS, end with an error

1.6. Test: If value is not TWSX_NATIVE, end with an error.

1.7. Action: If CAP_FEEDERENABLED is TRUE, set CAP_AUTOFEED to TRUE

1.8. Action: MSG_SET CAP_DUPLEXENABLED to FALSE

1.9. Action: MSG_SET CAP_XFERCOUNT to 1

1.10. Action: Do the following for each supported ICAP_PIXELTYPE

1.10.1. Action: MSG_SET ICAP_PIXELTYPE

1.10.2. Action: MSG_GET ICAP_BITDEPTH

1.10.3. Action: Do the following for each supported ICAP_BITDEPTH

1.10.3.1. Action: MSG_SET ICAP_BITDEPTH

1.10.3.2. Action: Do the following for the minimum, maximum and 300 (or
nearest) resolution values.

1.10.3.2.1. Action: MSG_SET ICAP_XRESOLUTION and
ICAP_YRESOLUTION

1.10.3.2.2. Action: DG_CONTROL / DAT_USERINTERFACE /
MSG_ENABLEDS with ShowUI = FALSE and ModalUI =
FALSE

1.10.3.2.3. Test: If return code is not TWRC_SUCCESS, end with an
error

1.10.3.2.4. Action: Wait for MSG_XFERREADY

1.10.3.2.5. Action: MSG_GET ICAP_XFERMECH

1.10.3.2.6. Test: If return code is not TWRC_SUCCESS, end with an
error

1.10.3.2.7. Action: DG_IMAGE / DAT_IMAGENATIVEXFER /
MSG_GET

1.10.3.2.8. Test: If return code is not TWRC_XFERDONE, end with an
error

1.10.3.2.9. Test: If the handle does not point to a valid image, end
with an error

1.10.3.2.10. Test: If the bit depth of the image is not what was
requested, end with an error

1.10.3.2.11. Action: Free handle returned by
DAT_IMAGENATIVEXFER
TWAIN 2.3 Specification 13-29

Chapter 13
1.10.3.2.12. Action: DG_CONTROL / DAT_PENDINGXFERS /
MSG_ENDXFER

1.10.3.2.13. Action: DG_CONTROL / DAT_USERINTERFACE /
MSG_DISABLEDS

1.10.3.2.14. Test: If return code is not TWRC_SUCCESS, end with an
error

Exercise DAT_IMAGEMEMXFER

This test issues multiple image transfer sessions using DAT_IMAGEMEMXFER. It is performed for
all available image sources (unspecified, flatbed and/or ADF). Only one image is transferred per
session. The preferred size specified by the data source is used to transfer each strip.

2. Action: MSG_RESETALL

2.1. Test: If return code is not TWRC_SUCCESS, end with an error

2.2. Action: MSG_SET ICAP_XFERMECH to TWSX_MEMORY

2.3. Action: MSG_GETCURRENT ICAP_XFERMECH

2.4. Test: If return code is not TWRC_SUCCESS, end with an error

2.5. Test: If value is not TWSX_MEMORY, end with an error

2.6. Action: If CAP_FEEDERENABLED is TRUE, set CAP_AUTOFEED to TRUE

2.7. Action: MSG_SET CAP_DUPLEXENABLED to FALSE

2.8. Action: MSG_SET CAP_XFERCOUNT to 1

2.9. Action: Do the following for each supported ICAP_PIXELTYPE

2.9.1. Action: MSG_SET ICAP_PIXELTYPE

2.9.2. Action: MSG_GET ICAP_BITDEPTH

2.9.3. Action: Do the following for each supported ICAP_BITDEPTH

2.9.3.1. Action: MSG_SET ICAP_BITDEPTH

2.9.3.2. Action: MSG_GET ICAP_COMPRESSION

2.9.3.3. Action: Do the following for each supported ICAP_COMPRESSION

2.9.3.3.1. Action: MSG_SET ICAP_COMPRESSION

2.9.3.3.2. Action: Do the following for the minimum, maximum
and 300 (or nearest) resolution values.

2.9.3.3.2.1. Action: MSG_SET ICAP_XRESOLUTION
and ICAP_YRESOLUTION
13-30 TWAIN 2.3 Specification

2.9.3.3.2.2. Action: DG_CONTROL /
DAT_USERINTERFACE / MSG_ENABLEDS
with ShowUI = FALSE and ModalUI =
FALSE

2.9.3.3.2.3. Test: If return code is not TWRC_SUCCESS,
end with an error

2.9.3.3.2.4. Action: Wait for MSG_XFERREADY

2.9.3.3.2.5. Action: MSG_GET ICAP_XFERMECH

2.9.3.3.2.6. Test: If return code is not TWRC_SUCCESS,
end with an error

2.9.3.3.2.7. Action: DG_CONTROL /
DAT_SETUPMEMXFER / MSG_GET

2.9.3.3.2.8. Test: If return code is not TWRC_SUCCESS,
end with an error

2.9.3.3.2.9. Action: DG_IMAGE /
DAT_IMAGEMEMXFER / MSG_GET with the
preferred buffer size

2.9.3.3.2.10. Test: if the return code is TWRC_SUCCESS,
repeat previous step

2.9.3.3.2.11. Test: if the return code is not
TWRC_XFERDONE, end with an error

2.9.3.3.2.12. Action: DG_CONTROL /
DAT_PENDINGXFERS / MSG_ENDXFER

2.9.3.3.2.13. Action: DG_CONTROL /
DAT_USERINTERFACE / MSG_DISABLEDS

2.9.3.3.2.14. Test: If return code is not TWRC_SUCCESS,
end with an error

Exercise DAT_IMAGEFILEXFER

This test issues multiple image transfer sessions using DAT_IMAGEFILEXFER. It is performed for
all available image sources (unspecified, flatbed and/or ADF). Only one image is transferred per
session. The preferred size specified by the data source is used to transfer each strip.

3. Action: MSG_RESETALL

3.1. Test: If return code is not TWRC_SUCCESS, end with an error

3.2. Action: MSG_SET ICAP_XFERMECH to TWSX_MEMORY

3.3. Test: If return code is TWRC_SUCCESS / TWCC_BADVALUE, skip to section 4
TWAIN 2.3 Specification 13-31

Chapter 13
3.4. Test: If return code is not TWRC_SUCCESS, end with an error

3.5. Action: MSG_SET ICAP_XFERMECH to TWSX_FILE

3.6. Action: If CAP_FEEDERENABLED is TRUE, set CAP_AUTOFEED to TRUE

3.7. Action: MSG_SET CAP_DUPLEXENABLED to FALSE

3.8. Action: MSG_SET CAP_XFERCOUNT to 1

3.9. Action: MSG_GET ICAP_IMAGEFILEFORMAT

3.10. Action: Do the following for each supported ICAP_IMAGEFILEFORMAT

3.10.1. Action: MSG_SET ICAP_IMAGEFILEFORMAT

3.10.2. Action: MSG_GET ICAP_PIXELTYPE

3.10.3. Action: Do the following for each supported ICAP_PIXELTYPE

3.10.3.1. Action: MSG_SET ICAP_PIXELTYPE

3.10.3.2. Action: MSG_GET ICAP_BITDEPTH

3.10.3.3. Action: Do the following for each supported ICAP_BITDEPTH

3.10.3.3.1. Action: MSG_SET ICAP_BITDEPTH

3.10.3.3.2. Action: MSG_GET ICAP_COMPRESSION

3.10.3.3.3. Action: Do the following for each supported
ICAP_COMPRESSION

3.10.3.3.3.1. Action: MSG_SET ICAP_COMPRESSION

3.10.3.3.3.2. Action: Do the following for the minimum,
maximum and 300 (or nearest) resolution
values.

3.10.3.3.3.2.1. Action: MSG_SET
ICAP_XRESOLUTION and
ICAP_YRESOLUTION

3.10.3.3.3.2.2. Action: DG_CONTROL /
DAT_USERINTERFACE /
MSG_ENABLEDS with
ShowUI = FALSE and
ModalUI = FALSE

3.10.3.3.3.2.3. Test: If return code is not
TWRC_SUCCESS, end with
an error

3.10.3.3.3.2.4. Action: Wait for
MSG_XFERREADY
13-32 TWAIN 2.3 Specification

3.10.3.3.3.2.5. Action: MSG_GET
ICAP_XFERMECH

3.10.3.3.3.2.6. Test: If return code is not
TWRC_SUCCESS, end with
an error

3.10.3.3.3.2.7. Action: DG_CONTROL /
DAT_SETUPFILEXFER /
MSG_SET

3.10.3.3.3.2.8. Action: DG_IMAGE /
DAT_IMAGEFILEXFER /
MSG_GET

3.10.3.3.3.2.9. Test: If return code is not
TWRC_XFERDONE, end with
an error

3.10.3.3.3.2.10. Action: DG_CONTROL /
DAT_PENDINGXFERS /
MSG_ENDXFER

3.10.3.3.3.2.11. Action: DG_CONTROL /
DAT_USERINTERFACE /
MSG_DISABLEDS

3.10.3.3.3.2.12. Test: If return code is not
TWRC_SUCCESS, end with
an error

Post-Test Procedure

When testing is completed, close the data source and the data source manager.

 UI Image Transfer Tests

Purpose

Confirm that multiple MSG_ENABLEDS and MSG_DISABLEDS calls can be made in the context of
one MSG_OPENDS / MSG_CLOSEDS. This test focuses on image capture with the UI, verifying
that the Application does not have to close the driver after capturing images.

Procedure

These tests are identical to the “Non-UI Image Transfer Tests”, except that the value of ShowUI is
set to TRUE instead of FALSE.
TWAIN 2.3 Specification 13-33

Chapter 13
When performing this test on Windows Vista or later, Macintosh OS X or Linux it must be
successfully completed using both a native 32-bit and a native 64-bit data source.

CAP_XFERCOUNT Tests

Purpose

Confirm that when the data source accepts various values for CAP_XFERCOUNT, that it returns the
specified number of images. Test both flatbed and document feeders.

Pre-Test Procedure

Open the data source manager and the data source that is to be tested. It is recommended that the
data source is in the state it would be in after being installed (e.g., no saved settings from previous
sessions), to make the test more reproducible.

When performing this test on Windows Vista or later, Macintosh OS X or Linux it must be
successfully completed using both a native 32-bit and a native 64-bit data source.

Test Flatbed Scanning

This test sets CAP_XFERCOUNT to 0, 1 and -1 for a flatbed scanner. It expects an error for the
value 0, and only one image to be transferred per scanning session for the values 1 and -1.

1. Action: MSG_RESETALL

1.1. Test: If return code is not TWRC_SUCCESS, end with an error

1.2. Action: MSG_SET CAP_FEEDERENABLED to FALSE

1.3. Test: If return is TWRC_FAILURE / TWCC_BADVALUE, then scanner does not have a
flatbed, proceed to the Test Document Feeder Scanning section

1.4. Test: If return is not TWRC_SUCCESS and not TWRC_FAILURE /
TWCC_CAPUNSUPPORTED, end with error

1.5. Action: MSG_SET ICAP_XFERMECH to TWSX_NATIVE

1.5.1. Test: If return is not TWRC_SUCCESS, end with error

1.6. Action: MSG_SET CAP_XFERCOUNT to 0

1.6.1. Test: If return code is not TWRC_FAILURE / TWCC_BADVALUE, end with an
error

1.7. Action: MSG_SET CAP_XFERCOUNT to 1

1.7.1. Test: If return is not TWRC_SUCCESS, end with error

1.8. Action: DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS with ShowUI =
FALSE and ModalUI = FALSE
13-34 TWAIN 2.3 Specification

1.8.1. Test: If return code is not TWRC_SUCCESS, end with an error

1.9. Action: Wait for MSG_XFERREADY

1.10. Action: DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

1.10.1. Test: If return code is not TWRC_XFERDONE, end with an error

1.11. Action: DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER

1.11.1. Test: If return code is not TWRC_SUCCESS, end with an error

1.11.2. Test: If TW_PENDINGXFERS.Count is not 0, end with error

1.12. Action: DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS

1.12.1. Test: If return code is not TWRC_SUCCESS, end with an error

1.13. Action: MSG_SET CAP_XFERCOUNT to -1

1.13.1. Test: If return is not TWRC_SUCCESS, end with error

1.14. Action: DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS with ShowUI =
FALSE and ModalUI = FALSE

1.14.1. Test: If return code is not TWRC_SUCCESS, end with an error

1.15. Action: Wait for MSG_XFERREADY

1.16. Action: DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

1.16.1. Test: If return code is not TWRC_XFERDONE, end with an error

1.17. Action: DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER

1.17.1. Test: If return code is not TWRC_SUCCESS, end with an error

1.17.2. Test: If TW_PENDINGXFERS.Count is not 0, end with error

1.18. Action: DG_CONTROL / DAT_USERINTERFACE / MSG_DISABLEDS

1.18.1. Test: If return code is not TWRC_SUCCESS, end with an error

Test Document Feeder Scanning

This test issues multiple image transfer sessions using DAT_IMAGENATIVEXFER. It is performed
for all available image sources (unspecified, flatbed and/or ADF). Only one image is transferred
per session.

2. Action: MSG_RESETALL

2.1. Test: If return code is not TWRC_SUCCESS, end with an error

2.2. Action: MSG_SET CAP_FEEDERENABLED to TRUE

2.3. Test: If return is TWRC_FAILURE / TWCC_BADVALUE or TWRC_FAILURE /
TWCC_CAPUNSUPPORTED, then scanner does not have a Document Feeder, skip the rest
of this section
TWAIN 2.3 Specification 13-35

Chapter 13
2.4. Test: If return is not TWRC_SUCCESS, end with error

2.5. Action: MSG_SET ICAP_XFERMECH to TWSX_NATIVE

2.5.1. Test: If return is not TWRC_SUCCESS, end with error

2.6. Action: MSG_SET CAP_XFERCOUNT to 3

2.6.1. Test: If return is not TWRC_SUCCESS or TWRC_CHECKSTATUS, end with error

2.7. Action: MSG_GET CAP_XFERCOUNT

2.7.1. Test: If return is not TWRC_SUCCESS, end with error

2.7.2. Test: If value is not equal to 3 do this section

2.7.2.1. Action: MSG_SET CAP_XFERCOUNT to 0

2.7.2.1.1. Test: If return code is not TWRC_FAILURE /
TWCC_BADVALUE, end with an error

2.7.2.2. Action: MSG_SET CAP_XFERCOUNT to 1

2.7.2.2.1. Test: If return is not TWRC_SUCCESS, end with error

2.7.2.3. Action: Ask user to place one sheet of paper in the document feeder

2.7.2.4. DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS with
ShowUI = FALSE and ModalUI = FALSE

2.7.2.4.1. Test: If return code is not TWRC_SUCCESS, end with an
error

2.7.2.5. Action: Wait for MSG_XFERREADY

2.7.2.6. Action: DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

2.7.2.6.1. Test: If return code is not TWRC_XFERDONE, end with an
error

2.7.2.7. Action: DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER

2.7.2.7.1. Test: If return code is not TWRC_SUCCESS, end with an
error

2.7.2.7.2. Test: If TW_PENDINGXFERS.Count is not 0, end with
error

2.7.2.8. Action: DG_CONTROL / DAT_USERINTERFACE /
MSG_DISABLEDS

2.7.2.8.1. Test: If return code is not TWRC_SUCCESS, end with an
error

2.7.2.9. Action: MSG_SET CAP_XFERCOUNT to -1
13-36 TWAIN 2.3 Specification

2.7.2.9.1. Test: If return is not TWRC_SUCCESS, end with error

2.7.2.10. Action: Ask user to place one sheet of paper in the document feeder

2.7.2.11. Action: DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS
with ShowUI = FALSE and ModalUI = FALSE

2.7.2.11.1. Test: If return code is not TWRC_SUCCESS, end with an
error

2.7.2.12. Action: Wait for MSG_XFERREADY

2.7.2.13. Action: DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

2.7.2.13.1. Test: If return code is not TWRC_XFERDONE, end with an
error

2.7.2.14. Action: DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER

2.7.2.14.1. Test: If return code is not TWRC_SUCCESS, end with an
error

2.7.2.14.2. Test: If TW_PENDINGXFERS.Count is not 0, end with
error

2.7.2.15. Action: DG_CONTROL / DAT_USERINTERFACE /
MSG_DISABLEDS

2.7.2.15.1. Test: If return code is not TWRC_SUCCESS, end with an
error

2.7.3. Test: If value is equal to 3 do this section

2.7.3.1. Action: Ask user to place three sheets of paper in the document
feeder

2.7.3.2. Action: MSG_SET CAP_DUPLEXENABLED to FALSE

2.7.3.2.1. Test: If return code is not TWRC_SUCCESS or
TWRC_FAILURE / TWCC_CAPUNSUPPORTED, end with
error

2.7.3.3. Action: MSG_SET CAP_XFERCOUNT to 0

2.7.3.3.1. Test: If return code is not TWRC_FAILURE /
TWCC_BADVALUE, end with an error

2.7.3.4. Action: MSG_SET CAP_XFERCOUNT to 1

2.7.3.4.1. Test: If return is not TWRC_SUCCESS, end with error

2.7.3.5. Action: DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS
with ShowUI = FALSE and ModalUI = FALSE
TWAIN 2.3 Specification 13-37

Chapter 13
2.7.3.5.1. Test: If return code is not TWRC_SUCCESS, end with an
error

2.7.3.6. Action: Wait for MSG_XFERREADY

2.7.3.7. Action: DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

2.7.3.7.1. Test: If return code is not TWRC_XFERDONE, end with an
error

2.7.3.8. Action: DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER

2.7.3.8.1. Test: If return code is not TWRC_SUCCESS, end with an
error

2.7.3.8.2. Test: If TW_PENDINGXFERS.Count is not 0, end with
error

2.7.3.9. Action: DG_CONTROL / DAT_USERINTERFACE /
MSG_DISABLEDS

2.7.3.9.1. Test: If return code is not TWRC_SUCCESS, end with an
error

2.7.3.10. Action: MSG_SET CAP_XFERCOUNT to -1

2.7.3.10.1. Test: If return is not TWRC_SUCCESS, end with error

2.7.3.11. Action: DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS
with ShowUI = FALSE and ModalUI = FALSE

2.7.3.11.1. Test: If return code is not TWRC_SUCCESS, end with an
error

2.7.3.12. Action: Wait for MSG_XFERREADY

2.7.3.13. Action: DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

2.7.3.13.1. Test: If return code is not TWRC_XFERDONE, end with an
error

2.7.3.14. Action: DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER

2.7.3.14.1. Test: If return code is not TWRC_SUCCESS, end with an
error

2.7.3.14.2. Test: If TW_PENDINGXFERS.Count is not 1 or -1, end
with error

2.7.3.15. Action: DG_IMAGE / DAT_IMAGENATIVEXFER / MSG_GET

2.7.3.15.1. Test: If return code is not TWRC_XFERDONE, end with an
error
13-38 TWAIN 2.3 Specification

2.7.3.16. Action: DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER

2.7.3.16.1. Test: If return code is not TWRC_SUCCESS, end with an
error

2.7.3.16.2. Test: If TW_PENDINGXFERS.Count is not 0, end with
error

2.7.3.17. Action: DG_CONTROL / DAT_USERINTERFACE /
MSG_DISABLEDS

2.7.3.17.1. Test: If return code is not TWRC_SUCCESS, end with an
error

Post-Test Procedure

When testing is completed, close the data source and the data source manager.

Version Tests

Purpose

Confirm that the data sources responds correctly to different TWAIN versions of data source
manager and application.

Pre-Test Procedure

Close the data source manager.

Attempt to scan Multiple Times

Confirm that the data source can respond correctly to different TWAIN version of application and
data source manager by attempting to scan using different setups. This tests for hangs and
crashes. Use Memory transfer if available. Scan one image in simplex without UI. Testing with
old DSM is only for 32-bit data sources only.

1. Action: MSG_OPENDSM using old DSM as TWAIN version 1.9 application, with DF_APP2 set,

1.1. Action: Attempt to scan

1.2. Test: Confirm that the scan succeeds without hanging.

1.3. Test: If the application does not receive MSG_XFERREADY, then end with error

1.4. Action: MSG_CLOSEDSM

2. Action: MSG_OPENDSM using old DSM as TWAIN version 2.x application, with DF_APP2 not
set,

2.1. Action: Attempt to scan
TWAIN 2.3 Specification 13-39

Chapter 13
2.2. Test: Confirm that the scan succeeds without hanging.

2.3. Test: If the application does not receive MSG_XFERREADY, then end with error

2.4. Action: MSG_CLOSEDSM

3. Action: MSG_OPENDSM using old DSM as TWAIN version 2.x application, with DF_APP2 set,

3.1. Action: Attempt to scan

3.2. Test: Confirm that the scan succeeds without hanging.

3.3. Test: If the application does not receive MSG_XFERREADY, then end with error

3.4. Action: MSG_CLOSEDSM

4. Action: MSG_OPENDSM using TWAIN 2 DSM as TWAIN version 1.9 application, with
DF_APP2 set,

4.1. Action: Attempt to scan

4.2. Test: Confirm that the scan succeeds without hanging.

4.3. Test: If the application does not receive MSG_XFERREADY, then end with error

4.4. Action: MSG_CLOSEDSM

5. Action: MSG_OPENDSM using TWAIN 2 DSM as TWAIN version 2.x application, with
DF_APP2 not set,

5.1. Action: Attempt to scan

5.2. Test: Confirm that the scan succeeds without hanging.

5.3. Test: If the application does not receive MSG_XFERREADY, then end with error

5.4. Action: MSG_CLOSEDSM

6. Action: MSG_OPENDSM using TWAIN 2 DSM as TWAIN version 1.9 application, with
DF_APP2 not set,

6.1. Action: Attempt to scan

6.2. Test: Confirm that the scan succeeds without hanging.

6.3. Test: If the application does not receive MSG_XFERREADY, then end with error

6.4. Action: MSG_CLOSEDSM

Post-Test Procedure

Nothing to do.
13-40 TWAIN 2.3 Specification

Verify Values For MSG_RESETALL and MSG_RESET

Purpose

Confirm that the indicated capabilities have the values required by the Specification after a
DG_CONTROL / DAT_CAPABILITY / MSG_RESETALL is applied to the entire driver, or a
DG_CONTROL / DAT_CAPABILITY / MSG_RESET is applied to a single capability.

Pre-Test Procedure

Open the data source manager and the data source that is to be tested.

Test MSG_RESETALL and MSG_RESET

Make sure that MSG_RESETALL results in the following values for the indicated capabilities.

1. Action: DG_CONTROL / DAT_CAPABILITY / MSG_RESETALL

1.1. Test: If result is not TWRC_SUCCESS, then end with error

1.2. Action: MSG_GETCURRENT ACAP_XFERMECH

1.2.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.2.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWSX_NATIVE, then end with error

1.2.3. Action: MSG_RESET ACAP_XFERMECH

1.2.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.2.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWSX_NATIVE, then end with
error

1.3. Action: MSG_GETCURRENT CAP_AUTHOR

1.3.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_STRING128, or the value is not an empty string, then end with error

1.3.3. Action: MSG_RESET CAP_AUTHOR

1.3.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.3.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_STRING128, or the value is not an empty string, then end with
error

1.4. Action: MSG_GETCURRENT CAP_AUTOFEED

1.4.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability
TWAIN 2.3 Specification 13-41

Chapter 13
1.4.2. Test: If the container is not TW_ONEVALUE, or the data type is not TWTY_BOOL,
or the value is not TRUE, then end with error

1.4.3. Action: MSG_RESET CAP_AUTOFEED

1.4.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.4.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_BOOL, or the value is not TRUE, then end with error

1.5. Action: MSG_GETCURRENT CAP_AUTOMATICCAPTURE

1.5.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.5.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_INT32, or the value is not 0, then end with error

1.5.3. Action: MSG_RESET CAP_AUTOMATICCAPTURE

1.5.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.5.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_INT32, or the value is not 0, then end with error

1.6. Action: MSG_GETCURRENT CAP_CAMERSIDE

1.6.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.6.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWCS_BOTH, then end with error

1.6.3. Action: MSG_RESET CAP_CAMERSIDE

1.6.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.6.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWCS_BOTH, then end with error

1.7. Action: MSG_GETCURRENT CAP_CAPTION

1.7.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.7.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_STRING255, or the value is not an empty string, then end with error

1.7.3. Action: MSG_RESET CAP_CAPTION

1.7.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.7.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_STRING255, or the value is not an empty string, then end with
error

1.8. Action: MSG_GETCURRENT CAP_CLEARBUFFERS

1.8.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability
13-42 TWAIN 2.3 Specification

1.8.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWCB_AUTO, then end with error

1.8.3. Action: MSG_RESET CAP_CLEARBUFFERS

1.8.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.8.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWCB_AUTO, then end with error

1.9. Action: MSG_GETCURRENT CAP_CLEARPAGE

1.9.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.9.2. Test: If the container is not TW_ONEVALUE, or the data type is not TWTY_BOOL,
or the value is not FALSE, then end with error

1.9.3. Action: MSG_RESET CAP_CLEARPAGE

1.9.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.9.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_BOOL, or the value is not FALSE, then end with error

1.10. Action: MSG_GETCURRENT CAP_DEVICEEVENT

1.10.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.10.2. Test: If the container is not TW_ARRAY, or the value is not an empty array, then
end with error

1.10.3. Action: MSG_RESET CAP_DEVICEEVENT

1.10.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.10.3.2. Test: If the container is not TW_ARRAY, or the value is not an empty
array, then end with error

1.11. Action: MSG_GETCURRENT CAP_DOUBLEFEEDDETECTION

1.11.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.11.2. Test: If the container is not TW_ARRAY, or the value is not an empty array, then
end with error

1.11.3. Action: MSG_RESET CAP_DOUBLEFEEDDETECTION

1.11.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.11.3.2. Test: If the container is not TW_ARRAY, or the value is not an empty
array, then end with error

1.12. Action: MSG_GETCURRENT CAP_ENDORSER

1.12.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.12.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT32, or the value is not 1, then end with error
TWAIN 2.3 Specification 13-43

Chapter 13
1.12.3. Action: MSG_RESET CAP_ENDORSER

1.12.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.12.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT32, or the value is not 1, then end with error

1.13. Action: MSG_GETCURRENT CAP_FEEDERPREP

1.13.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.13.2. Test: If the container is not TW_ONEVALUE, or the data type is not TWTY_BOOL,
or the value is not FALSE, then end with error

1.13.3. Action: MSG_RESET CAP_FEEDERPREP

1.13.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.13.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_BOOL, or the value is not FALSE, then end with error

1.14. Action: MSG_GETCURRENT CAP_FEEDPAGE

1.14.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.14.2. Test: If the container is not TW_ONEVALUE, or the data type is not TWTY_BOOL,
or the value is not FALSE, then end with error

1.14.3. Action: MSG_RESET CAP_FEEDPAGE

1.14.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.14.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_BOOL, or the value is not FALSE, then end with error

1.15. Action: MSG_GETCURRENT CAP_INDICATORS

1.15.1. Test: If the result is not TWRC_SUCCESS, then end with error

1.15.2. Test: If the container is not TW_ONEVALUE, or the data type is not TWTY_BOOL,
or the value is not TRUE, then end with error

1.15.3. Action: MSG_RESET CAP_INDICATORS

1.15.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.15.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_BOOL, or the value is not TRUE, then end with error

1.16. Action: MSG_GETCURRENT CAP_INDICATORS

1.16.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.16.2. Test: If the container is not TW_ONEVALUE, or the data type is not TWTY_BOOL,
or the value is not TRUE, then end with error

1.16.3. Action: MSG_RESET CAP_INDICATORS
13-44 TWAIN 2.3 Specification

1.16.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.16.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_BOOL, or the value is not TRUE, then end with error

1.17. Action: MSG_GETCURRENT CAP_JOBCONTROL

1.17.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.17.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWJC_NONE, then end with error

1.17.3. Action: MSG_RESET CAP_JOBCONTROL

1.17.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.17.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWJC_NONE, then end with error

1.18. Action: MSG_GETCURRENT CAP_MICRENABLED

1.18.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.18.2. Test: If the container is not TW_ONEVALUE, or the data type is not TWTY_BOOL,
or the value is not FALSE, then end with error

1.18.3. Action: MSG_RESET CAP_MICRENABLED

1.18.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.18.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_BOOL, or the value is not FALSE, then end with error

1.19. Action: MSG_GETCURRENT CAP_PAPERHANDLING

1.19.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.19.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWPH_NORMAL, then end with error

1.19.3. Action: MSG_RESET CAP_PAPERHANDLING

1.19.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.19.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWPH_NORMAL, then end with
error

1.20. Action: MSG_GETCURRENT CAP_PRINTERENABLED

1.20.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.20.2. Test: If the container is not TW_ONEVALUE, or the data type is not TWTY_BOOL,
or the value is not FALSE, then end with error

1.20.3. Action: MSG_RESET CAP_PRINTERENABLED

1.20.3.1. Test: If result is not TWRC_SUCCESS, then end with error
TWAIN 2.3 Specification 13-45

Chapter 13
1.20.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_BOOL, or the value is not FALSE, then end with error

1.21. Action: MSG_GETCURRENT CAP_PRINTERINDEX

1.21.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.21.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT32, or the value is not 1, then end with error

1.21.3. Action: MSG_RESET CAP_PRINTERINDEX

1.21.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.21.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT32, or the value is not 1, then end with error

1.22. Action: MSG_GETCURRENT CAP_REACQUIREALLOWED

1.22.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.22.2. Test: If the container is not TW_ONEVALUE, or the data type is not TWTY_BOOL,
or the value is not FALSE, then end with error

1.22.3. Action: MSG_RESET CAP_REACQUIREALLOWED

1.22.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.22.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_BOOL, or the value is not FALSE, then end with error

1.23. Action: MSG_GETCURRENT CAP_SEGMENTED

1.23.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.23.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWSG_NONE, then end with error

1.23.3. Action: MSG_RESET CAP_SEGMENTED

1.23.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.23.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWSG_NONE, then end with error

1.24. Action: MSG_GETCURRENT CAP_TIMEBEFOREFIRSTCAPTURE

1.24.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.24.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_INT32, or the value is not 0, then end with error

1.24.3. Action: MSG_RESET CAP_TIMEBEFOREFIRSTCAPTURE

1.24.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.24.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_INT32, or the value is not 0, then end with error
13-46 TWAIN 2.3 Specification

1.25. Action: MSG_GETCURRENT CAP_TIMEBETWEENCAPTURES

1.25.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.25.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_INT32, or the value is not 0, then end with error

1.25.3. Action: MSG_RESET CAP_TIMEBETWEENCAPTURES

1.25.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.25.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_INT32, or the value is not 0, then end with error

1.26. Action: MSG_GETCURRENT CAP_THUMBNAILSENABLED

1.26.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.26.2. Test: If the container is not TW_ONEVALUE, or the data type is not TWTY_BOOL,
or the value is not FALSE, then end with error

1.26.3. Action: MSG_RESET CAP_THUMBNAILSENABLED

1.26.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.26.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_BOOL, or the value is not FALSE, then end with error

1.27. Action: MSG_GETCURRENT CAP_XFERCOUNT

1.27.1. Test: If result is not TWRC_SUCCESS, then end with error

1.27.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_INT16, or the value is not -1, then end with error

1.27.3. Action: MSG_RESET CAP_XFERCOUNT

1.27.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.27.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_INT16, or the value is not -1, then end with error

1.28. Action: MSG_GETCURRENT ICAP_AUTOBRIGHT

1.28.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.28.2. Test: If the container is not TW_ONEVALUE, or the data type is not TWTY_BOOL,
or the value is not FALSE, then end with error

1.28.3. Action: MSG_RESET ICAP_AUTOBRIGHT

1.28.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.28.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_BOOL, or the value is not FALSE, then end with error

1.29. Action: MSG_GETCURRENT ICAP_AUTODISCARDBLANKPAGES
TWAIN 2.3 Specification 13-47

Chapter 13
1.29.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.29.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWBP_DISABLED, then end with error

1.29.3. Action: MSG_RESET ICAP_AUTODISCARDBLANKPAGES

1.29.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.29.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWBP_DISABLED, then end with
error

1.30. Action: MSG_GETCURRENT ICAP_AUTOMATICCOLORENABLED

1.30.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.30.2. Test: If the container is not TW_ONEVALUE, or the data type is not TWTY_BOOL,
or the value is not FALSE, then end with error

1.30.3. Action: MSG_RESET ICAP_AUTOMATICCOLORENABLED

1.30.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.30.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_BOOL, or the value is not FALSE, then end with error

1.31. Action: MSG_GETCURRENT ICAP_AUTOMATICCOLORNONCOLORPIXELTYPE

1.31.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.31.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWPT_BW, then end with error

1.31.3. Action: MSG_RESET ICAP_AUTOMATICCOLORNONCOLORPIXELTYPE

1.31.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.31.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWPT_BW, then end with error

1.32. Action: MSG_GETCURRENT ICAP_AUTOMATICROTATE

1.32.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.32.2. Test: If the container is not TW_ONEVALUE, or the data type is not TWTY_BOOL,
or the value is not FALSE, then end with error

1.32.3. Action: MSG_RESET ICAP_AUTOMATICROTATE

1.32.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.32.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_BOOL, or the value is not FALSE, then end with error

1.33. Action: MSG_GETCURRENT ICAP_AUTOSIZE

1.33.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability
13-48 TWAIN 2.3 Specification

1.33.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWAS_NONE, then end with error

1.33.3. Action: MSG_RESET ICAP_AUTOSIZE

1.33.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.33.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWAS_NONE, then end with error

1.34. Action: MSG_GETCURRENT ICAP_BARCODEDETECTIONENABLED

1.34.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.34.2. Test: If the container is not TW_ONEVALUE, or the data type is not TWTY_BOOL,
or the value is not FALSE, then end with error

1.34.3. Action: MSG_RESET ICAP_BARCODEDETECTIONENABLED

1.34.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.34.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_BOOL, or the value is not FALSE, then end with error

1.35. 1.35 Action: MSG_GETCURRENT ICAP_BITORDER

1.35.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.35.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWBO_MSBFIRST, then end with error

1.35.3. Action: MSG_RESET ICAP_BITORDER

1.35.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.35.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWBO_MSBFIRST, then end with
error

1.36. Action: MSG_GETCURRENT ICAP_BITORDERCODES

1.36.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.36.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWBO_LSBFIRST, then end with error

1.36.3. Action: MSG_RESET ICAP_BITORDERCODES

1.36.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.36.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWBO_LSBFIRST, then end with
error

1.37. Action: MSG_GETCURRENT ICAP_BRIGHTNESS

1.37.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability
TWAIN 2.3 Specification 13-49

Chapter 13
1.37.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_FIX32, or the value is not 0, then end with error

1.37.3. Action: MSG_RESET ICAP_BRIGHTNESS

1.37.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.37.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_FIX32, or the value is not 0, then end with error

1.38. Action: MSG_GETCURRENT ICAP_CCITTKFACTOR

1.38.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.38.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not 4, then end with error

1.38.3. Action: MSG_RESET ICAP_CCITTKFACTOR

1.38.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.38.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not 4, then end with error

1.39. Action: MSG_GETCURRENT ICAP_COLORMANAGEMENTENABLED

1.39.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.39.2. Test: If the container is not TW_ONEVALUE, or the data type is not TWTY_BOOL,
or the value is not TRUE, then end with error

1.39.3. Action: MSG_RESET ICAP_COLORMANAGEMENTENABLED

1.39.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.39.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_BOOL, or the value is not TRUE, then end with error

1.40. Action: MSG_GETCURRENT ICAP_COMPRESSION

1.40.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.40.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWCP_COMPRESSION, then end with error

1.40.3. Action: MSG_RESET ICAP_COMPRESSION

1.40.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.40.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWCP_COMPRESSION, then end
with error

1.41. Action: MSG_GETCURRENT ICAP_CONTRAST

1.41.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability
13-50 TWAIN 2.3 Specification

1.41.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_FIX32, or the value is not 0, then end with error

1.41.3. Action: MSG_RESET ICAP_CONTRAST

1.41.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.41.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_FIX32, or the value is not 0, then end with error

1.42. Action: MSG_GETCURRENT ICAP_EXTIMAGEINFO

1.42.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.42.2. Test: If the container is not TW_ONEVALUE, or the data type is not TWTY_BOOL,
or the value is not TRUE, then end with error

1.42.3. Action: MSG_RESET ICAP_EXTIMAGEINFO

1.42.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.42.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_BOOL, or the value is not TRUE, then end with error

1.43. Action: MSG_GETCURRENT ICAP_FILTER

1.43.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.43.2. Test: If the container is not TW_ARRAY, or the value is not an empty array, then
end with error

1.43.3. Action: MSG_RESET ICAP_FILTER

1.43.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.43.3.2. Test: If the container is not TW_ARRAY, or the value is not an empty
array, then end with error

1.44. Action: MSG_GETCURRENT ICAP_FLIPROTATION

1.44.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.44.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWFR_BOOK, then end with error

1.44.3. Action: MSG_RESET ICAP_FLIPROTATION

1.44.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.44.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWFR_BOOK, then end with error

1.45. Action: MSG_GETCURRENT ICAP_GAMMA

1.45.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.45.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_FIX32, or the value is not 2.2, then end with error
TWAIN 2.3 Specification 13-51

Chapter 13
1.45.3. Action: MSG_RESET ICAP_GAMMA

1.45.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.45.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_FIX32, or the value is not 2.2, then end with error

1.46. Action: MSG_GETCURRENT ICAP_HIGHLIGHT

1.46.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.46.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_FIX32, or the value is not 255, then end with error

1.46.3. Action: MSG_REEST ICAP_HIGHLIGHT

1.46.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.46.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_FIX32, or the value is not 255, then end with error

1.47. Action: MSG_GETCURRENT ICAP_IMAGEMERGE

1.47.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.47.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWIM_NONE, then end with error

1.47.3. Action: MSG_RESET ICAP_IMAGEMERGE

1.47.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.47.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWIM_NONE, then end with error

1.48. Action: MSG_GETCURRENT ICAP_IMAGEMERGEHEIGHTTHRESHOLD

1.48.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.48.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_FIX32, or the value is not 0, then end with error

1.48.3. Action: MSG_GETCURRENT ICAP_IMAGEMERGEHEIGHTTHRESHOLD

1.48.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.48.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_FIX32, or the value is not 0, then end with error

1.49. Action: MSG_GETCURRENT ICAP_MIRROR

1.49.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.49.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWMR_NONE, then end with error

1.49.3. Action: MSG_RESET ICAP_MIRROR
13-52 TWAIN 2.3 Specification

1.49.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.49.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWMR_NONE, then end with error

1.50. Action: MSG_GETCURRENT ICAP_ORIENTATION

1.50.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.50.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWOR_PORTRAIT, then end with error

1.50.3. Action: MSG_RESET ICAP_ORIENTATION

1.50.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.50.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWOR_PORTRAIT, then end with
error

1.51. Action: MSG_GETCURRENT ICAP_OVERSCAN

1.51.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.51.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWOV_NONE, then end with error

1.51.3. Action: MSG_RESET ICAP_OVERSCAN

1.51.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.51.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWOV_NONE, then end with error

1.52. Action: MSG_GETCURRENT ICAP_PATCHCODEDETECTIONENABLED

1.52.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.52.2. Test: If the container is not TW_ONEVALUE, or the data type is not TWTY_BOOL,
or the value is not FALSE, then end with error

1.52.3. Action: MSG_RESET ICAP_PATCHCODEDETECTIONENABLED

1.52.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.52.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_BOOL, or the value is not FALSE, then end with error

1.53. Action: MSG_GETCURRENT ICAP_PIXELFLAVOR

1.53.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.53.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWPF_CHOCOLATE, then end with error

1.53.3. Action: MSG_RESET ICAP_PIXELFLAVOR

1.53.3.1. Test: If result is not TWRC_SUCCESS, then end with error
TWAIN 2.3 Specification 13-53

Chapter 13
1.53.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWPF_CHOCOLATE, then end with
error

1.54. Action: MSG_GETCURRENT ICAP_PIXELFLAVORCODES

1.54.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.54.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWPF_CHOCOLATE, then end with error

1.54.3. Action: MSG_RESET ICAP_PIXELFLAVORCODES

1.54.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.54.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWPF_CHOCOLATE, then end with
error

1.55. Action: MSG_GETCURRENT ICAP_ROTATION

1.55.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.55.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_FIX32, or the value is not 0, then end with error

1.55.3. Action: MSG_RESET ICAP_ROTATION

1.55.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.55.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_FIX32, or the value is not 0, then end with error

1.56. Action: MSG_GETCURRENT ICAP_SHADOW

1.56.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.56.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_FIX32, or the value is not 0, then end with error

1.56.3. Action: MSG_RESET ICAP_SHADOW

1.56.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.56.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_FIX32, or the value is not 0, then end with error

1.57. Action: MSG_GETCURRENT ICAP_THRESHOLD

1.57.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.57.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_FIX32, or the value is not 128, then end with error

1.57.3. Action: MSG_RESET ICAP_THRESHOLD

1.57.3.1. Test: If result is not TWRC_SUCCESS, then end with error
13-54 TWAIN 2.3 Specification

1.57.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_FIX32, or the value is not 128, then end with error

1.58. Action: MSG_GETCURRENT ICAP_TILES

1.58.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.58.2. Test: If the container is not TW_ONEVALUE, or the data type is not TWTY_BOOL,
or the value is not FALSE, then end with error

1.58.3. Action: MSG_RESET ICAP_TILES

1.58.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.58.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_BOOL, or the value is not FALSE, then end with error

1.59. Action: MSG_GETCURRENT ICAP_TIMEFILL

1.59.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.59.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not 1, then end with error

1.59.3. Action: MSG_RESET ICAP_TIMEFILL

1.59.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.59.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not 1, then end with error

1.60. Action: MSG_GETCURRENT ICAP_UNDEFINEDIMAGESIZE

1.60.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.60.2. Test: If the container is not TW_ONEVALUE, or the data type is not TWTY_BOOL,
or the value is not FALSE, then end with error

1.60.3. Action: MSG_RESET ICAP_UNDEFINEDIMAGESIZE

1.60.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.60.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_BOOL, or the value is not FALSE, then end with error

1.61. Action: MSG_GETCURRENT ICAP_UNITS

1.61.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.61.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWUN_INCHES, then end with error

1.61.3. Action: MSG_RESET ICAP_UNITS

1.61.3.1. Test: If result is not TWRC_SUCCESS, then end with error
TWAIN 2.3 Specification 13-55

Chapter 13
1.61.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not TWUN_INCHES, then end with
error

1.62. Action: MSG_GETCURRENT ICAP_XFERMECH

1.62.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.62.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not -1, then end with error

1.62.3. Action: MSG_RESET ICAP_XFERMECH

1.62.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.62.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_UINT16, or the value is not -1, then end with error

1.63. Action: MSG_GETCURRENT ICAP_XSCALING

1.63.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.63.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_FIX32, or the value is not 1, then end with error

1.63.3. Action: MSG_RESET ICAP_XSCALING

1.63.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.63.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_FIX32, or the value is not 1, then end with error

1.64. Action: MSG_GETCURRENT ICAP_YSCALING

1.64.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.64.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_FIX32, or the value is not 1, then end with error

1.64.3. Action: MSG_RESET ICAP_YSCALING

1.64.3.1. Test: If result is not TWRC_SUCCESS, then end with error

1.64.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_FIX32, or the value is not 1, then end with error

1.65. Action: MSG_GETCURRENT ICAP_ZOOMFACTOR

1.65.1. Test: If result is not TWRC_SUCCESS, then skip down to the next capability

1.65.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_INT16, or the value is not 0, then end with error

1.65.3. Action: MSG_RESET ICAP_ZOOMFACTOR

1.65.3.1. Test: If result is not TWRC_SUCCESS, then end with error
13-56 TWAIN 2.3 Specification

1.65.3.2. Test: If the container is not TW_ONEVALUE, or the data type is not
TWTY_INT16, or the value is not 0, then end with error
TWAIN 2.3 Specification 13-57

Chapter 13
13-58 TWAIN 2.3 Specification

A
TWAIN Articles

Chapter Contents

Device Events . A-1

Supported Sizes . A-5

Automatic Capture . A-7

File System . A-11

Internationalization . A-19

Audio Snippets . A-26

How to use the Preview Device . A-28

Imprinter / Endorser . A-30

Capability Ordering . A-31

Defaults . A-42

The articles in this appendix provide additional information about some of the features described
in this specification.

Device Events
TWAIN 1.8 expands upon asynchronous event notification. Previous versions provided the
DG_CONTROL / DAT_NULL messages: MSG_CLOSEDSOK, MSG_CLOSEDSREQ and
MSG_XFERREADY to permit the Source to alert the Application that it needed to exit, or that an
image was ready to be processed. With the addition of Digital Cameras, and the burgeoning
interest in Push Technologies, it has become desirable to enhance TWAIN in this area.

An event begins when the Source needs to alert the Application to some change that has occurred
within the device. For example, the owner of a Digital Camera (which is tethered to a host
machine) has changed the setting for flash from on to off. The Source wants to alert the
Application of this change: first, it records the event in a FIFO queue; second, it sends a
DG_CONTROL / DAT_NULL / DAT_DEVICEEVENT to the Source Manager, which forwards the
message to the Application.
TWAIN 2.3 Specification A-1

Chapter A
The Application receives the DG_CONTROL / DAT_NULL / MSG_DEVICEEVENT, and immediately
issues a DG_CONTROL / DAT_DEVICEEVENT / MSG_GET request to the Source. The Source
delivers the information about the event, and pops it off the queue. The process concludes with
the Application examining the information and acting upon it, in this case by alerting the user that
the flash setting on the camera has been changed.

Notes:

• Sources must start up in a mode with device events turned off (an empty array for
CAP_DEVICEEVENTS), this is for the benefit of pre-1.8 applications which may not be able to
process this new event.

• Device events are never generated by an Application setting a value within a Source (such as
Application changing ICAP_FLASHUSED2). Device events are only generated in response to
some outside change within the Source or the Device (such as the User changing the flash
setting on the camera).

• Sources must maintain an internal Event Queue, so that they can report each and every device
event to the Application in the order of their occurrence.

• Device events are supported in State 4. Windows Sources must use the main window handle
supplied with the DG_CONTROL / DAT_PARENT / MSG_OPENDS if they issue device events in
State 4. In States 5 through 7 Sources must use the pTW_USERINTERFACE->hParent
supplied in the DG_CONTROL / DAT_USERINTERFACE / MSG_ENABLEDS triplet.

• Since device events may occur in State 4, Applications that enable them using
CAP_DEVICEEVENTS must be ready to receive and process them.

• When the Application receives a device event, it must immediately collect the information
about it. The Application must not issue the DG_CONTROL / DAT_DEVICEEVENT / MSG_GET,
except when it has received a DG_CONTROL / DAT_NULL / MSG_DEVICEEVENT message.

• The Application must process events without User intervention, this is to prevent situations
where the device event queue builds up because a User is not responding to the system.

• Applications may sometimes fail to respond to a Source’s device events. A maximum queue
size should be selected so that the Source does not exhaust memory. If the queue fills, the
Source must do the following:

• Turns off device events (resets CAP_DEVICEEVENT to an empty array).

• Refuse to set CAP_DEVICEEVENT until the queue is emptied, return TWCC_SEQERROR.

• Process DG_CONTROL / DAT_DEVICEEVENT / MSG_GET requests for each item on the
device event queue.

After the last device event is read by the Application, return TWRC_FAILURE /
TWCC_DEVICEEVENTOVERFLOW for the next call to DG_CONTROL / DAT_DEVICEEVENT /
MSG_GET.

• After TWCC_DEVICEEVENTOVERFLOW has been reported, permit the Source to set
CAP_DEVICEEVENT again.
A-2 TWAIN 2.3 Specification

Figure A-1 Device Events

Source

Flash
ON OFF

Flash
OFF

Event Queue

Source
Manager

Application

Display:
Flash ON

Step 1: The Source senses that the device has changed from ON to OFF and stores this
information in an Event Queue. A Queue must be used because the Source may
generate multiple events before the Application can respond.

Source

Flash
OFF

Event Queue

Source
Manager

Application

Display:
Flash ON

DG_CONTROL /
DAT_NULL /
MSG_DEVICEEVENT

Flash
OFF

Step 2: The Source sends a DG_CONTROL / DAT_NULL / MSG_DEVICEEVENT to the
Application. The Application only knows that some Event has taken place.

Source

Flash
OFF

Event Queue

Source
Manager

Application

Display:
Flash ON

DG_CONTROL/
DAT_DEVICEEVENT
MSG_GET

Flash
OFF

Flash
OFF

Step 3: The Application sends a DG_CONTROL / DAT_DEVICEEVENT / MSG_GET to
the Source to learn about the Event. The Source informs the Application that the
flash is OFF and it clears the Event from its Queue.

Source

(empty)

Event Queue

Source
Manager

Application

Flash
OFF

Display:
Flash OFF

Flash
OFF

Step 4: The Application informs the User that the flash is now OFF.
TWAIN 2.3 Specification A-3

Chapter A
This section details the various event types and how Sources and Applications should make use of
them.

TWDE_CHECKAUTOMATICCAPTURE

The automatic capture settings on the device have been changed.

TWDE_CHECKBATTERY

Status of the battery has changed. Sources will report BatteryMinutes or BatteryPercentage
depending on which capabilities say they support.

TWDE_CHECKDEVICEONLINE

The device has been powered off. If an Application receives this device event, it should call
CAP_DEVICEONLINE to verify the state of the Source, and then proceed as seems appropriate.

TWDE_CHECKFLASH

The flash setting on the device has been changed.

TWDE_CHECKPOWERSUPPLY

The power supply has changed, for example this event would be generated if AC was
removed from a device, putting it on battery. Scanners may also provide this event to notify
that a power on reset has taken place, indicating that the device has been power cycled.

TWDE_CHECKRESOLUTION

The resolution on the device has changed.

TWDE_DEVICEADDED

A device has been added to the Source. See DG_CONTROL / DAT_FILESYSTEM /
MSG_CHANGEDIRECTORY and DG_CONTROL / DAT_FILESYSTEM / MSG_GETINFO to get
more information about the new device.

TWDE_DEVICEOFFLINE

A device has become unavailable. This is different from TWDC_DEVICEREMOVED, since the
device is assumed to be connected.

TWDE_DEVICEREADY

A device is ready to capture another image. Applications should be careful when negotiating
this event, especially in situations where images are gathered quickly, as with automatic
capture.

TWDE_DEVICEREMOVED

A device has been removed from the Source. This is different from TWDE_DEVICEOFFLINE.
As soon as this event is received an Application should re-negotiate its current device, since
that may have been the one that was removed. Sources must default to the TWFY_CAMERA
device if the current device is removed.

TWDE_PAPERDOUBLEFEED

Report double feeds to the Application. Because of the asynchronous nature of device events
there may still be images waiting to be transferred, applications need to decide if they want to
recover these images or discard them.
A-4 TWAIN 2.3 Specification

TWDE_PAPERJAM

Report paper jams to the Application. Because of the asynchronous nature of device events
there may still be images waiting to be transferred, applications need to decide if they want to
recover these images or discard them.

Supported Sizes
Typical uses for ICAP_SUPPORTEDSIZES include, but are not limited to the following:

The following table details the physical dimensions associated with ICAP_SUPPORTEDSIZES.
Multiply millimeters by 0.03937 to get the approximate inches. Multiply inches by 25.4 to get the
approximate millimeters.

A0, A1 Technical drawings, posters

A2, A3 Drawings, diagrams, large tables

A4 Letters, magazines, forms, catalogs, laser printer and copying
machine output

A5 Note pads

A6 Postcards

B5, A5, B6, A6 Books

C4, C5, C6 Envelopes for A4 letters: unfolded (C4), folded once (C5), folded
twice (C6)

B4, A3 Newspapers, supported by most copying machines in addition to
A4

ICAP_SUPPORTEDSIZES Description

TWSS_NONE Images will match the maximum scanning dimensions of
the device. This setting is only applicable to devices that
have fixed measurable dimensions, such as most
scanners. Devices that do not support physical
dimensions should not support
ICAP_SUPPORTEDSIZES.

TWSS_A4LETTER

TWSS_B5LETTER

TWSS_B3

TWSS_B4

TWSS_B6

These values are preserved for backward compatibility.
TWAIN 1.8+ enabled Applications should not use these
settings.
TWAIN 2.3 Specification A-5

Chapter A
TWSS_B This value is obsolete, and no longer supported by the
specification. Do not use it.

TWSS_USLETTER 8.5” x 11.0” (216mm x 280mm)

TWSS_USLEGAL 8.5” x 14.0” (216mm x 356mm)

TWSS_USLEDGER 11.0” x 17.0” (280mm x 432mm)

TWSS_USEXECUTIVE 7.25” x 10.5” (184mm x 267mm)

TWSS_USSTATEMENT 5.5” x 8.5” (140mm x 216mm)

TWSS_BUSINESSCARD 90mm x 55mm

TWSS_4A0 1682mm x 2378mm

TWSS_2A0 1189mm x 1682mm

TWSS_A0 841mm x 1189mm

TWSS_A1 594mm x 841mm

TWSS_A2 420mm x 594mm

TWSS_A3 297mm x 420mm

TWSS_A4 210mm x 297mm

TWSS_A5 148mm x 210mm

TWSS_A6 105mm x 148mm

TWSS_A7 74mm x 105mm

TWSS_A8 52mm x 74mm

TWSS_A9 37mm x 52mm

TWSS_A10 26mm x 37mm

TWSS_ISOB0 1000mm x1414mm

TWSS_ISOB1 707mm x1000mm

TWSS_ISOB2 500mm x 707mm

TWSS_ISOB3 353mm x 500mm

TWSS_ISOB4 250mm x 353mm

TWSS_ISOB5 176mm x 250mm

TWSS_ISOB6 125mm x 176mm

TWSS_ISOB7 88mm x 125mm

TWSS_ISOB8 62mm x 88mm
A-6 TWAIN 2.3 Specification

Automatic Capture
Automatic image capture is intended for Digital Cameras, although there may be opportunities
for other kinds of devices. The intention is to allow an Application to control when pictures are
taken, how many pictures are taken, and the interval of time between picture taking. All that is
required is that the device be able to perform capture on command from the Source, the timing

TWSS_ISOB9 44mm x 62mm

TWSS_ISOB10 31mm x 44mm

TWSS_JISB0 1030mm x1456mm

TWSS_JISB1 728mm x1030mm

TWSS_JISB2 515mm x 728mm

TWSS_JISB3 364mm x 515mm

TWSS_JISB4 257mm x 364mm

TWSS_JISB5 182mm x 257mm

TWSS_JISB6 128mm x 182mm

TWSS_JISB7 91mm x 128mm

TWSS_JISB8 64mm x 91mm

TWSS_JISB9 45mm x 64mm

TWSS_JISB10 32mm x 45mm

TWSS_C0 917mm x1297mm

TWSS_C1 648mm x 917mm

TWSS_C2 458mm x 648mm

TWSS_C3 324mm x 458mm

TWSS_C4 229mm x 324mm

TWSS_C5 162mm x 229mm

TWSS_C6 114mm x 162mm

TWSS_C7 81mm x 114mm

TWSS_C8 57mm x 81mm

TWSS_C9 40mm x 57mm

TWSS_C10 28mm x 40mm
TWAIN 2.3 Specification A-7

Chapter A
control and storage of pictures may reside in the Source or the device; the Application does not
care.

There are three capabilities needed to control automatic capture:

• CAP_AUTOMATICCAPTURE

• CAP_TIMEBEFOREFIRSTCAPTURE

• CAP_TIMEBETWEENCAPTURES

And one triplet:

• DG_CONTROL/DAT_FILESYSTEM/MSG_AUTOMATICCAPTUREDIRECTORY

CAP_AUTOMATICCAPTURE selects the number of images to be captured. A value of zero (0), the
default, disables it. CAP_TIMEBEFOREFIRSTCAPTURE selects how many milliseconds are to pass
before the first picture is taken by the device. If this value is 0, then picture taking begins
immediately. CAP_TIMEBETWEENCAPTURES selects the milliseconds of elapsed time between
pictures. If this value is 0, then the pictures are taken as fast as the device can go.

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIRECTORY selects the directory
that will receive the images as they are captured.

Automatic capture expects the device (or Source) to manage the storage of images until the
Application is ready to collect them. Applications may choose to retrieve images as they are
captured by the Source (using the DAT_FILESYSTEM triplets to browse the storage directory), but
must realize that this may affect the performance of the device.

The nature of automatic capture suggests that an Application should be able to disconnect from a
Source and expect that if it returns after CAP_TIMEBEFOREFIRSTCAPTURE has passed, there may
be images available for it to collect. Because of this Sources should remember their automatic
capture settings from session to session, so that a Source starting up does not inadvertently clear
them.

Applications need to remember that since the capture of images may occur outside of their control
that the settings may be changed directly on the device by the user, resulting in alternations in any
of the automatic capture settings. Applications that cannot support this uncertainty should clear
the Source’s automatic capture settings prior to shutdown (and after notifying the User).

Camera Preview
Some digital cameras offer a way to preview the intended shot through either a continuous flow of
low-resolution frames or streaming video. TWAIN exposes two methods for a Source to present
this information to an Application, both in association with the TWFY_CAMERAPREVIEW device.

The TWFY_CAMERAPREVIEW Device

Sources that wish to provide access to their preview camera must do so through
DAT_FILESYSTEM. A minimum configuration includes a single TWFY_CAMERA and a single
TWFY_CAMERAPREVIEW. The Application discovers what devices are available by using the
A-8 TWAIN 2.3 Specification

DAT_FILESYSTEM commands MSG_GETFIRSTFILE and MSG_GETNEXTFILE. It can then switch
from the startup default TWFY_CAMERA to the TWFY_CAMERAPREVIEW using the
MSG_CHANGEDIRECTORY command.

Performance

It is important when taking a picture from preview mode that the switch from
TWFY_CAMERAPREVIEW to TWFY_CAMERA happens as quickly as possible. Applications can
minimize the switch over time by negotiating the settings of the TWFY_CAMERA before changing to
the TWFY_CAMERAPREVIEW device to collect real-time images.

Sources can help by optimizing their communication with the TWFY_CAMERA, perhaps
downloading its values when the user sends MSG_ENABLEDS to the TWFY_CAMERAPREVIEW
device so that when the switch back occurs all that needs to happen is a command sent to the
camera to take a picture.

Another matter of importance is the transfer mechanism. If the camera is capable of sending a run
of continuous snapshots to the application (as opposed to real video streaming), then it is
recommended that the TWFY_CAMERAPREVIEW device only support an ICAP_XFERMECH of
TWSX_NATIVE.

Entering Preview Mode

An application should do the following before entering preview mode.

1. The application sends MSG_OPENDS to the Source.

2. The application determines that the Source TWFY_CAMERAPREVIEW device.

3. The user/application negotiates values for the TWFY_CAMERA device.

4. The user/application decides to enter preview mode. The application uses
MSG_CHANGEDIRECTORY to change to the TWFY_CAMERAPREVIEW device.

5. The application uses MSG_ENABLEDS to enter preview mode. Note that the value of ShowUI
should depend on which of the next two sections the application decides to use to control the
Source (GUI mode or programmatic).

Previewing with the Source’s GUI (ShowUI == TRUE)

If the application relies solely on the Source’s GUI for its control of the camera, then it shouldn’t
have to worry about preview mode issues, since it is hoped that a Source that supports preview
will provide access to it from its GUI. This section is concerned with a more limited area, where
an application has opted to control the Source programmatically, except for the use of preview.
One reason an application might need to do this is to provide preview support for cameras that
output streaming video. TWAIN does not have a mechanism for handling this kind of data, so if
the only way that a TWAIN application will be able to show this kind of preview data, is if the
Source provides a GUI that can show it.

If the Source has CAP_CAMERAPREVIEWUI set to TRUE, then it is possible for the application to
use this to preview the images coming from the camera. In this mode the application does not
have to concern itself with the kind of data that the Source is providing, since the Source takes the
responsibility of displaying the preview images to the user. However, the application does have
to wait for the triggers that indicates that the user wishes to take a picture, or that they wish to exit
from preview mode. To help standardize this behavior, the preview GUI should be able to
indicate two things.
TWAIN 2.3 Specification A-9

Chapter A
1. Take a picture – if the user selects to take a picture, perhaps by pressing a button labeled
CAPTURE, then the Source should send the DAT_NULL command MSG_CLOSEDSOK back to
the application.

2. Cancel preview – if the user decides to exit from preview mode, then the Source should send
the DAT_NULL command MSG_CLOSEDSREQ back to the application. The application should
then send MSG_DISABLEDS to the Source, change back to the TWFY_CAMERA device, and
resume its programmatic control of the Source.

Previewing under Programmatic Control (ShowUI == FALSE):

TWAIN provides programmatic support for TWFY_CAMERAPREVIEW devices that operate by
taking a continuous flow of low-resolution snapshots. An application learns that a Source is
capable of this by changing to TWFY_CAMERAPREVIEW and testing ICAP_XFERMECH. If the
capability is supported, then the TWFY_CAMERAPREVIEW device is capable of transferring these
low-resolution images fast enough to simulate real-time video. The way the application obtains
these images is similar to how scanners work. The application sets CAP_XFERCOUNT to –1 and
enables the Source. The Source sends a MSG_XFERREADY to the application, and the application
begins transferring and displaying the low-resolution images as fast as it can. These steps are
repeated to aid understanding…

1. The application negotiates any capabilities with the TWFY_CAMERAPREVIEW device, including
setting CAP_XFERCOUNT to –1, indicating that the application wishes to receive an unlimited
number of images.

2. The application send MSG_ENABLEDS (ShowUI == FALSE) to the Source.

3. The Source sends back MSG_XFERREADY and transitions to State 6.

4. The application uses MSG_IMAGENATIVEXFER to transfer the image and the Source
transitions to State 7.

5. The application displays the image.

6. The application uses DAT_PENDINGXFERS / MSG_ENDXFER to transition the Source to State 6.
The application needs to pay attention to the TW_PENDINGXFERS.Count, but it is expected
that it should remain at –1.

7. Go to step (4).

As long as the application and Source are looping from steps (4) through (7) the application
should be displaying a continuous run of snapshots.

Since the application is in complete control, it is implementation dependent on how the user
indicates that a picture should be taken. However, once the decision to take a picture is made, the
steps to do it are as follows…

Taking a Picture:

The application should do the following when it is told to take a picture while in preview mode.

1. The application sends DAT_PENDINGXFERS / MSG_ENDXFER to the Source, transitioning
from State 7 to State 6 (if necessary).

2. The application sends DAT_PENDINGXFERS / MSG_RESET to the Source, transitioning from
State 6 to State 5.

3. The application sends MSG_DISABLEDS to the Source, transitioning from State 5 to State 4.
A-10 TWAIN 2.3 Specification

4. The application uses MSG_CHANGEDIRECTORY to switch from the TWFY_CAMERAPREVIEW
device to the TWFY_CAMERA device.

5. The application uses MSG_ENABLEDS (ShowUI == FALSE) to enable the TWFY|_CAMERA
device.

6. The application sends one of the MSG_IMAGExxxxXFER commands to the Source.

7. The source takes the full resolution picture and transfers it back to the application

File System
This section consists of the following:

• Overview

• Rules for path and file names

• File system components

• Rule for root directory

• Rules for image directory

• File Types

• DAT_FILESYSTEM operations

• Thumbnails and Sound snippets

• Context variable

• Condition Codes

Note: The term ‘camera’ is used generically in the specification to describe a device that captures
an image, and is not limited to just devices that employ a camera to accomplish this.

Overview

Digital cameras and some scanners have the ability to capture images to their own local storage.
When Automatic Capturing is being used an Application need not collect the captured images
until long after their acquisition. A file system is a good representation for the storage of images
(since it is a model that is familiar to most programmers), so TWAIN exposes a simple file system
interface that Applications may browse through in a random fashion.

There is also a need in TWAIN to expose multiple devices through a single Source. Single pass
duplex scanners have multiple cameras that accept different settings. Digital cameras come with
disks and memory expansion cards, and many are able to provide a stream of preview images.
The file system offers a way for a Source to maintain in its root directory a list of the devices
available to an Application.

Rules for Path and File Names

There are two main grouping of files supported by TWAIN; devices, which are associated with
real-time capture, which accept image capture settings, and which are of the form:
TWAIN 2.3 Specification A-11

Chapter A
/DeviceName

And image path and file names, which are images on local storage which have been previously
captured by the device, and which are of the form (bracketed items are optional):

[/DomainName] [/HostName] /TopDirectory [/Sub-Directory…] /ImageFile

1. A filename consists of any characters except: NUL (0), either of the slashes ‘/’ or ‘\’ and the
colon ‘:’.

2. Sources should at a minimum support the characters: “A-Z a-z 0-9 _ .”

3. The file system should not be case sensitive, though it may show upper and lowercase.

4. Applications should take into consideration that internationalized Sources may construct
filenames from characters within UNICODE.

5. The forward slash ‘/’ and backward slash ‘\’ may be used interchangeably in the creation of
path names. Sources and Applications must support the use of both slashes. (ex: /abc\xyz).

6. Multiple adjacent slashes reduce to a single slash. (ex: ///\\abc///xyz == /abc/xyz).

7. The root directory is designated as a solitary slash (ex: / or \).

8. The MSG_CHANGEDIRECTORY and MSG_AUTOMATICCAPTUREDIRECTORY operations are the
only ones that accepts absolute or relative directory paths. All other operations occur within
the current directory.

9. MSG_CHANGEDIRECTORY and MSG_AUTOMATICCAPTUREDIRECTORY can use dot ‘.’ to
address the current directory (ex: ./abc).

10. MSG_CHANGEDIRECTORY and MSG_AUTOMATICCAPTUREDIRECTORY can use dot-dot ‘..’ to
address the parent directory (ex: ../abc).

11. In the root directory a MSG_CHANGEDIRECTORY or AUTOMATICCAPTUREDIRECTORY to dot-
dot ‘..’ is the same as dot ‘.’ (ex: /. == /..).

Examples:

\Camera is the same as /Camera

//Camera is the same as /Camera

./Camera is the same as /Camera

../Camera is the same as /Camera

File System Components

A file system consists of the following.

1. A root directory.

2. A camera device (TWFY_CAMERA), which must be the default device when the Source starts.

3. Zero or more additional devices (TWFY_CAMERATOP, TWFY_CAMERATOP,
TWFY_CAMERAPREVIEW).

4. It is possible for a Source to support multiples of a given device type, for instance a scanner
may support two devices of type TWFY_CAMERA, both with a supporting TWFY_CAMERATOP
and TWFY_CAMERABOTTOM. Use pTW_FILESYSTEM->DeviceGroupMask to uniquely
identify a camera or to group it with its associated top and bottom cameras. For example:
A-12 TWAIN 2.3 Specification

5. Zero or more directories for storing images (on memory cards, disks, etc…). These are
organized in a hierarchical structure that permits, but does not require the ability to browse in
a network:

Sources that provide image storage must provide at least one TWFY_DIRECTORY.
TWFY_DOMAIN and TWFY_HOST are optional.

Rules for Root Directory

1. The root directory can only contain devices or directories, not images.

2. The application cannot create, delete, copy into or rename files in the root directory.

3. Files in a directory are not ordered in any fashion (for instance, an Application may not
assume that they are alphabetically sorted). There is one exception to this rule: when an
Application issues a DG_CONTROL / DAT_FILESYSTEM / MSG_GETFIRSTFILE on the root
directory, the Source must return a TWFY_CAMERA device. This device is the designated
default capture camera. If an Application begins capability negotiation, or image capture
without accessing DAT_FILESYSTEM, then this is the device that will be used.

Rules for Image Directory

1. A TWFY_DIRECTORY can contain 0 or more TWFY_DIRECTORYs (sub-directories).

2. Can contain 0 or more TWFY_IMAGE (image files).

3. May be fully accessible, read or write protected.

4. May be created or deleted by an Application, given that it is not in the root directory, and that
it is not protected by the Source.

Context Variable

The reason for the Context variable is that it allows for unconditional mingling of
DAT_FILESYSTEM operations. If there was no Context variable, then Applications would be
more limited in the order of operations that could be performed. For instance, the recursive
directory walk in the code sample would be much harder to accomplish without a Context to help
the Source identify the current directory being accessed by a call to MSG_GETNEXTFILE.

Name Type Group

/camera_1 TWFY_CAMERA 0x0001

/camera_1_top TWFY_CAMERATOP 0x0001

/camera_1_bottom TWFY_CAMERABOTTOM 0x0001

/camera_2 TWFY_CAMERA 0x0002

/camera_2_top TWFY_CAMERATOP 0x0002

/camera_2_bottom TWFY_CAMERABOTTOM 0x0002

A TWFY_DOMAIN directory contains only TWFY_HOST directories

A TWFY_HOST directory contains only TWFY_DIRECTORY directories

A TWFY_DIRECTORY contains TWFY_IMAGE files and/or TWFY_DIRECTORY
directories.
TWAIN 2.3 Specification A-13

Chapter A
This value is provided solely for the benefit of Source writers. When MSG_GETFIRSTFILE is
called, the Source should record the current directory and the current file and store those values
internally, using Context as a reference to their location. The nature or value of the Context is
dependent on the implementation of the Source, Applications must never attempt to use or
modify the Context. A call to MSG_GETINFO must use this Context to identify the file being
reported. Calls to any of the file transfer methods (MSG_IMAGENATIVEXFER,
MSG_IMAGEFILEXFER, MSG_IMAGEMEMXFER, MSG_AUDIONATIVEXFER, MSG_AUDIOFILEXFER)
must use this Context to determine the data being sent to the Application. A call to
MSG_GETNEXTFILE must use this Context to help obtain the next file from the directory (this will
result in a change in the context as it references the new file). And, finally, a call to
MSG_GETCLOSE releases the memory in the Source associated with this Context.

Condition Codes

These are some condition codes that apply specifically to file system operations:

TWCC_DENIED File system operation is denied. A Source should report this
condition code if an attempt is made to access a protected
file. Examples of such protection include: any attempt to
delete, rename or copy into the root directory; protected files
that are on the network; and any file that the Source feels it
needs to protect.

TWCC_FILEEXISTS The operation failed because the file already exists. A Source
should report this condition code if an attempt is made to
create a sub-directory with a name that already exists in the
targeted directory; or if an attempt is made to copy or rename
over an existing file or directory.

TWCC_FILENOTFOUND The file was not found. This can occur for a variety of
reasons: attempts to change directory to a path that does not
exist; attempts to delete, rename or copy files that do not
exist; as the condition code from MSG_GETFIRSTFILE for an
empty directory; or MSG_GETNEXTFILE when it finds no
more files in the current directory; and, finally, from
MSG_GETINFO if it is requested to provide information on a
file that has been deleted.

TWCC_NOTEMPTY Operation failed because the directory is not empty. This
condition code is used by the Source if an attempt is made
with the Recursion flag set to FALSE to delete a non-empty
directory.

File Types

The DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY operation is used to make
either a device or a directory current. If a camera device is the target, then all capability
negotiation is with that device and all images come from that device, until a new
MSG_CHANGEDIRECTORY command is issued. If an image directory is selected then the current
device is set to be the root level directory name (i.e., changing to /abc/mno/xyz means that the
current device is /abc).

TWFY_CAMERA Every TWAIN file system must support at least one camera,
which must be the default device on startup. This is for
A-14 TWAIN 2.3 Specification

compatibility with pre 1.8 applications as well as post 1.8
applications that do not choose to make use of the file
system. On single pass duplex scanners, this camera device
is used to simultaneously set values for the top and bottom
cameras. During the capturing of images (in duplex mode) it
sends a stream of images in the order: TOP, BOTTOM,
TOP…

TWFY_CAMERATOP / TWFY_CAMERABOTTOM

Single pass duplex scanners may opt to provide independent
access to the top and bottom cameras. A device with one of
these file types controls the settings for the specified camera.
If this device is the current device at the time image capture
commences, then only images from that camera will be
passed to the Application. This means that even if a device is
set for duplex scanning, if the current device has a file type of
TWFY_CAMERATOP, then only top images will be passed to
the Application.

TWFY_CAMERAPREVIEW A logical device that performs camera live preview
functionality. When implementing the Source for this logical
device, related capabilities must be negotiated to perform
preview specific functions. Among them,
ICAP_XRESOLUTION and ICAP_YRESOLUTION must be
implemented to specify the preview image sizes. Other
capabilities may be available in some sources, such as
ICAP_ZOOMFACTOR and ICAP_FLASHUSED2.
TWAIN 2.3 Specification A-15

Chapter A
TWFY_DIRECTORY At the root directory level files of this type should correspond to
a physical piece of hardware (a memory card or a disk). The root
directory is only allowed to contain devices. Sub-directories may
only contain image files or more sub-directories. Access to files
and directories is controlled by the Source, so Applications
should check all operations and watch out for condition codes
such as TWCC_DENIED.

TWFY_IMAGE Any directory, except root, may contain image files. The
DAT_FILESYSTEM messages MSG_GETFIRSTFILE and
MSG_GETNEXTFILE select the current image. Once an image has
been selected, it may be transferred in the same fashion used to
acquire images from a camera. Note: this file type is reserved for
full resolution images, see the section on Thumbnails for
information on how to acquire them.

DAT_FILESYSTEM Operations

MSG_AUTOMATICCAPTUREDIRECTORY

Selects the directory to be used to store images acquired by
automatic capture.

MSG_CHANGEDIRECTORY

Selects the device or image subdirectory. Use this to select
between direct camera (scanner) control, and browsing of stored
images. All capabilities negotiated and triplet operations are
with the current device (directory), until this value is changed by
the Application.

MSG_COPY Copies the specified file from one directory to another. If the
Recursive flag is TRUE and the file type specified is
TWFY_DIRECTORY then that directory and all the files and
directories under it are copied. The Application cannot copy files
into the root directory.

MSG_CREATEDIRECTORY

Creates a new image subdirectory. The Application cannot create
files in the root directory.

MSG_DELETE Deletes the specified file. If the Recursive flag is TRUE and the
file type specified is TWFY_DIRECTORY, then all the files under
that directory are deleted. The Application cannot delete files in
the root directory.

MSG_FORMATMEDIA Formats the currently selected storage device. Use with caution.
A-16 TWAIN 2.3 Specification

MSG_GETCLOSE Closes the Context created by MSG_GETFIRSTFILE.

MSG_GETFIRSTFILE Creates a Context that points to the first file in a directory. This
Context is used by MSG_GETINFO, MSG_GETNEXTFILE,
MSG_GETCLOSE; and for files of type TWFY_IMAGE all image
transfer related operations performed in states 6 and 7 use the
image pointed to by this Context (i.e., DAT_IMAGEINFO,
DAT_IMAGEMEMXFER, etc…).

MSG_GETINFO Returns information about a device, directory or image file.

MSG_GETNEXTFILE Updates the Context to point to the next file in the directory.

MSG_RENAME Renames a directory or an image file. If the directories differ,
then it moves the file as well, creating it in the new location and
deleting it from the old location. Files in the root directory
cannot be renamed by the Application.

Thumbnails and Sound Snippets

TWAIN is primary concerned with the acquisition of images, so the file system does not contain
thumbnail files or sound files, since these kinds of data are expected to be associated with image
files. This simplifies an Application’s browsing of the file system, since it need only concern itself
with one type of data file (TWFY_IMAGE), and does not have to trace associated data files.

Sources must filter out non-image files, if the device stores thumbnail and sound data
independent of the image files. For instance, if a device stores the following files:

IMAGE001.TIF

IMAGE001_THUMBNAIL.TIF

IMAGE001_SOUND.WAV

The file system must only report the existence of IMAGE001.TIF

An Application obtains the thumbnail for an image by setting ICAP_THUMBNAILSENABLED to
TRUE; the same filename is used for both the full resolution and thumbnail versions of an image.
By setting ICAP_THUMBNAILSENABLED, the Application decides which version of the image it
receives.

Sound snippets are also associated with image files, unlike thumbnails it is possible for a single
image file to own several sound snippets. An Application can get the number of snippets that an
image owns, and then, during image transfer, the Application has the option to transfer any
number of those snippets. It is also possible to collect the snippets for an image without
transferring the image data.

Sample Recursive Directory Walk

The following is a sample recursive directory walk.

// This Application function walks through all the files in a Source’s

// file system, counting the file types file system, counting the file
TWAIN 2.3 Specification A-17

Chapter A
// types it finds. It is intended only as a sample, error checking is

// omitted to simplify the code.

typedef struct {

 int Devices;

 int Directories;

 int Images;

} t_Counters;

TW_UINT16 DirectoryWalk(TW_FILESYSTEM *fsArg, t_Counters *Counters)

{

 TW_UINT16 rc; TW_FILESYSTEM fs;

 // Caller has set fsArg->InputFile to some value, such as “/”…

 rc = (*DS_Entry) (&app,&src,DG_CONTROL,DAT_FILESYSTEM,

 MSG_CHANGEDIRECTORY, fsArg);

 // We do GETFIRSTFILE first in each new directory, GETNEXTFILE for all

 // subsequent calls…

 for (rc = (*DS_Entry)(&app,&src,DG_CONTROL,DAT_FILESYSTEM,

 MSG_GETFIRSTFILE,&fs);

 rc == TWRC_SUCCESS;

 rc = (*DS_Entry)(&app,&src,DG_CONTROL,DAT_FILESYSTEM

 ,MSG_GETNEXTFILE,&fs)) {

 // Count the appropriate file type…

 switch (fs.FileType) {

 default: Counters->Devices += 1; break;

 case TWFY_IMAGE: Counters->Images += 1; break;

 case TWFY_DOMAIN:

 case TWFY_HOST:

 case TWFY_DIRECTORY:

 Counters->Directories += 1;

 // Recursively step into this directory, looking for more

 // stuff…

 rc = DirectoryWalk(&fs,&Counters);

 if (rc != TWRC_SUCCESS) {

 rc = (*DS_Entry)(&app,&src,DG_CONTROL,DAT_FILESYSTEM,

 MSG_GETCLOSE,&fs);

 return(rc);

 }

 break;

 }

 }
A-18 TWAIN 2.3 Specification

 // Cleanup and return…

 rc = (*DS_Entry)(&app,&src,DG_CONTROL,DAT_FILESYSTEM,MSG_GETCLOSE,&fs);

 return(TWRC_SUCCESS);

}

// Using this function…

TW_UINT16 rc;

TW_FILESYTEM fs;

t_Counters Counters;

memset(&fs,0,sizeof(fs));

memset(&Counters,0,sizeof(Counters));

strcpy(fs.InputFile,”/”); // start at root…

rc = DirectoryWalk(&fs,&Counters);

Internationalization
A TWAIN Source can easily be internationalized despite its 8-bit character interface. A well
designed Source should automatically match the locale of the application calling it; passing
localized data through the API, and displaying appropriate language text in its user interface.
Developers have the option of using UNICODE or MultiByte encodings, the 8-bit interface is not
an obstacle to Applications or Sources.

When an Application calls DG_CONTROL / DAT_IDENTITY / MSG_OPENDS, it provides to the
Source its TW_IDENTITY data. Internationalized Sources should check the appIdentity-
>Version.Language field, and attempt to match the Application’s language (returning the same
value in the dsIdentity structure). If the Source is incapable of matching the language, then it
should attempt to match the User’s current locale (on Win32 do this using the
LOCALE_USER_DEFAULT value returned by the GetLocaleInfo() call). In most cases the
Application locale and the User locale will be the same, and the Source will have to select the best
language it can. For instance, if the Application requested Swiss French, and the Source only has
French, then it should offer that. Otherwise, it should resort to some common secondary
language, such as English.

Please note that DG_CONTROL / DAT_IDENTITY / MSG_OPENDS is the very first opportunity that
an Application and Source have to negotiate language. DG_CONTROL / DAT_IDENTITY /
MSG_GET, when invoked in state 3, does not provide an appIdentity. Sources should default to
the LOCALE_USER_DEFAULT in this instance.

As mentioned above, the TWAIN interface assumes 8-bit characters, this prevents the direct
passing of UNICODE data between Sources and Applications, but it does not hinder indirect
means that convert data into MultiByte encodings. The remainder of this section shows one way
of allowing Sources and Applications to communicate, without worrying about whether they are
UNICODE or MultiByte enabled. The best example to illustrate this is to consider a Source and
Application, both UNICODE enabled, communicating through the TWAIN interface.

To pass UNICODE string data from the Source to the Application, the Source must convert
UNICODE to MultiByte, using the appropriate Code-Page (which is specific to a given set of
locales). When the Application receives the data, it converts from MultiByte back to UNICODE.
The process is the same when sending string data from the Application to the Source. The process
TWAIN 2.3 Specification A-19

Chapter A
depends on the Application and Source using the same Code-Page for their conversion. The
Win32 functions required to perform the conversions are WideCharToMultiByte and
MultiByteToWideChar. The only limitation to watch out for is the size of the various strings
provided by TWAIN. At all times the MultiByte data must fit within the strings described by the
interface, and Source and Application writers need to pay close attention to it.

int WideCharToMultiByte(

UINT CodePage, // code page

DWORD dwFlags, // performance and mapping flags

LPCWSTR lpWideCharStr, // address of wide-character string

int cchWideChar, // number of characters in string

LPSTR lpMultiByteStr, // address of buffer for new string

int cchMultiByte, // size of buffer

LPCSTR lpDefaultChar, // address of default for unmappable characters

LPBOOL lpUsedDefaultChar // address of flag set when default char. used

);

int MultiByteToWideChar(

UINT CodePage, // code page

DWORD dwFlags, // character-type options

LPCSTR lpMultiByteStr, // address of string to map

int cchMultiByte, // number of characters in string

LPWSTR lpWideCharStr, // address of wide-character buffer

int cchWideChar // size of buffer

);

These functions are fully described in the online Microsoft Visual C++ documentation. This
section does not attempt to duplicate that information, but does show how Source and
Application may cooperate when using them to transmit localized data through the TWAIN
interface.

TWAIN CAP_LANGUAGE Code to ANSI Code-Page Table

// This array maps TWAIN CAP_LANGUAGE codes to the appropriate ANSI Code-

// Page. There is no mechanism for converting to the OEM Code-Page, nor

// should one be needed, since the upper 128 bytes in the OEM pages mostly

// contain line art characters used by MS-DOS.

// Note: the index in the comment field is just an index into the array,

// it does not correspond to the TWAIN constant for a given TWLG field…

//

#define AnsiCodePageElements 88

int AnsiCodePage[AnsiCodePageElements] = {

1252, // 0 TWLG_DANISH (TWLG_DAN)

1252, // 1 TWLG_DUTCH (TWLG_DUT)
A-20 TWAIN 2.3 Specification

1252, // 2 TWLG_ENGLISH (TWLG_ENG)

1252, // 3 TWLG_FRENCH_CANADIAN (TWLG_FCF)

1252, // 4 TWLG_FINNISH (TWLG_FIN)

1252, // 5 TWLG_FRENCH (TWLG_FRN)

1252, // 6 TWLG_GERMAN (TWLG_GER)

1252, // 7 TWLG_ICELANDIC (TWLG_ICE)

1252, // 8 TWLG_ITALIAN (TWLG_ITN)

1252, // 9 TWLG_NORWEGIAN (TWLG_NOR)

1250, // 10 TWLG_PORTUGUESE (TWLG_POR)

1252, // 11 TWLG_SPANISH (TWLG_SPA)

1252, // 12 TWLG_SWEDISH (TWLG_SWE)

1252, // 13 TWLG_ENGLISH_USA (TWLG_USA)

1252, // 14 TWLG_AFRIKAANS

1250, // 15 TWLG_ALBANIA

1256, // 16 TWLG_ARABIC

1256, // 17 TWLG_ARABIC_ALGERIA

1256, // 18 TWLG_ARABIC_BAHRAIN

1256, // 19 TWLG_ARABIC_EGYPT

1256, // 20 TWLG_ARABIC_IRAQ

1256, // 21 TWLG_ARABIC_JORDAN

1256, // 22 TWLG_ARABIC_KUWAIT

1256, // 23 TWLG_ARABIC_LEBANON

1256, // 24 TWLG_ARABIC_LIBYA

1256, // 25 TWLG_ARABIC_MOROCCO

1256, // 26 TWLG_ARABIC_OMAN

1256, // 27 TWLG_ARABIC_QATAR

1256, // 28 TWLG_ARABIC_SAUDIARABIA

1256, // 29 TWLG_ARABIC_SYRIA

1256, // 30 TWLG_ARABIC_TUNISIA

1256, // 31 TWLG_ARABIC_UAE /* United Arabic Emirates */

1256, // 32 TWLG_ARABIC_YEMEN

1252, // 33 TWLG_BASQUE

1251, // 34 TWLG_BYELORUSSIAN

1251, // 35 TWLG_BULGARIAN

1252, // 36 TWLG_CATALAN

 936, // 37 TWLG_CHINESE

 950, // 38 TWLG_CHINESE_HONGKONG

 936, // 39 TWLG_CHINESE_PRC /* People's Republic of China */

 936, // 40 TWLG_CHINESE_SINGAPORE

 936, // 41 TWLG_CHINESE_SIMPLIFIED

 950, // 42 TWLG_CHINESE_TAIWAN

 950, // 43 TWLG_CHINESE_TRADITIONAL

1250, // 44 TWLG_CROATIA

1250, // 45 TWLG_CZECH

1252, // 46 TWLG_DUTCH_BELGIAN

1252, // 47 TWLG_ENGLISH_AUSTRALIAN

1252, // 48 TWLG_ENGLISH_CANADIAN

1252, // 49 TWLG_ENGLISH_IRELAND

1252, // 50 TWLG_ENGLISH_NEWZEALAND
TWAIN 2.3 Specification A-21

Chapter A
1252, // 51 TWLG_ENGLISH_SOUTHAFRICA

1252, // 52 TWLG_ENGLISH_UK

1257, // 53 TWLG_ESTONIAN

1250, // 54 TWLG_FAEROESE

1256, // 55 TWLG_FARSI

1252, // 56 TWLG_FRENCH_BELGIAN

1252, // 57 TWLG_FRENCH_LUXEMBOURG

1252, // 58 TWLG_FRENCH_SWISS

1252, // 59 TWLG_GERMAN_AUSTRIAN

1252, // 60 TWLG_GERMAN_LUXEMBOURG

1252, // 61 TWLG_GERMAN_LIECHTENSTEIN

1252, // 62 TWLG_GERMAN_SWISS

1253, // 63 TWLG_GREEK

1255, // 64 TWLG_HEBREW

1250, // 65 TWLG_HUNGARIAN

1252, // 66 TWLG_INDONESIAN

1252, // 67 TWLG_ITALIAN_SWISS

 932, // 68 TWLG_JAPANESE

 949, // 69 TWLG_KOREAN

1361, // 70 TWLG_KOREAN_JOHAB

1257, // 71 TWLG_LATVIAN

1257, // 72 TWLG_LITHUANIAN

1252, // 73 TWLG_NORWEGIAN_BOKMAL

1252, // 74 TWLG_NORWEGIAN_NYNORSK

1250, // 75 TWLG_POLISH

1252, // 76 TWLG_PORTUGUESE_BRAZIL

1250, // 77 TWLG_ROMANIAN

1251, // 78 TWLG_RUSSIAN

1250, // 79 TWLG_SERBIAN_LATIN

1250, // 80 TWLG_SLOVAK

1250, // 81 TWLG_SLOVENIAN

1252, // 82 TWLG_SPANISH_MEXICAN

1252, // 83 TWLG_SPANISH_MODERN

 874, // 84 TWLG_THAI

1254, // 85 TWLG_TURKISH

1251, // 86 TWLG_UKRANIAN

};

Sample Converting from WideChar to MultiByte

The following is a sample of converting from WideChar to MultiByte.
A-22 TWAIN 2.3 Specification

// This function converts _TCHAR* strings to MultiByte, using the

// appropriate code page. If the build is ANSI or MBCS, then no

// conversion is needed, the _tcsncpy() function is used.

// If the build is UNICODE, then the Code-Page is determined, and used to

// convert the string to MultiByte using the WideCharToMultiByte()

// function…

//

int CopyTCharToMultibyte

 (char *dst,

 const int sizeof_dst,

 const _TCHAR *src,

 const int twain_language_code)

{

#ifndef _UNICODE

 // MultiByte string copy…

 _tcsncpy(dst,src,sizeof_dst);

 dst[sizeof_dst-1] = 0;

 return(strlen(dst));

#else

 int cp;

 int len;

 _TCHAR cp_str[16];

 if (twain_language_code >= AnsiCodePageElements) {

 // Whoops, don’t have one of those…

 return(-1);

 } else if (twain_language_code >= 0) {

 // Lookup the code page…

 cp = AnsiCodePage[twain_language_code];

 } else {

 // Get the User’s code page…

 GetLocaleInfo

 (LOCALE_USER_DEFAULT,

 LOCALE_IDEFAULTANSICODEPAGE,

 cp_str,

 sizeof(cp_str));

 cp = _ttoi(cp_str);

 }

 if (IsValidCodePage(cp) == 0) {

 // That code page isn’t installed on this system…

 return(-1);

 }
TWAIN 2.3 Specification A-23

Chapter A
 len = WideCharToMultiByte(

 cp, // code page

 0, // performance and mapping flags

 src, // address of wide-character string

 -1, // number of characters in string

 dst, // address of buffer for new string

 sizeof_dst, // size of buffer (in characters)

 NULL, // address of default for unmappable characters

 NULL // address of flag set when default char. used

);

#endif

}

Sample Converting from MultiByte to WideChar

The following is a sample of converting from MuliByte to WideChar.

// This function converts multibyte strings to _TCHAR* strings, using

// the appropriate code page.

// If the build is ANSI or MBCS, then no conversion is needed, the

// _tcsncpy() function is used. If the build is UNICODE, then the

// Code-Page is determined, and used to convert the string to

// _TCHAR* using the MultiByteToWideChar() function…

//

int CopyMultibyteToTChar

 (_TCHAR *dst,

 const int sizeof_dst,

 const char *src,

 const int twain_language_code)

{

#ifndef _UNICODE

 // MultiByte string copy…

 _tcsncpy(dst,src,sizeof_dst);

 dst[sizeof_dst-1] = 0;

 return(strlen(dst));

#else

 int cp;

 int len;

 _TCHAR cp_str[16];

 if (twain_language_code >= AnsiCodePageElements) {

 // Whoops, don’t have one of those…

 return(-1);

 } else if (twain_language_code >= 0) {

 // Lookup the code page…

 cp = AnsiCodePage[twain_language_code];

 } else {

 // Get the User’s code page…

 GetLocaleInfo
A-24 TWAIN 2.3 Specification

 (LOCALE_USER_DEFAULT,

 LOCALE_IDEFAULTANSICODEPAGE,

 cp_str,

 sizeof(cp_str));

 cp = _ttoi(cp_str);

 }

 if (IsValidCodePage(cp) == 0) {

 // That code page isn’t installed on this system…

 return(-1);

 }

 len = MultiByteToWideChar(

 cp, // code page

 0, // performance and mapping flags

 src, // address of wide-character string

 -1, // number of characters in string

 dst, // address of buffer for new string

 sizeof_dst/sizeof(_TCHAR) // size of buffer (in characters)

);

 return(len);

#endif

}

Sample Use of the Conversion Functions

The following are examples of UNICODE application and UNICODE source.

UNICODE Application

int sts;

int twain_language_code;

_TCHAR Author[128];

pTW_ONEVALUE pvalOneValue;

. . .

// the Application has queried the Source as to what languages it supports

//and selected TWLG_JAPANESE, storing it in twain_language_code…

. . .

// CAP_AUTHOR is queried, and a value is received…

. . .

// Convert CAP_AUTHOR string to UNICODE…

sts = CopyMultiByteToTChar

 (Author,

 sizeof(Author),

 (char*)&pvalOneValue->Item,

 twain_language_code)

if (sts < 0) {

 // Error…

. . .

}

TWAIN 2.3 Specification A-25

Chapter A
UNICODE Source

. . .

int sts;

int source_language_code;

_TCHAR SourceAuthor[128];

pTW_ONEVALUE pvalOneValue;

. . .

// the Source has been told to use TWLG_JAPANESE, it stores this value

// in source_language_code …

. . .

// CAP_AUTHOR is queried by the Application…

// The Source keeps the value in SourceAuthor…

. . .

// Convert CAP_AUTHOR string to multibyte…

 sts = CopyTCharToMultibyte

 ((char*)&pvalOneValue->Item,

 sizeof(TW_STR128),

 SourceAuthor,

 source_language_code)

if (sts < 0) {

 // Error…

 . . .

}

. . .

// The Source returns the value to the Application…

Audio Snippets
Digital Cameras have the ability to acquire audio snippets along with an image. To support this
TWAIN 1.8 provides a new data group, DG_AUDIO. Because TWAIN is image-centric, DG_AUDIO
operations are dependent on an image context, audio snippets must be associated with an image.
When a Source enters into state 6, the Application can opt to transfer any and all audio snippets.
The steps required to obtain audio snippets deliberately parallel the steps required to transfer
images, to reduce the effort to learn how to access this new kind of data.

The following Data Argument Types (DATs) are supported by DG_AUDIO:

DAT_AUDIOFILEXFER transfer audio in file format

DAT_AUDIOINFO info about an audio snippet

DAT_AUDIONATIVEXFER transfer audio in native format
A-26 TWAIN 2.3 Specification

The following DG_CONTROL (DATs) are supported when DAT_XFERGROUP is set to DG_AUDIO,
DATs not mentioned in this list must return TWRC_FAILURE / TWCC_BADPROTOCOL:

DAT_CAPABILITY no changes to its operation

DAT_EVENT no changes to its operation

DAT_IDENTITY no changes to its operation

DAT_NULL no changes to its operation

DAT_PASSTHRU no changes to its operation

DAT_PENDINGXFERS reports number of snippets remaining to be transferred,
MSG_ENDXFER and MSG_RESET do not cause the Source to
drop to State 5.

DAT_SETUPFILEXFER selects the audio file format

DAT_STATUS no changes to its operation

DAT_USERINTERFACE no changes to its operation

DAT_XFERGROUP MSG_SET, MSG_GETDEFAULT and MSG_GETCURRENT added
to allow switching between data groups. The default value
for MSG_GETDEFAULT must be DG_IMAGE. And when the
Source starts up, MSG_GETCURRENT must report DG_IMAGE
as the current data group, to maintain compatibility with
pre-TWAIN 1.8 Applications.

The following capabilities support audio; all capabilities are negotiable at all times (at least in state
4), independent of the current setting of DAT_XFERGROUP:

ACAP_XFERMECH negotiate audio snippet transfer mechanism

Collecting Audio Snippets

The transfer of an audio snippet was designed to be used when an Application is browsing
through a selection of stored images. There is nothing to prevent the transfer of audio when an
image is captured in real-time, though TWAIN does require that any audio snippets be
transferred before the image is transferred.

A typical transfer may occur in the following way: An Application is browsing through storage
managed by the TWAIN Source using MSG_GETFILEFIRST / MSG_GETFILENEXT (see
DAT_FILESYSTEM), and finds an image that it wants to work with. The Application enters state 6
by calling DG_CONTROL / DAT_IDENTITY / MSG_ENABLEDS. If the Application wants to find out
if there are any audio snippets associated with the image, it can call DG_AUDIO /
DAT_AUDIOINFO / MSG_GET. In this example it finds in the TW_AUDIOINFO structure that this
image file has three audio snippets associated with it. The Application wants the second audio
snippet, so it calls DG_CONTROL / DAT_XFERGROUP / MSG_SET and sets the data group to
DG_AUDIO. This call changes the context of the Source, it is now set up to transfer audio data.
One effect of this is that a call to DG__CONTROL / DAT_PENDINGXFERS / MSG_GET will report the
number of audio snippets (for this image) that remain to be transferred. Because the Application
wants the second audio snippet, it must discard the first one, and does this by making a call to
DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER. The snippet that it wants is now
available to be transferred, and it does this with a call to DG_AUDIO / DAT_AUDIONATIVEXFER /
MSG_GET. The Source moves up into state 7. The Application ends the transfer with a call to
DG_CONTROL / DAT_PENDINGXFERS / MSG_ENDXFER.
TWAIN 2.3 Specification A-27

Chapter A
Because the Application only wanted the second audio snippet, it can return to DG_IMAGE by
making a call to DG_CONTROL / DAT_XFERGROUP / MSG_SET. Once this is done, all other
commands work in a traditional TWAIN fashion. The Application can opt to transfer or discard
the image, even though it did not transfer all of the audio snippets.

There is one more thing to note, if the Application had read the third audio snippet, or if it had
issued the DG_CONTROL / DAT_PENDINGXFERS / MSG_RESET command while in DG_AUDIO, the
state of the Source would remain at state 6. TWAIN works this way because it is image-centric,
the only way to transition from state 6 to state 5 is when it is determined that there are no more
images to transfer.

Notes

1. TWAIN 1.8 supports native and file transfers of audio snippets. Buffered mode transfers are
not supported, because TWAIN does not have the necessary infrastructure to describe audio
data, and it was decided that adding that structure in this release would be overly complex,
and probably incomplete.

2. As a general rule, even though many operations are possible with DAT_XFERGROUP set to
DG_AUDIO, Applications are encouraged to only change to DG_AUDIO for the length of time it
takes to collect an audio snippet, and to stay in DG_IMAGE mode at all other times.

3. Though TWAIN is image-centric, it is possible to envision a TWAIN Source that is only
capable of supporting DG_AUDIO. The TWAIN Working Group feels that any such notion is a
bad idea, and encourages anyone thinking of doing this to pick on some other API.

How to use the Preview Device

Application Switch to the Preview Logical Device

The application first tries to switch to the preview logical device using the DG_CONTROL /
DAT_FILESYSTEM / MSG_CHANGEDIRECTORY triplet with TWFY_CAMERAPREVIEW set in
InputName field of TW_FILENAME structure. If the returned value is TW_SUCCESS, the
application can proceed.

1. After the application successfully switches to the preview device, all subsequent capability
negotiation is with the preview device.

2. The application queries the Source with capability CAP_CAMERAPREVIEWUI. If it returns
SUCCESS, then the Source is able to assume the responsibility of displaying preview images.
The application can choose to use the Source’s UI or not when it issues the MSG_ENABLEDS. If
the application uses the Source’s UI, it will do nothing but wait to issue MSG_DISABLEDS, or
wait for a MSG_CLOSEDSREQ from the Source to stop the preview mode. If the application
does not use the Source’s UI or the Source does not provide a UI, then the application should
follow the following steps.

Setting Up Environments for Preview Mode

1. The application starts negotiation on the Preview size using the ICAP_XRESOLUTION and
ICAP_YRESOLUTION capabilities with MSG_GET first. With the returned supported sizes from
A-28 TWAIN 2.3 Specification

the Source, the application can set the selected preview sizes using the ICAP_XRESOLUTION
and ICAP_YRESOLUTION capabilities with MSG_SET.

2. Optionally, the application can negotiate the zoom lens value, camera flash state during
previewing, etc, with available capabilities such as ICAP_ZOOMFACTOR, ICAP_FLASHUSED2.
If application queries for capabilities that are not related to preview device, Source will return
TWRC_FAILURE.

Start Getting and Displaying Preview Thumbnails

1. The application can use the automatic capture feature with CAP_XFERCOUNT to -1
(Application is willing to transfer multiple images).

2. Application issues MSG_ENABLEDS to move to state 5. Upon receiving this message, the
Source should start capturing images1.

3. Source issues MSG_XFERREADY, indicating that an image is present, and state moves to 6.

LOOP:

4. Application issues DAT_IMAGENATIVEXFER to get image and goes to state 7.

5. Application issues MSG_ENDXFER to return to state 6, and it displays the image. Then if it
wants the next preview image, examines pTW_PENDINGXFERS->Count to verify that there is
another image, and it goes to LOOP. Source, upon receiving the MSG_ENDXFER message,
takes the next picture and returns -1 in the pTW_PENDINGXFERS->Count.

END LOOP

6. If the application wants to end preview mode, it issues DAT_PENDINGXFERS / MSG_RESET.
This forces the Source to go to state 5 (CAP_XFERCOUNT is set to 0). If the Source is unable to
deliver preview images, it sets pTW_PENDINGXFERS->Count to 0 in reply to the application’s
MSG_ENDXFER command, and returns to state 5.

7. The application can then issue MSG_DISABLEDS, which returns it to state 4, and now the
application can use DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY to change
directory to the camera device to take a full resolution picture.

How to Take a Snapshot from Preview Scene

1. The application could provide a button or menu item for the user to take a snapshot from the
preview scene, for example, a “Take Picture” button. In response to this, the application
should use the triplet DG_CONTROL / DAT_FILESYSTEM / MSG_CHANGEDIRECTORY with
TWFS_CAMERA set in the TW_FILENAME structure to stop the preview mode.

2. Subsequently, the application can use the automatic capture feature with CAP_XFERCOUNT
to 1, CAP_TIMEBEFOREFIRSTCAPTURE to 0 and CAP_AUTOMATICCAPTURE set to 1 to
initiate the capture of preview snapshot.

3. When the Source receives the CAP_AUTOMATICCAPTURE, it should capture the preview
snapshot, and inform the application with MSG_XFERREADY when it is ready to transfer.

4. After receiving the MSG_XFERREADY, the application should use one of the three standard
image transfer methods to transfer the captured image from the Source to the application.

1. The Source takes a picture as soon as it receives MSG_ENABLEDS and each time it receives MSG_ENDXFER
TWAIN 2.3 Specification A-29

Chapter A
5. At the end of this operation, the application has the option of going back to the preview
thumbnail loop.

Imprinter / Endorser
Scanners intended for document imaging sometimes include accessories that let the scanner print
data on the documents as it scans them. TWAIN provides basic functionality to negotiate
capabilities for imprinter / endorser devices. An imprinter is a general term for any document-
printing device. An endorser is more specialized, and is primarily intended as proof of scanning.
In addition to the type of printing device, TWAIN offers ways to locate the printer on the scanning
path: top or bottom of the sheet of paper, before or after the paper has been scanned. It is the
responsibility of the Source to provide the available combinations to the Application. It is the
responsibility of the Application to enable the printers that it wants to use, and to establish seed
values prior to scanning.

This is a context sensitive scheme, Applications use CAP_PRINTER to discover what printers are
available to the Source, and to select each of those printers for negotiation.

CAP_PRINTERENABLED determines whether or not a given printer will be used when scanning
begins; a value of TRUE indicates that it will be used, a value of FALSE that it will not be used.
Applications must enable a printer before negotiating the seed values.

CAP_PRINTERINDEX describes an index that counts by ones for every image seen by a given
printer.

CAP_PRINTERMODE selects one of three options: print one line of text from
CAP_PRINTERSTRING, or multiple lines from CAP_PRINTERSTRING, or a compound string
constructed (in order) from CAP_PRINTERSTRING, CAP_PRINTERINDEX and
CAP_PRINTERSUFFIX.

CAP_PRINTERSTRING specifies the base message to be printed. For compound strings, the
CAP_PRINTERSTRING serves as the prefix to the CAP_PRINTERINDEX.

CAP_PRINTERSUFFIX is only available for compound strings, and describes the text (if any) that
is to follow the CAP_PRINTERINDEX.

CAP_PRINTERVERTICALOFFSET specifies Y-Offset for current CAP_PRINTER device.

Example of Use:

Consider a Source that supports two CAP_PRINTERs:

TWPR_IMPRINTERTOPBEFORE

TWPR_IMPRINTERBOTTOMBEFORE

The Application then:

• uses CAP_PRINTER to discover the two printers

• sets CAP_PRINTER to TWPR_IMPRINTERTOPBEFORE
A-30 TWAIN 2.3 Specification

• sets CAP_PRINTERENABLED to TRUE (turning this printer on)

• sets CAP_PRINTERMODE to TWPM_SINGLESTRING

• sets CAP_PRINTERSTRING to a string containing today’s date

• sets CAP_PRINTER to TWPR_IMPRINTERBOTTOMBEFORE

• sets CAP_PRINTERENABLED to FALSE (turning this printer off)

Note that the value of CAP_PRINTER is not important at the time of scanning, it is the other
capabilities that control the imprinter, like CAP_PRINTERENABLED; CAP_PRINTER only selects
the current printer under negotiation.

Capability Ordering
As the number of capabilities described by TWAIN has increased it has become clear that there are
dependencies between many of them. The purpose of this section is to point out connections
between certain capabilities. The way one capability can affect another is not always obvious and
failure to recognize this interdependence is often the reason for unexpected TWAIN Scanning
results. Using this as a guideline, an Application Developer can code capability negotiation with
confidence, and Data Source developers can refer back to this section to make sure they have not
introduced an unusual dependency.

In some cases these dependencies are not likely to be critical, for example if
ICAP_CCITTKFACTOR is set to some non-zero value, and ICAP_COMPRESSION is not
TWCP_GROUP32D, most scanners will not see this as a problem. On the other hand, if
ICAP_COMPRESSION is set to TWCP_JPEG and ICAP_XFERMECH is set to TWSX_NATIVE then it is
extremely unlikely that the Application will get useable image data.

It is the responsibility of the Source to properly constrain itself according to the current settings of
all of its capabilities. Doing so has the following benefits:

• The Source protects itself from illegal configurations.

• The Source reports to the Application through constraints and the TWCC_CAPSEQERROR
condition code which capabilities are fully, partially or currently not negotiable.

It is the responsibility of the Application to negotiate capabilities in the proper order. Doing so
has the following benefits:

• The Application protects itself from illegal configurations.

• The Application can use constraints and occurrences of TWCC_CAPSEQERROR to modify the
behavior of its user interface, better representing the Source’s capabilities to the user.

The reset of this article is written in the order of negotiation that an Application should use to
control a Source.

One other note about interpreting this section, the entire list of capabilities is in the context of the
Current File System Device. If the Current File System Device was changed using the
DAT_FILESYSTEM triplets, the context of these capabilities is expected to change and re-
negotiation must occur. It is much easier to deal with if the File System operations are completed
TWAIN 2.3 Specification A-31

Chapter A
first and Capability negotiation on a large scale is left until just before scanning from a particular
device.

Language Support

The first thing the Source and Application should negotiate is the language. This negotiation best
occurs as part of the DG_CONTROL / DAT_PARENT / MSG_OPENDS call. The Application reports
the language it is using in appIdentity->Version.Language. The Source should attempt to
try to match this language. If it cannot, it should attempt to match the language that the user
logged in with. If this fails then is should pick the best language that it can. For those Sources that
support CAP_LANGUAGE the Application has a further opportunity to try and get a good language
match, and this should be done as soon as the Source is successfully opened.

Duplex Control

If an Application finds that CAP_DUPLEX exists and it indicates that duplex scanning is supported,
then the Application should negotiate CAP_DUPLEXENABLED. If CAP_DUPLEXENABLED is set to
FALSE, then DAT_FILESYSTEM capable Sources should not report any TWFY_CAMERABOTTOM
devices in the root directory. If the Source is set to a TWFY_CAMERABOTTOM device at the time that
CAP_DUPLEXENABLED is set to FALSE, then it should automatically change itself to the
corresponding TWFY_CAMERATOP device.

Device Negotiation

If the Source supports DAT_FILESYSTEM, then the Application needs to walk through the root
directory to determine what devices are available, if it wants to independently control the
individual devices. Sources are required to default to the TWFY_CAMERA device (the implied
default for Sources that do not support DAT_FILESYSTEM). If an Application negotiates
capabilities using this device, then the Source is expected to apply the settings to as many of its
applicable devices as possible. For instance, in a duplex scanner changing the value of
ICAP_BRIGHTNESS for the default TWFY_CAMERA device will change the settings of its
corresponding TWFY_CAMERATOP and TWFY_CAMERABOTTOM. Once the list of devices has been
identified, the Application may optionally change to one of them using DG_CONTROL /
DAT_FILESYSTEM / MSG_CHANGEDIRCTORY.

Supported Capabilities

Applications are encouraged to use this call to get the capabilities supported by a Source, since
this information can be used to quickly characterize the device. For instance, a Source that
supports ICAP_FLASH2 is more likely to be a digital camera than a scanner. Or in another case, a
single-pass duplex scanner that supports DAT_FILESYSTEM access to both of its cameras might
not support all the same capabilities for both cameras.

Extended Capabilities

Beginning with TWAIN 2.3 the Data Source always sets CAP_EXTENDEDCAPS to the array of
capabilities that are negotiable in States 5, 6 and 7. The application reads this array, or (for legacy
purposes) it can set the array to the desired values, and, if TWRC_CHECKSTATUS is returned,
follow up to see which values were accepted.
A-32 TWAIN 2.3 Specification

Feeder Control

CAP_FEEDERENABLED is the key capability to determine if a Source supports an automatic
document feeder (ADF). Once this value has been determined no special ordering is required to
test most of the other values, although there are groupings worth noting. Some ADFs provide
control over individual sheets of paper: CAP_CLEARPAGE, CAP_FEEDPAGE, CAP_REWINDPAGE.
Some ADFs are supported by memory buffers built into the device: CAP_AUTOSCAN,
CAP_MAXBATCHBUFFERS. Some ADFs are capable of detecting the presence of paper in the input
bin: CAP_PAPERDETECTABLE, CAP_FEEDERLOADED. ICAP_FEEDERTYPE reports either the
types of feeders available (in the case where there is a general type feeder only) or the scan types
supported through the feeder. Some ADFs provide control over paper handling:
CAP_PAPERHANDLING.

Frame Management

Before negotiating frame information an Application should first establish the unit of
measurement using ICAP_UNITS. It should establish the ICAP_XRESOLUTION and
ICAP_YRESOLUTION of the image, especially if TWUN_PIXEL is supported, since the reported
values should vary with the pixel density. After that the Application should determine the
physical limits of the Source using ICAP_MINIMUMHEIGHT, ICAP_MINIMUMWIDTH,
ICAP_PHYSICALHEIGHT and ICAP_PHYSICALWIDTH.

Note: ICAP_MINIMUMHEIGHT, ICAP_MINIMUMWIDTH, ICAP_PHYSICALHEIGHT, and
ICAP_PHYSICALWIDTH may vary depending on the source of the document. For example, when
using a Flatbed / ADF combination scanner, the ADF path may permit longer documents to be
scanned. In this case, values for these extents would be expected to differ for different values of
CAP_FEEDERENABLED.

DAT_IMAGELAYOUT is required by all Sources. Most scanners support ICAP_SUPPORTEDSIZES
(unlike digital cameras, which tend to not support physical measurements like inches and
centimeters).

ICAP_SUPPORTEDSIZES is required to set itself to TWSS_NONE if frames are negotiated using
either DAT_IMAGELAYOUT or ICAP_FRAMES.

ICAP_MAXFRAMES will report how many frames ICAP_FRAMES is capable of delivering per
captured item.

ICAP_ORIENTATION is intended to tell a Source how the orientation of a sheet of paper fed into
the scanner varies from the settings of its frame information. ICAP_ROTATION is a specific
request to the scanner to rotate the scanned image the indicated number of degrees.
ICAP_ORIENTATION with ICAP_SUPPORTEDSIZES will affect ICAP_FRAMES and
DAT_IMAGELAYOUT. ICAP_ROTATION should only affect the output from DAT_IMAGEINFO. The
reason for negotiating these values after establishing the frame is that some Sources may reject
attempts to rotate data if one of the dimensions exceeds the physical width or height of the
scanner.

ICAP_OVERSCAN is intended as a way to capture image data beyond the usual boundaries of a
scanned sheet of paper, and is primarily intended as an aid in deskewing images. The additional
scan area is only reported with DAT_IMAGEINFO. The reason for negotiating this value after
setting the other values listed above is that some Sources may reject overscan if certain dimensions
are exceeded.
TWAIN 2.3 Specification A-33

Chapter A
ICAP_AUTOMATICDESKEW will correct the rotation of an image, it may also affect the dimensions
of the image as reported by DAT_IMAGEINFO. ICAP_AUTOMATICBORDERDETECTION reduces or
removes the border generated around an image by the scanner scanning its own platen (the area
not covered by the paper).

ICAP_UNDEFINEDIMAGESIZE may be set to TRUE by a Source depending on one or more of the
previously negotiated capabilities. Applications need to remember that it is possible for images to
exceed the width and height dimensions, which can impact the amount of allocated memory. It is
also important to note that if the width is undefined and ICAP_XFERMECH is set to
TWSX_MEMORY, then the Source is required to also set ICAP_TILES to TRUE.

Bar Code Negotiation

ICAP_BARCODEDETECTIONENABLED must be set before any of the other, related capabilities are
made available. ICAP_SUPPORTEDBARCODETYPES should then be tested, to determine what bar-
code values are supported by the Source. After that the bar-code capabilities may be negotiated in
any order.

Patch Code Negotiation

ICAP_PATCHCODEDETECTIONENABLED must be set before any of the other, related capabilities
are made available. ICAP_SUPPORTEDPATCHCODETYPES should then be tested, to determine
what patch-code values are supported by the Source. After that the patch-code capabilities may
be negotiated in any order.

Imprinter/Endorser Negotiation

CAP_PRINTER establishes what (if any) printer/endorsers are supported by the Source. Selecting
one establishes a context for that printer/endorser that is used by all related capabilities.
CAP_PRINTERENABLED turns the printer on or off; the printer must be on in order for the other
settings to be negotiated. A Source may opt to refuse to enable a printer if
ICAP_SUPPORTEDSIZES selects a document with a size that is not within the area of the printer.

CAP_PRINTERINDEX should be negotiated next. CAP_PRINTERMODE can then be determined,
followed by CAP_PRINTERSTRING and CAP_PRINTERSUFFIX.

Scaling

ICAP_XSCALING should be negotiated before the ICAP_YSCALING.

Image Manipulation

ICAP_ROTATION is a specific request to the scanner to rotate the scanned image the indicated
number of degrees. ICAP_MIRROR is another specific request to mirror the scanned image.
ICAP_FLIPROTATION is used to properly orient images that flip orientation every other image.

General Capability Negotiation

ICAP_XFERMECH selects the way an image is transferred from the Source to an Application,
which has an impact on some of the characteristics of an image, which is why this value must be
selected first. If TWSX_NATIVE is selected, then no other action related to image transfer is
needed. If TWSX_FILE is selected, then the application should negotiate
A-34 TWAIN 2.3 Specification

ICAP_IMAGEFILEFORMAT, which will be used when DAT_SETUPFILEXFER is called. If
TWSX_MEMORY is selected, then DAT_SETUPMEMXFER will need to be called. The Application may
then opt to negotiate ICAP_TILES.

// Then negotiate these capabilities…
ICAP_PIXELTYPE
 or
ICAP_JPEGPIXELTYPE

 // Use of flash may affect other values…
 ICAP_FLASHUSED
 ICAP_FLASHUSED2

 ICAP_AUTOBRIGHT
 ICAP_BRIGHTNESS
 ICAP_BITDEPTH
 ICAP_BITDEPTHREDUCTION
 ICAP_CUSTHALFTONE
 ICAP_HALFTONES
 ICAP_THRESHOLD
 ICAP_BITORDER
 ICAP_COMPRESSION
 ICAP_BITORDERCODES
 ICAP_CCITTKFACTOR
 ICAP_PIXELFLAVORCODES
 ICAP_TIMEFILL
 ICAP_CONTRAST
 ICAP_EXPOSURETIME
 ICAP_FILTER
 ICAP_GAMMA
 ICAP_IMAGEFILTER
 ICAP_NOISEFILTER
 ICAP_PIXELFLAVOR
 ICAP_HIGHLIGHT
 ICAP_SHADOW
 ICAP_PLANARCHUNKY
 ICAP_XRESOLUTION
 ICAP_XNATIVERESOLUTION
 ICAP_YRESOLUTION
 ICAP_YNATIVERESOLUTION
TWAIN 2.3 Specification A-35

Chapter A
Independent Capabilities

These capabilities are considered independent because they do not affect other capabilities and
they are not affected by changes in other capabilities.

CAP_ENABLEDSUIONLY

CAP_CUSTOMDSDATA

CAP_INDICATORS

CAP_INDICATORSMODE

CAP_UICONTROLLABLE

CAP_SERIALNUMBER

ICAP_LAMPSTATE

CAP_BATTERYMINUTES

CAP_BATTERYPERCENTAGE

CAP_POWERSUPPLY

ICAP_BITORDER

CAP_DEVICETIMEDATE

CAP_DEVICEEVENT

CAP_CAMERAPREVIEWUI

CAP_POWERSAVETIME

ICAP_AUTODISCARDBLANKPAGES

ACAP_XFERMECH

Semi-Independent Capabilities

Semi Independent Capabilities are small groups that have no effect on the big picture, but do have
their own pockets of dependencies.

CAP_ALARMS CAP_ALARMVOLUME

CAP_AUTOMATICCAPTURE CAP_TIMEBEFOREFIRSTCAPTURE
CAP_TIMEBETWEENCAPTURES
A-36 TWAIN 2.3 Specification

CAP_CUSTOMINTERFACEGUID

CAP_SUPPORTEDCAPS

CAP_EXTENDEDCAPS

ICAP_SUPPORTEDEXTIMAGEINFO

CAP_LANGUAGE

CAP_DEVICEONLINE

ICAP_XFERMECH ICAP_TILES

CAP_FEEDERENABLED ICAP_LIGHTPATH

CAP_FILMTYPE

CAP_DUPLEX CAP_DUPLEXENABLED

CAP_FEEDERORDER
CAP_FEEDERALIGNMENT
CAP_PAPERHANDLING

ICAP_IMAGEMERGE

ICAP_IMAGEMERGEHEIGHTTHRESHOLD

CAP_FEEDERPOCKET

CAP_FEEDERPREP

CAP_AUTOFEED CAP_CLEARPAGE
CAP_FEEDPAGE
CAP_REWINDPAGE

CAP_PAPERDETECTABLE CAP_FEEDERLOADED

CAP_AUTOMATICSENSEMEDIUM

ICAP_LIGHTSOURCE

ICAP_FEEDERTYPE

ICAP_DOUBLEFEEDDETECTION CAP_DOUBLEFEEDDETECTIONLENGTH
CAP_DOUBLEFEEDDETECTIONSENSITIVITY
CAP_ DOUBLEFEEDDETECTIONRESPONSE
TWAIN 2.3 Specification A-37

Chapter A
CAP_MICRENABLED

CAP_PRINTER CAP_PRINTERENABLED CAP_PRINTERMODE
CAP_PRINTERVERTICALOFFSET

ICAP_UNITS

CAP_PRINTERCHARROTATION
CAP_PRINTERFONTSTYLE
CAP_PRINTERSTRING
CAP_PRINTERINDEXLEADCHAR
CAP_PRINTERINDEXNUMDIGITS
CAP_PRINTERINDEXMAXVALUE
CAP_PRINTERINDEXSTEP
CAP_PRINTERINDEX
CAP_PRINTERSUFFIX
CAP_PRINTERINDEXTRIGGER
CAP_PRINTERSTRINGPREVIEW

ICAP_IMAGEDATASET

CAP_THUMBNAILSENABLED* * If CAP_THUMNAILSENABLED is enabled,
do not negotiate any further capabilities
related to dimensions of the output image.
This capability over-rides all in order to
have the Source deliver reasonable thumb-
nail images.

ICAP_XNATIVERESOLUTION
ICAP_YNATIVERESOLUTION
ICAP_PHYSICALWIDTH
ICAP_PHYSICALHEIGHT
ICAP_MINIMUMHEIGHT
ICAP_MINIMUMWIDTH

ICAP_COLORMANAGEMENTENABLED

CAP_CAMERASIDE

ICAP_AUTOMATICCOLORENABLED ICAP_AUTOMATICCOLORNONCOLORPIXELTYPE

ICAP_PIXELTYPE ICAP_BITDEPTH ICAP_XRESOLUTION
ICAP_YRESOLUTION

ICAP_PIXELFLAVOR
ICAP_PLANARCHUNKY

ICAP_BITDEPTHREDUCTION

ICAP_CUSTHALFTONE
ICAP_HALFTONES
ICAP_THRESHOLD

ICAP_IMAGEFILEFORMAT

ICAP_XFERMECH *
*Available Compressions are also directly
dependent upon the current setting of
ICAP_XFERMECH.

ICAP_COMPRESSION
A-38 TWAIN 2.3 Specification

ICAP_BITORDERCODES
ICAP_CCITTKFACTOR
ICAP_PIXELFLAVORCODES
ICAP_TIMEFILL
ICAP_JPEGPIXELTYPE
ICAP_JPEGQUALITY
ICAP_JPEGSUBSAMPLING

CAP_CAMERAENABLED
CAP_CAMERAORDER

ICAP_ICCPROFILE

ICAP_XSCALING
ICAP_YSCALING
ICAP_ZOOMFACTOR

ICAP_AUTOBRIGHT ICAP_BRIGHTNESS

ICAP_CONTRAST
ICAP_GAMMA
ICAP_HIGHLIGHT
ICAP_SHADOW
ICAP_EXPOSURETIME
ICAP_FILTER
ICAP_IMAGEFILTER
ICAP_NOISEFILTER

ICAP_UNDEFINEDIMAGESIZE ICAP_AUTOMATICBORDERDETECTION
ICAP_AUTOMATICDESKEW
ICAP_AUTOMATICROTATE
ICAP_OVERSCAN
CAP_SEGMENTED

ICAP_AUTOSIZE
ICAP_AUTOMATICCROPUSESFRAME
ICAP_AUTOMATICLENGTHDETECTION

ICAP_SUPPORTEDSIZES

ICAP_MAXFRAMES ICAP_FRAMES

ICAP_ORIENTATION ICAP_FLIPROTATION
ICAP_ROTATION
ICAP_MIRROR
TWAIN 2.3 Specification A-39

Chapter A
 Audio Negotiation

The availability of the audio capabilities can be inferred from the presence of DG_AUDIO. If it is
available then the Application should negotiate ACAP_XFERMECH. Note that these operations
occur independently of the current value of DAT_XFERGROUP. The actual selection of an audio
file format takes place in State 6 using DAT_SETUPFILEXFER, and must be preceded by a call to
DAT_XFERGROUP / MSG_SET to DG_AUDIO to change the Source over to the audio data group.
Sources that transfer audio data need to set the Source back to DG_IMAGE when they are done
with the audio data, and ready to get image data, or exit back to State 4.

CAP_AUTHOR
CAP_CAPTION
CAP_TIMEDATE
ICAP_FLASHUSED *obsolete
ICAP_FLASHUSED2

CAP_XFERCOUNT CAP_AUTOSCAN CAP_REACQUIREALLOWED

↓

CAP_MAXBATCHBUFFERS
CAP_CLEARBUFFERS

ICAP_EXTIMAGEINFO ICAP_PATCHCODEDETECTIONENABLED

ICAP_PATCHCODESEARCHMODE
ICAP_PATCHCODEMAXRETRIES
ICAP_PATCHCODETIMEOUT

ICAP_SUPPORTEDPATCHCODETYPES

ICAP_PATCHCODEMAXSEARCHPRIORITIES

ICAP_PATCHCODESEARCHPRIORITIES

ICAP_BARCODEDETECTIONENABLED

ICAP_BARCODESEARCHMODE
ICAP_BARCODEMAXRETRIES
ICAP_BARCODETIMEOUT

ICAP_SUPPORTEDBARCODETYPES

ICAP_BARCODEMAXSEARCHPRIORITIES

ICAP_BARCODESEARCHPRIORITIES

CAP_ENDORSER
CAP_JOBCONTROL
A-40 TWAIN 2.3 Specification

Alarms

CAP_ALARMS selects the kind of audio alerts provided by a Source. CAP_ALARMVOLUME is only
available if an alarm is selected, and controls the volume for all alarms with a single value.

Power Supply

CAP_POWERSUPPLY reports which power supply is currently in effect for the Source.
CAP_BATTERYPERCENTAGE, CAP_BATTERYMINUTES and CAP_POWERSAVETIME are available at
all times, though the values they report may change depending on the current value of
CAP_POWERSUPPLY.

Asynchronous Device Events

CAP_DEVICEEVENT may be used to activate device events.

Automatic Capture

DG_CONTROL / DAT_FILESYSTEM / MSG_AUTOMATICCAPTUREDIREDCTORY should be
negotiated first, since it selects the destination for the images. CAP_TIMEBEFOREFIRSTCAPTURE
and CAP_TIMEBETWEENCAPTURES should be negotiated next. CAP_AUTOMATICCAPTURE must
be negotiated last, because it is the trigger that starts the timer.

Camera-Dependent Capabilities

The following list covers capabilities have no interdependencies, but which may be dependent on
the currently selected device (for Sources that support DAT_FILESYSTEM).

CAP_AUTHOR

CAP_CAMERASIDE

CAP_CAPTION

CAP_DEVICETIMEDATE

CAP_ENDORSER

CAP_JOBCONTROL

CAP_PASSTHRU

CAP_SERIALNUMBER

CAP_TIMEDATE

CAP_XFERCOUNT

CAP_INDICATORSMODE

ICAP_EXTIMAGEINFO

ICAP_IMAGEDATASET

ICAP_LAMPSTATE

ICAP_LIGHTPATH

ICAP_LIGHTSOURCE
TWAIN 2.3 Specification A-41

Chapter A
ICAP_ZOOMFACTOR

Camera-Independent Capabilities

The following list covers capabilities that are free of any dependencies. Applications can negotiate
these in any order (during state 4), and regardless of the current device in effect (for Sources that
support DAT_FILESYSTEM):

CAP_CAMERAPREVIEWUI

CAP_CUSTOMDSDATA

CAP_DEVICEONLINE

CAP_DEVICETIMEDATE

CAP_ENABLEDSUIONLY

CAP_INDICATORS

CAP_PASSTHRU

CAP_SEGMENTED

CAP_THUMBNAILSENABLED

CAP_TIMEDATE

CAP_UICONTROLLABLE

CAP_XFERCOUNT

Defaults
TWAIN describes defaults for capabilities, unfortunately, this information is spread throughout
the specification, and in some cases is ambiguous. This article discusses how Sources and
Applications should use and manage defaults values. It covers the three main kinds of defaults
supported by TWAIN. It discusses the DG_CONTROL / DAT_CAPABILITY / MSG_xxxx functions
and how they relate to defaults. Finally, it offers a section that describes the expected default
settings for each capability within TWAIN.

Default Mechanisms

Defaults in TWAIN serve three main functions:

Mandatory Defaults Protect Applications from incompatible settings.

Preferred Defaults Permit Source providers to expose preferred settings for
capabilities.

User Defaults Create consistency in a Source’s user interface; values
selected in one session are preserved for the next session.

Mandatory defaults are established by the TWAIN specification. Preferred defaults may be
selected by a Source for any capability that does not have a mandatory default. User defaults may
replace any preferred default with a value selected by the user through the Source’s user interface.
A-42 TWAIN 2.3 Specification

These three functions are not intrinsically compatible, which creates ambiguity; Applications
cannot make assumptions about the initial values of all capabilities.

Mandatory Defaults

Some capabilities must reflect certain values when a Source is opened. These defaults are selected
because Applications must be allowed to expect certain kinds of behavior without being forced to
negotiate all capabilities (not only would this be tedious, but it is impossible in situations where a
Source and Application are derived from different versions of TWAIN). For example, the 1.8
capability CAP_PRINTERENABLED must default to FALSE, otherwise a 1.6 Application might find
itself printing data on scanned documents, and unable to do anything about it.

Preferred Defaults

TWAIN permits a Source to provide its own defaults. These settings are assumed to produce the
most favorable results possible, whether they are measured in terms of processing speed, memory
usage, or some other criteria. For instance, a Source will select a preferred value for
ICAP_PIXELFLAVOR that keeps it from having to invert the bits in an image. In some cases the
preferred defaults are gleaned from the current state of the device. For instance,
CAP_FEEDERENABLED depends on the presence of a feeder on the scanner device. A Source is
expected to determine if the feeder is truly present, not assume that the value saved from the last
session is valid.

User Defaults

Prior to TWAIN 1.7 Applications generally relied on Sources to provide user interfaces that
controlled image capture. Since one of the tenants of TWAIN is to make things easier for
Applications, it became common for Sources to save state, preserving the values selected by a
user, so the next time the Application started the same values would be displayed. This
mechanism continues to be desirable, but Source writers should bear in mind that user defaults
values are a convenience that can create problems for users who access their Source from more
than one Application. CAP_AUTOSCAN is an example of a capability that should never have its
state saved, since Applications that do not negotiate will also not be able to handle the results if it
happens to be set to TRUE.

DAT_CAPABILITY Operations

There are five methods of negotiating values with a Source, this section discusses how Sources
and Applications should relate them to the various kinds of default values:

• MSG_GET returns the current value of the capability, along with the allowed values (if any). At
startup, this value will reflect the mandatory default, if there is one. If there is no mandatory
default, then this call will return the user default, if supported and if one is available;
otherwise it will return the preferred default value for the Source. It is up to the Application
to understand the possible sources of a value, and override it if desired. Note that the allowed
values are always reset when a Source starts up. Sources must never save the constraints
created by an Application.

• MSG_GETCURRENT returns the current value of the capability, it does not return the allowed
list. At startup, this value will reflect the mandatory default, if there is one. If there is no
mandatory default, then this call will return the user default, if supported and if one is
available; otherwise it will return the preferred default value for the Source.
TWAIN 2.3 Specification A-43

Chapter A
• MSG_GETDEFAULT always returns either the mandatory or preferred default, whichever is
appropriate for the capability. It never returns a user default. Like MSG_GETCURRENT it only
returns the value, not the allowed list.

• MSG_RESET resets a capability’s allowed list to all permitted values, and sets the current value
to the mandatory or preferred default, never the user default. The container returned by
MSG_RESET must be the same kind of container returned for a MSG_GETDEFAULT operation,
this preserves legacy behavior; however, Applications should follow MSG_RESET with
MSG_GET if they wish to determine how the constraints for the capability have been reset.
This message is a good one for Applications to use, since it is easy to code, and can be used to
get a Source to some kind of a known state.

A simple mechanism for resetting a Source uses the following steps (Applications that use the
Source’s UI should not use this method): for each device supported by the Source (pre-1.8 Sources
only have one implicit device) the Application calls CAP_SUPPORTEDCAPS; for each capability the
Application calls DG_CONTROL / DAT_CAPABILITY / MSG_QUERYSUPPORT to see if it supports
TWQI_RESET; if it does, then the Application sends DG_CONTROL / DAT_CAPABILITY /
MSG_RESET which resets the capability.

Performing these steps will protect an Application from any user defaults created by a previous
Application. Please note, not all Sources may support MSG_QUERYSUPPORT. For those that don’t,
an Application would have to issue MSG_RESET on all capabilities (perhaps excluding those it
knows to be read-only) and trust that the Source is robust enough to report TWRC_FAILURE for
those capabilities that do not support MSG_RESET.

• MSG_SET sets the current value. Therefore, it’s possible for a capability set in State 4 to find its
way into the user defaults.

• MSG_SETCONSTRAINT sets the current value and optionally sets the constraints on a
capability. Sources must never save the constraints negotiated by an application. However,
it’s possible for a capability set in State 4 to find its way into the user defaults.
A-44 TWAIN 2.3 Specification

B
TWAIN Technical Support

Chapter Contents

E-Mail Support. B-1

Worldwide Web. B-2

E-Mail Support
Developers who are connected to AppleLink and the WWW or Internet have access to TWAIN
support groups. The support groups can answer your TWAIN development or marketing
questions. There are two support groups: the TWAIN Working Group and the TWAIN
Developers distribution.

• The TWAIN Working Group is read by Technical, Marketing and Support representatives
from the Working Group companies. You can contact this group via e-mail at
twainwg@twain.org.

• The TWAIN Developers distribution includes TWAIN developers who want to keep up on
TWAIN or offer advice to other developers. This distribution includes the TWAIN Working
Group. It is the best place to get support because both the Working Group and other
developers can respond. You can contact this group via e-mail at twain@email.twain.org. In
order to send mail to the list, you must first subscribe to the list at
http:/email.sparklist.com/scripts/lyris.pl?enter=twain.

• For Apple-specific questions, please email the TWAIN Working Group Mac Subcommittee at
twain-mac@twain.org.

TWAIN developers are encouraged to participate on the TWAIN Developer distribution list. The
TWAIN Working Group also uses this distribution as a means to communicate with developers.
For example, we use the distribution when posting the latest news about TWAIN, asking
questions we may have about implementations, and requesting review of any Technical Notes
that are under development. Technical Notes provide the mechanism for distributing updated
information and corrections to errors that may occur in this document.
TWAIN 2.3 Specification B-1

twain-mac@twain.org
http://email.sparklist.com/scripts/lyris.pl?enter=twain
http://email.sparklist.com/scripts/lyris.pl?enter=twain
twainwg@twain.org
twainwg@twain.org
twainwg@twain.org
twain@email.twain.org
twain@email.twain.org

Chapter B
Worldwide Web
Developers connected to the WWW can also get on-line information and updates. There is an on-
line version of the Developers’ matrix with connections to those implementers with WWW pages.
In addition, this manual is available as a readable file.

The WWW address is http://www.twain.org.
B-2 TWAIN 2.3 Specification

	Table of Contents
	Need for Consistency 1-1
	Elements of TWAIN 1-1
	Benefits of Using TWAIN 1-2
	Creation of TWAIN 1-3
	TWAIN Architecture 2-1
	TWAIN User Interface 2-4
	Communication Between the Elements of TWAIN 2-5
	Using Operation Triplets 2-10
	The State-Based Protocol 2-11
	Capabilities 2-14
	Modes Available for Data Transfer 2-19
	Levels of TWAIN Implementation 3-1
	Installation of the Source Manager Software 3-2
	Changes Needed to Prepare for a TWAIN Session 3-2
	Controlling a TWAIN Session from Your Application 3-9
	Error Handling 3-26
	Best Practices for TWAIN Compliant Applications 3-28
	Legacy Issues 3-40
	Capabilities 4-1
	Options for Transferring Data 4-17
	The ImageData and Its Layout 4-23
	Transfer of Multiple Images 4-26
	Transfer of Compressed Data 4-32
	Alternative User Interfaces 4-35
	Grayscale and Color Information for an Image 4-38
	The Structure of a Source 5-1
	Operation Triplets 5-2
	Sources and the Event Loop 5-3
	User Interface Guidelines 5-4
	Capability Negotiation 5-6
	Data Transfers 5-8
	Error Handling 5-11
	Memory Management 5-12
	Requirements for a Source to be TWAIN-Compliant 5-13
	Other Topics 5-21
	Entry Points 6-1
	Data Groups 6-4
	Data Argument Types 6-4
	Messages 6-6
	Custom Components of Triplets 6-7
	Triplet Overview 7-1
	Format of the Operation Triplet Descriptions 7-5
	Operation Triplets 7-7
	Naming Conventions 8-1
	Platform Dependent Definitions and Typedefs 8-3
	Definitions of Common Types 8-6
	Data Structure Definitions 8-8
	Data Argument Types that Don’t Have Associated TW_Structures 8-63
	Constants 8-65
	Deprecated Items 8-98
	TWAIN 1.7 Extended Image Attribute Capabilities 9-1
	TWAIN 1.9 Extended Image Attribute Capabilities 9-11
	TWAIN 1.91 Extended Image Attribute Capabilities 9-14
	TWAIN 2.0 Extended Image Attribute Capabilities 9-16
	TWAIN 2.1 Extended Image Attribute Capabilities 9-16
	TWAIN 2.2 Extended Image Attribute Capabilities 9-17
	TWAIN 2.3 Extended Image Attribute Capabilities 9-17
	Overview 10-1
	Required Capabilities 10-3
	Capabilities in Categories of Functionality 10-3
	An Overview of Return Codes and Condition Codes 11-1
	Currently Defined Return Codes 11-2
	Currently Defined Condition Codes 11-3
	Custom Return and Condition Codes 11-4
	Developing for Windows 12-1
	Developing for Mac 12-8
	Developing for Linux 12-12
	Overview 13-1
	Non-Goals of Basic TWAIN Self-Certification 13-2
	Affirmation of Successful Completion of TWAIN Self-Certification 13-3
	TWAIN “Congratulations” Webpage 13-10
	TWAIN Self-Certification Tests 13-10
	TWAIN Standard Capability Tests 13-11
	Vendor Custom Capability Tests 13-19
	Status Return Tests 13-25
	Stress Tests 13-27
	Non-UI Image Transfer Tests 13-28
	UI Image Transfer Tests 13-33
	CAP_XFERCOUNT Tests 13-34
	Version Tests 13-39
	Verify Values For MSG_RESETALL and MSG_RESET 13-41
	Device Events A-1
	Supported Sizes A-5
	Automatic Capture A-7
	Camera Preview A-8
	File System A-11
	Internationalization A-19
	Audio Snippets A-26
	How to use the Preview Device A-28
	Imprinter / Endorser A-30
	Capability Ordering A-31
	Defaults A-42
	E-Mail Support B-1
	Worldwide Web B-2

	Introduction
	Need for Consistency
	Elements of TWAIN
	Benefits of Using TWAIN
	Creation of TWAIN

	Technical Overview
	TWAIN Architecture
	TWAIN User Interface
	Communication Between the Elements of TWAIN
	Using Operation Triplets
	The State-Based Protocol
	Capabilities
	Modes Available for Data Transfer

	Application Implementation
	Levels of TWAIN Implementation
	Installation of the Source Manager Software
	Changes Needed to Prepare for a TWAIN Session
	Controlling a TWAIN Session from Your Application
	Error Handling
	Best Practices for TWAIN Compliant Applications
	Legacy Issues

	Advanced Application Implementation
	Capabilities
	Options for Transferring Data
	The ImageData and Its Layout
	Transfer of Multiple Images
	Transfer of Compressed Data
	Alternative User Interfaces
	Grayscale and Color Information for an Image

	Source Implementation
	The Structure of a Source
	Operation Triplets
	Sources and the Event Loop
	User Interface Guidelines
	Capability Negotiation
	Data Transfers
	Error Handling
	Memory Management
	Requirements for a Source to be TWAIN-Compliant
	Other Topics

	Entry Points and Triplet Components
	Entry Points
	Data Groups
	Data Argument Types
	Messages
	Custom Components of Triplets

	Operation Triplets
	Triplet Overview
	Format of the Operation Triplet Descriptions
	Operation Triplets

	Data Types and Data Structures
	Naming Conventions
	Platform Dependent Definitions and Typedefs
	Definitions of Common Types
	Data Structure Definitions
	Data Argument Types that Don’t Have Associated TW_Structures
	Constants
	Deprecated Items

	Extended Image Information Definitions
	TWAIN 1.7 Extended Image Attribute Capabilities
	TWAIN 1.9 Extended Image Attribute Capabilities
	TWAIN 1.91 Extended Image Attribute Capabilities
	TWAIN 2.0 Extended Image Attribute Capabilities
	TWAIN 2.1 Extended Image Attribute Capabilities
	TWAIN 2.2 Extended Image Attribute Capabilities
	TWAIN 2.3 Extended Image Attribute Capabilities

	Capabilities
	Overview
	Required Capabilities
	Capabilities in Categories of Functionality
	The Capability Listings

	Return Codes and Condition Codes
	An Overview of Return Codes and Condition Codes
	Currently Defined Return Codes
	Currently Defined Condition Codes
	Custom Return and Condition Codes

	Operating System Dependencies
	Developing for Windows
	Developing for Mac
	Developing for Linux

	TWAIN Self-Certification Process for Data Sources
	Overview
	Non-Goals of Basic TWAIN Self-Certification
	Affirmation of Successful Completion of TWAIN Self- Certification
	TWAIN “Congratulations” Webpage
	TWAIN Self-Certification Tests
	TWAIN Standard Capability Tests
	Vendor Custom Capability Tests
	Status Return Tests
	Stress Tests
	Non-UI Image Transfer Tests
	UI Image Transfer Tests
	CAP_XFERCOUNT Tests
	Version Tests
	Verify Values For MSG_RESETALL and MSG_RESET

	A
	Device Events
	Supported Sizes
	Automatic Capture
	Camera Preview
	File System
	Internationalization
	Audio Snippets
	How to use the Preview Device
	Imprinter / Endorser
	Capability Ordering
	Defaults

	B
	E-Mail Support
	Worldwide Web

